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Tutorial Goals

* Learn about:

— Recent and notable research and researchers in mining
SE data

— Data mining and data processing techniques and how to
apply them to SE data

— Risks in using SE data due to e.g., noise, project culture
» By end of tutorial, you should be able:

— Retrieve SE data

— Prepare SE data for mining

— Mine interesting information from SE data
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Mining SE Data

» SE data can be used to:

— Gain empirically-based understanding of
software development

— Predict, plan, and understand various aspects

of a project

— Support future development and project

management activities

Overview of Mining SE Data
99ASE
00ICSE
05FSE*2 99 FSE
ASE 01ICSE
PLDI FSE
POPL 02ISSTA
OsDI POPL
06 PLDI KDD
OOPSLA 03 PLDI
KDD 99ICSE 04 ASE
07 ICSE*3 02ICSE ISSTA
FSE*3 03 PLDI 05ICSE 03ICSE
ASE 05FSE 06 ICSE
PLDI*2 04ICSE PLDI 06 ASE
ISSTA*2 05FSE*2 06 ISSTA 07ICSE
KDD 06 ASE 07 ISSTA SOsP
08ICSE 07 ICSE*2 08 ICSE*3 08 ICSE
oftwa

A.E. Hassan and T. Xie: Mining Software Engineering Data 9

Overview of Mining SE Data
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Tutorial Outline

» Part I: What can you learn from SE data?

— A sample of notable recent findings for different
SE data types

 Part Il: How can you mine SE data?
— Overview of data mining techniques

— Overview of SE data processing tools and
techniques
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Types of SE Data

Historical data

— Version or source control: cvs, subversion, perforce

— Bug systems: bugzilla, GNATS, JIRA

— Mailing lists: mbox

Multi-run and multi-site data

— Execution traces

— Deployment logs

Source code data

— Source code repositories: sourceforge.net, google code
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Historical Data

» Track the evolution of a software project:
— source control systems store changes to the code
— defect tracking systems follow the resolution of defects
— archived project communications record rationale for

decisions throughout the life of a project

» Used primarily for record-keeping activities:
— checking the status of a bug
— retrieving old code
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Survey of Software Maintenance
Activities

» Perfective: add new functionality
fix faults
new file formats, refactoring

\% |

Lientz, Swanson, Tomhkins [1978] Schach, Jin, Yu, Heller, Offutt [2003]
Nosek, Palvia [1990] Mining ChangeLogs
MIS Survey (Linux, GCC, RTP)
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Historical Data

“History is a guide to navigation in
perilous times. History is who we are
and why we are the way we are.”

- David C. McCullough
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Source Control Repositories

* A source control system

tracks changes to s
ChangeUnits

» Example of ChangeUnits:
— File (most common)
— Function e o o

— Dependency (e.g., Call)
+ Each ChangeUnit: (=]
— Records the developer,
change time, change
message, co-changing Units
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Change Propagation

New Ref" Bug Fix “How does a change in one source code

entity propagate to other entities?”

Determine
Initial Entity
To Change

Determine
Other Entities
To Change

Consult
Guru for

For Each Entity

Measuring Change Propagation

Precision = predicted entities which changed
predicted entities

Recall = predicted entities Wh.1(.:h changed
changed entities

* We want:

— High Precision to avoid wasting time
— High Recall to avoid bugs
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Suggested Entity
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Code Sticky Notes

» Traditional dependency graphs and program
understanding models usually do not use
historical information

« Static dependencies capture only a static
view of a system — not enough detail!

» Development history can help understand
the current structure (architecture) of a
software system

[Hassan & Holt 04]
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Guiding Change Propagation

* Mine association rules from change history
Use rules to help propagate changes:

— Recall as high as 44%

— Precision around 30%

+ High precision and recall reached in < 1mth

 Prediction accuracy improves prior to a
release (i.e., during maintenance phase)

[Zimmermann et al. 05]
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Conceptual & Concrete Architecture

(NetBSD)

Conceptual (proposed) Concrete (reality)
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Investigating Unexpected Dependencies
Using Historical Code Changes

< Eight unexpected dependencies
< All except two dependencies existed since day one:
— Virtual Address Maintenance — Pager

