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Abstract 
 

Commercial software development is a complex 
task that requires a thorough understanding of the 
architecture of the software system. We analyze the 
Windows Server 2003 operating system in order to 
assess the relationship between its software 
dependencies, churn measures and post-release 
failures. Our analysis indicates the ability of software 
dependencies and churn measures to be efficient 
predictors of post-release failures. Further, we 
investigate the relationship between the software 
dependencies and churn measures and their ability to 
assess failure-proneness probabilities at statistically 
significant levels. 
 
1. Introduction 

 
The IEEE standard [12] for software engineering 

terminology defines 
organizational structure of a system or component. 

[12] as the results of the process of defining a 
collection of hardware and software components and 
their interfaces to establish the framework (or 
architecture) for the development of a computer 
system. 

In any large-scale software development effort, a 
software architecture enables teams to work 
independently on different components in the 
architecture.  Large software systems often are 
decomposed hierarchically in a tree, where the leaves 
of the tree provide lower level services that 
components higher in the tree depend on.  One usually 
finds that work groups are organized in a hierarchy that 
reflects the hierarchical organization of the software.  

Overlaying this hierarchy is a graph of 
dependencies between the components. In theory, the 
dependencies between components would follow the 
edges of the tree. In practice, this rarely is the case. 
Dependencies may exist between peers in the software 
hierarchy or may cross many levels in the tree. The 

number of dependencies between parts of the hierarchy 
reflects the degree of , 
which can greatly affect the amount of work needed by 
development and test teams to keep the different 
components in synch.  

We use software dependencies together with code 
churn to build models for predicting the post-release 
failures of system binaries. A software dependency is a 
relationship between two pieces of code, such as a data 
dependency (component A uses a variable defined by 
component B) or call dependency (component A calls 
a function defined by component B). Code churn is a 
measure of the amount of code change taking place 
within a software unit over time.  

Suppose that component A has many dependencies 
on component B. If the code of component B changes 
(churns) a lot between versions, we may expect that 
component A will need to undergo a certain amount of 
churn in order to keep in synch with component B.  
That is, churn often will propagate across 
dependencies. Together, a high degree of dependence 
plus churn can cause errors that will propagate through 
a system, reducing its reliability. 

In this paper we investigate the use of software 
dependencies and churn measures to explain post-
release failures for a period of six months for the 
Windows Server 2003 operating system. Early 
estimates regarding the post-release failures can help 
software organizations to guide corrective actions to 
the quality of the software early and economically. 

Software architectures [25] and software code churn 
[11] have been studied extensively in software 
engineering. We quantify how the dependencies that 
exist in the implementation of the software system and 
software churn measures correlate with post-release 
failures of a commercial software system. The size and 
wide-spread operational use of the system adds 
strength to our analysis. 

In a prior study [19] we investigated the use of a set 
of relative code churn measures in isolation as 
predictors of software defect density. The relative 
churn [19] measures are normalized values of the 
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various measures obtained during the evolution of the 
system. In an evolving system it is highly beneficial to 
use a relative approach to quantify the change in a 
system. We also showed that these relative measures 
can be devised to cross check each other so that the 
measures do not provide conflicting information.  

Our current work differs significantly from our 
previous work as we integrate in architectural 
dependencies to investigate the propagation of churn 
across the system. This paper is one of the largest 
efforts to quantify architectural dependency entities. 
Our study serves to bridge the gap between the actual 
code and the architectural layout of the system. Further 
this paper uses only three simple churn measures in 
absolute terms compared to the multiple churn 
measures used in the relative approach in our prior 
study in order to show the effect of dependencies on 
code churn and failures.  

Figure 1 illustrates the temporal aspect of the 
metrics collection. At the release date for Windows 
Server 2003 the dependency information is collected. 
Also at the release point, the code churn measures are 
collected using Windows 2000 as the baseline. This 
churn helps us quantify the evolution of the system in 
terms of change from the previous baseline version of 
Windows 2000 (The metrics are discussed in detail in 
Section 3). 

 
Figure 1: Data collection explanation 

The overall size of the code base was 28.3 M LOC 
(Million Lines of code). The 28.3 M LOC comprises of 
2075 compiled binaries that form the major part of the 
Windows Server 2003 system. In our analysis, 
software dependencies are between binaries (for 
example, in Windows, DLL files), and can be mapped 
up in the hierarchy of the system. Dependencies have 
two associated measures, the total number of 
dependencies (frequency) and the unique dependencies 
between the binaries (count).  We leverage both these 
measures by computing the ratio of the dependence 

frequency to the dependence count to obtain a relative 
dependency ratio.  

Software fault-proneness is defined as the 
probability of the presence of faults in the software [7]. 
Failure-proneness is the probability that a particular 
software element (binary, component or area) will fail 
in operation.  We explain both failure-proneness and 
failures using our dependency and churn measures. 
The research hypotheses we investigate in our study 
are shown in Table 1. 

