On the Use of Visualization to Support Awareness of Human Activities in Software Development: A Survey and a Framework
Background

- **Key issue: awareness**

 An understanding of the activities of others, which provides a context for [one's] own activity

 - Who else is working on the project?
 - What they are doing?
 - Which artifacts they are or were manipulating?
 - How their work may impact other work?

- **Problem**

 To maintain awareness becomes particularly difficult in distributed collaborative work, face-to-face collaboration is not possible when the team is not collocated
Related work

Gutwin and Greenberg 2002
- To mimic existing face-to-face awareness mechanisms
- does not involve the manipulation of physical objects
- To be unlikely to be in the distributed case

Feedthrough awareness [Dix 1994]
- To get a sense of the ongoing activity in the workspace

Conguration management (CM) tools
- To support concurrent development by multiple developers
- To provide mechanisms to back out of unwanted changes
- To provide a history and authorship of changes to the system
the Framework

Purposes

To describe visualizations of human activities

- To guide tool designers as they develop a new tool as a formative evaluation tool

- To be able to assess the value and application of a particular for potential tool users

- To compare and understand the differences between various tools and identify potential new research areas for tool researchers
key dimensions of the Framework

- **Intent**
 To capture the general purpose and the motivation that lead to the design of the visualization

- **Information**
 To refer to the data sources that a tool uses to extract relevant awareness information

- **Presentation**
 To refer to how the tool or proposed tool presents the extracted and derived information

- **Interaction**
 To refer to the interactivity and liveness of the tools

- **Effectiveness**
 To capture the feasibility of the proposed approach, whether it has been and whether it has been deployed
Intent

Role

who will use the tools?

- Developers
 Level (newcomer or not); type of team (co-located or not, small tight knit or large distribute)

- Maintainers, reverse engineers and reengineers
 To explore activities in past and guide present and future tasks

- Managers
 To gain an understanding of human activities in projects

- Testers and documenters
 To find information about who has been developing which changes have been made in the projects

- Researchers
 To investigate human activities and processes across the lifespan of multiple projects
Intent (con’t)

- **Time**
 Whether the tools provides awareness of activities occurring in the present or in the past

- **Cognitive support**
 To capture how a tool or artifact can make human cognition easier or better

Four categories of insight about human activities:
- authorship
- rationale
- time
- artifacts
Information

- **Change management**
 - configuration management and version control tools
 - Source information: the kept records of artifact changes and branch activities

- **Defect tracking**
 - tracking tools
 - Source information: defects and change requests

- **Program code**
 - tools which provide general information such as awareness information regarding files, modules and components or detailed views of syntactic units.
 - source information: source code
Information (con’t)

- **Documentation**
 - Source information: design and requirements

- **Information communication**
 - To help support awareness during collaboration and coordination tasks and further uncover the intent behind past human activities
 - Source information: email and instant messages

- **Derived data**
 - Source information: data from multiple data sources
Presentation

Form
- A combination of text, hypertext and graphics

Kinds of views
- Annotations on existing views
 To emphasize the owner, state or history of a software artifact
- Statistical views
 To provide comparison and analysis of human activity information
- Graphic views
 To display relationships between human and software artifacts
- Special view
 To provide cognitive support for particular information seeking or understanding tasks

Techniques
- Visual variables
 (color and position) mapped to a human activity attributes.
- Animation
Interaction

- **Batch/Live**
 - Offline tools displays the queried information using static graphs.
 - Online tool provide updated displays

- **Customization**
 - to suit particular user needs

- **Query mechanism**
 - special purpose languages to specify queries
 - specialized filter widgets, such as checkbox
 - directly interacting with the visualization, such as selection

- **View navigation**
 - To see specialized views
 - An overview for detailed views and a zoomable user interface and hypertext
 - To compare two views side-by-side
 - Multiple views should be coupled
Effectiveness

- **Status**
 - Whether propose approaches have been completed
 - Availability, interoperability, scalability of tools

- **Cost**
 - Economic, installation and learning cost

- **Evaluation**
 - To be evaluated by designer (informal case studies)
 - To be evaluated by users
 - adopted
A survey of the tool, Seesoft

- **Intent**
 To develop techniques for visual representation of large amounts of code for the purposes of code exploration and project management

- **Information**
 - data about authorship, age, and description of revisions provided by a version control system
 - Content of source files

- **Presentation**
 line-based visualization that maps each line of source code into a thin row
 The colour of each row represents a value of the attributes
A survey of the tool, Seesoft (con’t)

- **Interaction**

 To easily select a subset information with mouse and technique “brushing” is employed.

- **Effectiveness**

 Seesoft's authors report informal field use in their organization.
A survey of the tool, VRCS

- **Intent**

 to facilitate version control and module management

- **Information**

 - Compilation file dependencies are extracted from make

- **Presentation**

 each version of the history is represented as a 3D tree showing module and file relationships in the x and y dimensions and time in the z-axis

- **Interaction**

 the most part the views are static, but the graphical representation of files and versions can be used for selecting which files to check in and out.
A survey of the tool, VRCS (con’t)

- Effectiveness

 To be evaluated with 10 graduate students.

 To facilitate a faster check-in.
A survey of the tool, Jazz

- **Intent**
 To be a collaborative development environment to enhance and enrich collaboration in small, informal software development teams

- **Information**
 - Information from the environment's user interface and the local history
 - Informal information (who is online and their status)

- **Presentation**
 - *Jazz band* provides peripheral awareness of the status and activities of other team members
 - The file names is enhanced using color and icons to show the status
 - Chats are visibly anchored in the code
A survey of the tool, Jazz

- **Interaction**
 up-to-the-minute awareness information by monitoring and displaying information as activities occur
 limited controls for determining what is displayed but does not provide support for running queries or other filters
 Views in Jazz are coupled and a developer can navigate large chats using hypertext-like links

- **Effectiveness**
 it has not been evaluated in a formal user study nor has it been deployed
Summary

- The author proposes a framework for describing, comparing and understanding visualization tools that provide awareness of human activities in software development and use it to structure a survey of visualization tools.
like and dislike

- Like
 - The structure of the paper is good organized and the description is very clear.
 - The key words have been highlighted
 - To give sufficient cases for introducing and surveying of the framework
 - To provide a overall picture about current visualization techniques and introduce the shortcomings of some visualization tools

- Dislike
 - The author only simply list the characteristics of the surveyed tools and did not make direct comparison between them
 - The author did not classify those tools in his survey
Thank you!

Questions?