— Pager = Hardware Translations

m/Attic/vm_map.c)

o vm_map_entry_create (in src
Which? || depends on_pager map (in s uvm/uvm pager.c)
Who? cad
When? |[1993/04/09 15:54:59

Revision 1.2 of sre/sys/vim/Attic/vm_map.c

from sean eric fagan:
it seems to keep the vin system from deadlocking the
system when it runs out of swap + physical memory.
‘Why? prevents the system from giving the last page(s) to
anything but the referenced "prox " (especially
important is the pager process, which should never

have to wait for a free xagsl.
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Studying Conway’s Law

» Conway’s Law:

“The structure of a software system is a direct
reflection of the structure of the development

2
team
Hulnean cREAD TR Tean
- -
wrnie i
—r —_
S Uiy 4 ke, S
[Bowman et al. 99]
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Linux: Conceptual, Ownership,
Concrete

NI LTI . - ryms
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- - . 3 e Lin ' s -
Conceptual Ownership Concrete
Architecture Architecture Architecture
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Source Control and Bug Repositories

Predicting Bugs
]
+ Studies have shown that most complexity metrics
correlate well with LOC!
— Graves et al. 2000 on commercial systems
— Herraiz et al. 2007 on open source systems
» Noteworthy findings:
— Previous bugs are good predictors of future bugs
— The more a file changes, the more likely it will have
bugs in it

— Recent changes affect more the bug potential of a file
over older changes (weighted time damp models)

— Number of developers is of little help in predicting bugs

— Hard to generalize bug predictors across projects
unless in similar domains [Nagappan, Ball et al. 2006]
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Using Imports in Eclipse to Predict

Bugs

71% of files that import compiler packages,
had to be fixed later on.

/

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;

import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;

import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

\ 14% of all files that import ui packages,

had to be fixed later on.

[Schréter et al. 06]
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Don’t program on Fridays ;-)

foreclipse _.
[Zimmermann et al. 05
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Project Communication — Mailing lists

Social Network Analysis

+ Mailing list activity:
— strongly correlates with code
change activity
— moderately correlates with
document change activity
+ Social network measures (in-
degree, out-degree,
betweenness) indicate that
committers play a more
significant role in the mailing -
list community than non- B
committers

[Bird et al. 06]
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Classifying Changes as Buggy or
Clean

+ Given a change can we warn a developer
that there is a bug in it?

[Sung et al. 06]
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Project Communication (Mailinglists)

» Most open source projects communicate
through mailing lists or IRC channels

* Rich source of information about the inner
workings of large projects

« Discussions cover topics such as future
plans, design decisions, project policies,
code or patch reviews

+ Social network analysis could be performed
on discussion threads
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Immigration Rate of Developers

+ When will a developer be invited to join a
project?
— Expertise vs. interest

AT AN AU VR

[Bird et al. 07]
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The Patch Review Process

» Two review styles P
— RTC: Review-then-commit 7 T
.
— CTR: Commit-then-review %

80% patches reviewed A
within 3.5 days and 50% ¢ & o=

a1 14
£ Indmk DM —

reviewed in <19 hrs It

.

[Rigby et al. 06]
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Measure a team’s morale around
release time?

L. zu
e Vi
T
Belecarwes 1w T | '
SRR oS wy .
bR WG P - e
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Taldis 4. Maan diffaaes far Apasha 1.5 and
2l rbaseman T rdherrinn o 00

« Study the content of messages before and after a release
« Use dimensions from a psychometric text analysis tool:
— After Apache 1.3 release there was a drop in optimism

— After Apache 2.0 release there was an increase in sociability
[Rigby & Hassan 07]|

A.E. Hassan and T. Xie: Mining Software Engineering Data 38

Program Source Code

Code Entities

Source data

Mined info

Variable names and function names

Software categories
[Kawaguchi et al. 04]

Statement seq in a basic block

Copy-paste code
[Li et al. 04]

Set of functions, variables, and data
types within a C function

Programming rules
[Li&Zhou 05]

;eec#:sgce of methods within a Java é(l?éggz?%%]
API Jungloids

API method signatures

[Mandelin et al. 05]
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Mining API| Usage Patterns

* How should an API be used correctly?
— An API may serve multiple functionalities
— Different styles of APl usage
* “l know what type of object | need, but | don’t know
how to write the code to get the object” [Mandelin
et al. 05]
— Can we synthesize jungloid code fragments
automatically?
— Given a simple query describing the desired code in
terms of input and output types, return a code segment
« “l know what method call | need, but | don’t know
how to write code before and after this method
call” [Xie&Pei 06]
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Relationships btw Code Entities

* Mine framework reuse patterns [Michail 00]

— Membership relationships
« A class contains membership functions

— Reuse relationships
« Class inheritance/ instantiation
« Function invocations/overriding

» Mine software plagiarism [Liu et al. 06]
— Program dependence graphs

[Michail 99/00] http://codeweb.sourceforge.net/ for C++
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Program Execution Traces

Other Profiled Program States

» Goal: detect or locate bugs

* Values of variables at certain code locations
[Hangal&Lam 02]
— Object/static field read/write
— Method-call arguments
— Method returns
Sampled predicates on values of variables
[Liblit et al. 03/05][Liu et al. 05]

[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/

Method-Entry/Exit States

Goal: mine specifications (pre/post conditions) or
object behavior (object transition diagrams)
State of an object
— Values of transitively reachable fields
* Method-entry state
— Receiver-object state, method argument values
» Method-exit state

— Receiver-object state, updated method argument
values, method return value

Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/
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[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm
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Q&A and break

Executed Structural Entities

» Goal: locate bugs

» Executed branches/paths, def-use pairs
Executed function/method calls
— Group methods invoked on the same object
* Profiling options

— Execution hit vs. count

— Execution order (sequences)

[Dallmeier et al. 05] http://www.st.cs.uni-sb.de/ample/
More related tools: http://www.csc.ncsu.edu/faculty/xie/research. htm#related
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Part | Review

+ We presented notable results based on

mining SE data such as:
— Historical data:

« Source control: predict co-changes

« Bug databases: predict bug likelihood

« Mailing lists: gauge team morale around release time
— Other data:

« Program source code: mine API usage patterns

« Program execution traces: mine specs, detect or
locate bugs
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Data Mining Techniques in SE

Part Il: How can you mine SE data?
—Overview of data mining techniques

—Overview of SE data processing tools and
techniques

Frequent Iltemsets
I
+ Itemset: a set of items
- E.g., acm={a, c, m}
» Support of itemsets
— Sup(acm)=3
» Given min_sup = 3, acm
is a frequent pattern
* Frequent pattern mining:
find all frequent patterns
in a database

Transaction database TDB

TID Items bought
100 |f,a,c,d,g,I,m, p
200 |(a,b,c,f,l,m, 0
300 |b,f, h,j,0

400 [b,c,k, s, p

500 |a,f,c,e |, p,m,n
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A Simple Case

+ Finding highly correlated method call pairs

+ Confidence of pairs helps
— Conf(<a,b>)=support(<a,b>)/support(<a,a>)

* Check the revisions (fixes to bugs), find the
pairs of method calls whose confidences
have improved dramatically by frequent
added fixes
— Those are the matching method call pairs that

may often be violated by programmers

[Livshits&Zimmermann 05]
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Data Mining Techniques in SE

» Association rules and frequent patterns
+ Classification

* Clustering

* Misc.
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Association Rules

* (Timee{Fri, Sat}) A buy(X, diaper) = buy(X,
beer)

— Dads taking care of babies in weekends drink
beer

* Itemsets should be frequent
— It can be applied extensively

* Rules should be confident
— With strong prediction capability

A.E. Hassan and T. Xie: Mining Software Engineering Data

Conflicting Patterns

* 999 out of 1000 times spin_lock is
followed by spin_unlock
— The single time that spin_unlock does not
follow may likely be an error
* We can detect an error without knowing the
correctness rules

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]
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Detect Copy-Paste Code

* Apply closed sequential pattern mining techniques
» Customizing the techniques

— A copy-paste segment typically does not have big gaps
—use a maximum gap threshold to control

— Output the instances of patterns (i.e., the copy-pasted
code segments) instead of the patterns

— Use small copy-pasted segments to form larger ones

— Prune false positives: tiny segments, unmappable

segments, overlapping segments, and segments with
large gaps

[Li et al. 04]
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Find Bugs in Copy-Pasted Segments

» Fortwo copy-pasted segments, are the
modifications consistent?
— Identifier a in segment S1 is changed to b in

segment S2 3 times, but remains unchanged
once — likely a bug

— The heuristic may not be correct all the time

» The lower the unchanged rate of an
identifier, the more likely there is a bug

Mining Rules in Traces

* Mine association rules or sequential
patterns S > F, where S is a statement and
F is the status of program failure

» The higher the confidence, the more likely S
is faulty or related to a fault

» Using only one statement at the left side of
the rule can be misleading, since a fault may
be led by a combination of statements

— Frequent patterns can be used to improve
[Denmat et al. 05]
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[Liet al. 04]
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Types of Frequent Pattern Mining

» Association rules
— open > close

* Frequent itemset mining
— {open, close}

* Frequent subsequence mining
— open > close

* Frequent partial order mining
Frequent graph mining
Finite automaton mining

<>

Mining Emerging Patterns in Traces

* A method executed only in failing runs is
likely to point to the defect
— Comparing the coverage of passing and failing
program runs helps
* Mining patterns frequent in failing program
runs but infrequentin passing program runs
— Sequential patterns may be used

[Dallmeier et al. 05, Denmat et al. 05]
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Data Mining Techniques in SE

» Association rules and frequent patterns
 Classification

* Clustering

* Misc.

A.E. Hassan and T. Xie: Mining Software Engineering Data
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Classification: A 2-step Process

* Model construction: describe a set of
predetermined classes
— Training dataset: tuples for model construction
« Each tuple/sample belongs to a predefined class
— Classification rules, decision trees, or math formulae
» Model application: classify unseen objects
— Estimate accuracy of the model using an independent
test set
— Acceptable accuracy - apply the model to classify
tuples with unknown class labels
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Model Application

‘\

Testm
Datag @
AN
(Jeif Professor, 4)

Name Rank Years
Tenured? 1

Tom | Ass. Prof 2
Yes

Merlisa | Asso. Prof 7
George Prof
Joseph | Ass. Prof
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GUI-Application Stabilizer

» Given a program state S and an event e, predict
whether e likely results in a bug
— Positive samples: past bugs
— Negative samples: “not bug” reports
* Ak-NN based approach
— Consider the k closest cases reported before

— Compare X 1/d for bug cases and not-bug cases, where
dis the similarity between the current state and the
reported states

— If the current state is more similar to bugs, predict a bug
[Michail&Xie 05]
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Model Construction
Classification

/ Algorithms
Trammg
Data 1

Name Rank Years Classifier
Mike | Ass.Prof | 3 (Model)
Mary | Ass. Prof 7
Bill Prof 2
Jim Asso. Prof 7 IF rank = ‘professor’
Dave | Ass. Prof 6 OR years > 6
Anne | Asso. Prof 3 THEN tenured = ‘yes’
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Supervised vs. Unsupervised
Learning

» Supervised learning (classification)

— Supervision: objects in the training data set
have labels

— New data is classified based on the training set
» Unsupervised learning (clustering)
— The class labels of training data are unknown

— Given a set of measurements, observations,
etc. with the aim of establishing the existence of
classes or clusters in the data
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Data Mining Techniques in SE

» Association rules and frequent patterns
+ Classification

» Clustering

* Misc.
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What is Clustering?

» Group data into clusters
— Similar to one another within the same cluster
— Dissimilar to the objects in other clusters
— Unsupervised learning: no predefined classes

Outliers
Cluster 1
Cluster 2
o ° o cc
0°98°
5
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Clustering and Categorization

» Software categorization
— Partitioning software systems into categories
» Categories predefined — a classification
problem

» Categories discovered automatically — a
clustering problem
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Software Categorization - MUDABIue

* Understanding source code
— Use Latent Semantic Analysis (LSA) to find similarity
between software systems
— Use identifiers (e.g., variable names, function names)
as features
* “gtk_window” represents some window
« The source code near “gtk_window” contains some GUI
operation on the window

» Extracting categories using frequent identifiers
— “gtk_window”, “gtk main’, and “gpointer” > GTK
related software system
— Use LSA to find relationships between identifiers
[Kawaguchi et al. 04]
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Data Mining Techniques in SE

» Association rules and frequent patterns
+ Classification

* Clustering

* Misc.
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Other Mining Techniques

» Automaton/grammar/regular expression
learning

+ Searching/matching

» Concept analysis

* Template-based analysis

» Abstraction-based analysis

http://ase.csc.ncsu.edu/dmse/miningalgs.html
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How to Do Research in
Mining SE Data

12
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How to do research in mining SE
data

» Wediscussed results derived from:
— Historical data:
« Source control
« Bug databases
« Mailing lists
— Program data:
« Program source code
« Program execution traces
* Wediscussed several mining techniques
* We now discuss how to:
— Get access to a particular type of SE data
— Process the SE data for further mining and analysis
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Concurrent Versions System (CVS)
Comments

A - TR - s - Wikiia M A e S I I T S B G e R T
AT 318 TEa-

R - -
- A T e e
Chen et al. 01] hitp://cvssearch.sourceforge.net/
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Code Version Histories

» CVS provides file versioning
— Group individual per-file changes into individual
transactions: checked in by the same author with the
same check-in comment within a short time window
* CVS manages only files and line numbers
— Associate syntactic entities with line ranges
« Filter out long transactions not corresponding to
meaningful atomic changes
— E.g., features and bug fixes vs. branch and merging

* Used to mine co-changed entities
[Hassan& Holt 04, Ying et al. 04]
[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/
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Source Control Repositories

CVS Comments mammmmae

Working file: file.h
head: 1.5

* cvs log —displays |aescription:

forall revisions and  |revisien 1.5

its comments for each |¢
file

ccvs diff —ShOWS i, ... ,ccoionrsiens
differences between |, ,,
different versions of a | <o
file > new line

> another new line
» Used for program

underStanding [Chen et al. 01] http://cvssearch.sourceforge.net/
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Getting Access to Source Control

* These tools are commonly used

— Email: ask for a local copy to avoid taxing the project's
servers during your analysis and development

— CVSup: mirrors a repository if supported by the
particular project

— rsync: a protocol used to mirror data repositories

— CVSsuck:

« Uses the CVS protocol itself to mirror a CVS repository

« The CVS protocol is not designed for mirroring; therefore,
CVSsuck is not efficient

« Use as a last resort to acquire a repository due to its inefficiency
« Used primarily for dead projects
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Recovering Information from CVS

Traditional Extractor

Compar pshot Facts

olutionary Change Data
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CVS Limitations

* CVS has limited query functionality and is
slow

+ CVS does not track co-changes

« CVS tracks only changes at the file level
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Challenges in recovering information
from CVS

main() { helpInfo() { helpInfo(){
int a; errorString! int b;
/*call }
help*/ main() { main() {
helpInfo(); int a; int a;
} /*call /*call
help*/ help*/
helpInfo(); helpInfo();
} }

Vi: V2: V3:
Undefined func. Syntayérror Valid e
(Link Error) N
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Inferring Transactions in CVS

« Sliding Window:
— Time window: [3-5mins on average]
* min 3mins
« as high as 21 mins for merges
« Commit Mails 3iure7

T a3 Do aale T
B sludmasiss TFR

R T 1y U W L e

A E. Hassan and T. Xie: Mining Software Engineering Data [Zimmermann et al. 2004]
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Noise in CVS Transactions

+ Drop all transactions above a large
threshold

» For Branch merges either look at CVS
comments or use heuristic algorithm
proposed by Fischer et al. 2003
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A Note about large commits

™
—

[Hindle et al. 2008]

Tho% tiag .
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Noise in detecting developers

* Few developers are given commit privileges

» Actual developer is usually mentioned in the
change message

* One must study project commit policies before
reaching any conclusions

Lin

A E. Hassan and T. Xie: Mining Software Engineering Data [German 2006] 85

Bugzilla

s Py 31 T e raam e e
Bacghind s 15 w1 " t by 8

A.E. Hassan and T. Xie: Mining Software Engineering Data Adapted from Anvik et al’s sides &7

Acquiring Bugzilla data

» Download bug reports using the XML export
feature (in chunks of 100 reports)

» Download attachments (one request per
attachment)

» Download activities for each bug report (one
request per bug report)

A.E. Hassan and T. Xie: Mining Software Engineering Data 89

Source Control and Bug Repositories

Sample Bugzilla Bug Report

Pl o Pt T b

g L3 IL T . P e M ¥ " = =

SC R T e waine L U - Duplicate?
Reproducible?

Bugzilla: open source bug tracking tool

http://www.bugzilla.org/
[Anvik et al. 06]

me ik AleRE B M ke wapare mas o DEDY//Www.cs.ubc.ca/labs/spl/projects/bugTriage. html
A.E. Hassan and T. Xie: Mining Software Engineering Data Adapted from Anvik et al’s sides 88

Using Bugzilla Data

* Depending on the analysis, you might need to
rollback the fields of each bug report using the
stored changes and activities

* Linking changes to bug reports is more or less
straightforward:
— Any number in a log message could refer to a bug
report
— Usually good to ignore numbers less than 1000. Some
issue tracking systems (such as JIRA) have identifiers
that are easy to recognize (e.g., JIRA-4223)

A.E. Hassan and T. Xie: Mining Software Engineering Data
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So far: Focus on fixes

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation
- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

Fixes give only the location of a defect,
not when it was introduced.

[Sliwerski et al. 05 —

A.E. Hassan and T. Xie: Mining Software Engineering Data

Qlidnc b Zimmarmannal

Bug-introducing changes

if (fo0==iily if ool {
foo.bar(); foo.bar();

Bug-introducing changes are changes that
lead to problems as indicated by later fixes.

A.E. Hassan and T. Xie: Mining Software Engineering Data

Life-cycle of a “bug”

BUG-INTRODUCING FIX
CHANGE CHANGE

A.E. Hassan and T. Xie: Mining Software Engineering Data

The SZZ algorithm

$ cvs annotate -r 1.17 Foo.java
20:1.11 (john 12-Feb-03): retum i/0;
40:1.14 (kate 23-May-03):  return 42;

60: 1.16 (mary 10-Jun-03):  inti=0;

FIXED BUG
42233

A.E. Hassan and T. Xie: Mining Software Engineering Data

The SZZ algorithm

$ cvs annotate -r 1.17 Foo java

-(john 12-Feb-03):  return i/0;
_(kate 23-May-03): return 42;

B0 A58 (mery 10-Jun-03):  inti=0;

FIXED BUG
42233

A.E. Hassan and T. Xie: Mining Software Engineering Data

The SZZ algorithm

A.E. Hassan and T. Xie: Mining Software Engineering Data
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Project Communication — Mailing lists

Challenges using Mailing lists data |

» Unstructured nature of email makes
extracting information difficult
— Written English
* Multiple email addresses
— Must resolve emails to individuals
» Broken discussion threads
— Many email clients do not include “In-Reply-To”

field
A.E. Hassan and T. Xie: Mining Software Engineering Data 99

Program Source Code

Acquiring Mailing lists

» Usually archived and available from the
project’'s webpage
» Stored in mbox format:

— The mbox file format sequentially lists every
message of a mail folder

A.E. Hassan and T. Xie: Mining Software Engineering Data

Challenges using Mailing lists data |l

» Country information is not accurate
— Many sites are hosted in the US:
* Yahoo.com.ar is hosted in the US
* Tools to process mailbox files rarely scale to
handle such large amount of data (years of
mailing list information)
— Will need to write your own

A.E. Hassan and T. Xie: Mining Software Engineering Data

Acquiring Source Code

* Ahead-of-time download directly from code
repositories (e.g., Sourceforge.net)
— Advantage: offline perform slow data processing and
mining
— Some tools (Prospector and Strathcona) focus on
framework API code such as Eclipse framework APIs
» On-demand search through code search engines:
- E.g., hitp://www.google.com/codesearch

— Advantage: not limited on a small number of downloaded
code repositories

Prospector: http://snobol.cs.berkeley.edu/prospector
Strathcona: http:/Ismr.cs.ucalgary.ca/projects/heuristic/strathcona

A.E. Hassan and T. Xie: Mining Software Engineering Data 102
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Processing Source Code

» Use one of various static analysis/compiler tools
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)

* But sometimes downloaded code may not be
compliable

— E.g., use Eclipse JDT http://www.eclipse.org/idt/ for AST
traversal

— E.g., use exuberant ctags http://ctags.sourceforge.net/ for
high-level tagging of code
» May use simple heuristics/analysis to deal with
some language features [Xie&Pei 06, Mandelin et al. 05]
— Conditional, loops, inter-procedural, downcast, etc.
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Program Execution Traces

Acquiring Execution Traces

» Code instrumentation or VM instrumentation
— Java: ASM, BCEL, SERP, Soot, Java Debug Interface
— C/C++/Binary: Valgrind, Fjalar, Dyninst

» See Mike Ernst’'s ASE 05 tutorial on “Learning from
executions: Dynamic analysis for software
engineering and program understanding”

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html

More related tools: http:/ase.csc.ncsu.edu/tools/

A.E. Hassan and T. Xie: Mining Software Engineering Data

Tools and Repositories

Processing Execution Traces

|

* Processing types: online (as data is
encountered) vs. offline (write data to file)

* May need to group relevant traces together
— e.g., based on receiver-object references
— e.g., based on corresponding method entry/exit

» Debugging traces: view large log/trace files
with V-file editor: http://www.fileviewer.com/

A.E. Hassan and T. Xie: Mining Software Engineering Data

Repositories Available Online

* Promise repository:
— http://promisedata.ora/
+ Eclipse bug data:
— http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
* iBug
— http://www.st.cs.uni-sb.de/ibugs/
* MSR Challenge (data for Mozilla & Eclipse):
— http://msr.uwaterloo.ca/msr2007/challenge/
— http://msr.uwaterloo.ca/msr2008/challenge/
* FLOSSmole:
— http://ossmole.sourceforge.net/
» Software-artifact infrastructure repository:
— http://sir.unl.edu/portal/index.html

A.E. Hassan and T. Xie: Mining Software Engineering Data 108

18


http://www.eclipse.org/jdt/
http://ctags.sourceforge.net/
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial
http://ase.csc.ncsu.edu/tools/
http://www.fileviewer.com/
http://promisedata.org
http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
http://www.st.cs.uni-sb.de/ibugs/
http://msr.uwaterloo.ca/msr2007/challenge/
http://msr.uwaterloo.ca/msr2008/challenge/
http://ossmole.sourceforge.net/
http://sir.unl.edu/portal/index.html

Eclipse Bug Data

e el e - Defect counts are listed
R T e as counts at the plug-in,
package and compilation
unit levels.

* The value field
contains the actual
number of pre- ("pre")
and post-release defects
("post").

« The average ("avg")
and maximum ("max")
values refer to the
defects found in the
compilation units
("compilationunits").

EI [t o
[CRTIR BT Iy o)

[Schréter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
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Metrics in the Eclipse Bug Data

[T Ede Lol Darks g boved

Faisa &sdesdalaiossa ]

BT

Abstract Syntax Tree Nodes in

Eclipse Bug Data_  [==55

* The AST node
information can be
used to calculate
various metrics

A.E. Hassan and T. Xie: Mining Software Engineering Data 1
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Example Graphs from FlossMole

A.E. Hassan and T. Xie: Mining Software Engineering Data 13

FLOSSmole Q&L

* FLOSSmole
— provides raw data about open source projects
— provides summary reports about open source projects
— integrates donated data from other research teams
— provides tools so you can gather your own data
» Data sources
— Sourceforge
— Freshmeat
— Rubyforge
— ObjectWeb
— Free Software Foundation (FSF)
— SourceKibitzer

http://ossmole.sourceforge.net/

A.E. Hassan and T. Xie: Mining Software Engineering Data 12

Analysis Tools

* R

— http://www.r-project.org/

— Ris a free software environment for statistical computing and graphics
+ Aisee

— http://www.aisee.com/

— Aisee is a graph layout software for very large graphs
+ WEKA

— http://www.cs.waikato.ac.nz/ml/weka/

— WEKA contains a collection of machine learning algorithms for data
mining tasks

* RapidMiner (YALE)
— http://rapidminer.com/
* More tools: http://ase.csc.ncsu.edu/dmse/resources.html

A.E. Hassan and T. Xie: Mining Software Engineering Data 14
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Data Extraction/Processing Tools

* Kenyon
— http://dforge.cse.ucsc.edu/projects/kenyon/
* MylIn/Mylar (comes with API for Bugzilla
and JIRA)
— http://www.eclipse.org/myIn/
» Libresoft toolset
— Tools (cvsanaly/mistats/detras) for recovering
data from cvs/svn and mailinglists
— http://forge.morfeo-project.org/projects/libresoft-
tools/

A.E. Hassan and T. Xie: Mining Software Engineering Data 115

Kenyon

Publishing Advice

» Report the statistical significance of your results:
— Get a statistics book (one for social scientist, not for
mathematicians)
+ Discuss any limitations of your findings based on
the characteristics of the studied repositories:

— Make sure you manually examine the repositories. Do
not fully automate the process!

— Use random sampling to resolve issues about data noise
» Relevant conferences/workshops:
— main SE conferences, ICSM, ISSTA, MSR, WODA, ...

A.E. Hassan and T. Xie: Mining Software Engineering Data

Extract Compute Save Analyze
Automated Fact extraction Persist gathered Query DB,

configuration  (metrics, static metrics & facts add new

extraction analysis) facts
Analysis
> e— Software
Filesystem
[Adapted from Bevan et al. 05]
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Q&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/

*What software engineering tasks can be helped by data mining?
*What kinds of software engineering data can be mined?

*How are data mining techniques used in software engineering?
*Resources

Mining Software Repositories

+ Very active research area in SE:
— MSR is the most attended ICSE event in last 5 yrs
« http://msrconf.org
— Special Issue of IEEE TSE on MSR:
* 15 % of all submissions of TSE in 2004
« Fastest review cycle in TSE history: 8 months
- gg;ecial Issue Empirical Software Engineering (late
— Upcoming Special Issues:
« Journal of Empirical Software Engineering
« Journal of Soft. Maintenance and Evolution
« |EEE Software (July 15t 2008)

A.E. Hassan and T. Xie: Mining Software Engineering Data

Example Tools

* MAPO: mining API usages from open source
repositories [Xie&Pei 06]

* DynaMine: mining error/usage patterns from
code revision histories [Livshits&Zimmermann 05]

* BugTriage: learning bug assignments from
historical bug reports [Anvik et al. 06]
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Demand-Driven Or Not

Any-gold Demand-driven
mining mining
MAPO, BugTriage, ...

Examples DynaMine, ...

Advantages | Surface up only cases |Exploit demands to filter
that are applicable out irrelevant information

Issues How much gold is How high percentage of
good enough given the | cases would work well?
amount of data to be
mined?
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Static vs. Dynamic

Static Data: code Dynamic Data: prog
bases, change histories | states, structural profiles

Examples | MAPO, DynaMine, ... |Spec discovery, ...

Advantages |No need to set up exec | More-precise info
environment;

More scalable
Issues How to reduce false
positives?

How to reduce false
negatives?
Where tests come from?

A.E. Hassan and T. Xie: Mining Software Engineering Data 123

Code vs. Non-Code

Code/ Non-Code/
Programming Langs Natural Langs
Examples MAPO, DynaMine, ... |BugTriage, CVS/Code
comments, emails, docs

Advantages | Relatively stable and Common source of

consistent capturing programmers’
representation intentions
Issues What project/context-

specific heuristics to use?

Characteristics in Mining SE Data

» Improve quality of source data: data preprocessing
— MAPO: inlining, reduction
— DynaMine: call association
— BugTriage: labeling heuristics, inactive-developer removal
* Reduce uninteresting patterns: pattern postprocessing
— MAPO: compression, reduction
— DynaMine: dynamic validation
» Source data may not be sufficient
— DynaMine: revision histories
— BugTriage: historical bug reports

SE-Domain-Specific Heuristics are important

A.E. Hassan and T. Xie: Mining Software Engineering Data 125
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Snapshot vs. Changes

Code snapshot Code change history

Examples  |MAPO, ... DynaMine, ...

Revision transactions
encode more-focused
entity relationships

Advantages || arger amount of
available data

Issues How to group CVS
changes into transactions?
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