Table 1: Research hypotheses 

 Hypothesis 

H1 The software dependence ratios and churn 
measures are positively correlated;  

H2 The software dependence ratios and churn 
measures can be used as indicators of post-
release failures in binaries 

H3 The software dependence ratios and churn 
measures can be used as indicators of the failure-
proneness of the binaries 

The rest of our paper is organized as follows. 
Section 2 describes our metrics in detail. Section 3 
presents the results of our analysis and the 
experimental limitations. Section 4 discusses related 
work and Section 5 the conclusions and future work. 

2. Software data and metrics 
In this section we explain the software dependence 

and churn data that are collected. The Windows Server 
2003 operating system is decomposed into a hierarchy 
of sub systems as shown in Figure 2. At the highest 

shipped with Windows Server 2003. Within Internet 
Explorer we could have several sub-systems. For 
example, the HTML rendering engine could be a 
component and the JavaScript interpreter could be 
another component (shown by rectangular solid boxes). 
Within each component we have several binaries 
denoted in Figure 2 by the black ovals. The binaries are 
the lowest level to which failures can be accurately 
mapped to. The 2075 binaries in our study are located 

 in 53 
 

2.1 Software dependencies 
A software dependence is a relationship between 

two pieces of code, such as a data dependence, call 
dependence, etc. Microsoft has a completely automated 
tool called MaX [26] that tracks dependence 
information at the function level, including caller-
callee dependencies, imports, exports, RPC, COM, 
Registry access, etc.  MaX builds a system-wide  

6 months to 
collect 
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Figure 2: Sub-system description in Windows 

dependency graph for Windows. The system-wide 
dependency graph can be viewed as the low-level 
architecture of Windows Server 2003.  MaX works 
with systems consisting of both native x86 and .NET 
managed binaries and uses the dependency information 
of each binary to build the dependence graph.  MaX 
[26] has been used to study what binaries (or 
procedures) will be affected by a change, so that 
corrective action can be taken accordingly.  

We now explain the metrics associated with call 
dependencies (similar metrics are collected for data 
dependencies). A relation (A,B) between binaries A 
and B signifies that A makes a call on B. Given two 
entities A and B, A may call B from many different 
call sites. The count of a dependence (A,B) is either 0 
or 1, based on whether A contains a call to B (1) or not 
(0).  The frequency of a dependence (A,B) is the (total) 
number of calls from A to B. All information is 
analyzed and mapped at a binary level.  

Based on this information we collect a set of eight 
dependency measures described below for each binary.  

 Same Component Count 
 Same Component Frequency  
 Different Component Count  
 Different Component Frequency  
 Same Area Count  
 Same Area Frequency  
 Different Area Count  
 Different area Frequency  

Consider the dependence frequencies/counts for the 
binary (D) in Internet Explorer area shown in Figure 3. 
The Table in Figure 3 shows an example computation 
of the various dependence frequencies and counts and 
the measures that lead to those values. The binary (D) 
has three outgoing dependencies. Two of these are 
within the component (HTML rendering engine), 
directed from binary D to binary C. So the same 
component dependence frequency is two and the same 
component dependence count is one (i.e. ). There 
exists one dependence between the binary D and 

binary A in different component. The different 
component frequency and the different component 
count is ). There is a no dependence 
from binary D (in the Internet Explorer area) to the 
Control Panel area. This is the cross area dependency. 
The different area count and frequency are hence zero.  
Also within the Internet Explorer area, binary A has a 
same area dependency count of two and frequency of 
three. The dependency data is mapped for each binary 
accounting for its relationship to other binaries based 
on their locations in different areas/components. This 
allows us to measure how many dependencies a binary 
has in the same/different areas and components in 
order to quantify its architectural layout. Thus each 
binary in our analysis has its respective same/different 
component/area dependency counts and frequencies. 
The overall distribution of the dependencies in 
Windows due to space limitations in the paper are 
discussed in a technical report [18] . 

2.2 Software churn 
Code churn is a measure of the amount of code 

change taking place within a software unit over time.  

recorded automatically by a version control system. 
We use a file comparison utility (such as diff) to 
automatically estimate how many lines were added, 
deleted and changed by a programmer to create a new 
version of a file from an old version. This measure is 
used to compute the overall change in terms of the 
lines of code (added, deleted, and modified). The 
software evolution measures that are collected are: 

 Delta LOC: The overall change in the lines 
added, deleted or modified between two 
versions of a binary. 

 Churn Files:  The number of files within the 
binary that churned.  

 Churn count:  The number of changes made 
to the files comprising a binary between the 
two versions. 

Code churn is used in our study as it measures the 
evolution of the system from a baseline version. As the 
system evolves from Windows 2000, our baseline 
version to Windows Server 2003 we measure the delta 
LOC, churned files and the churned count. Considering 
the churn measures from an architectural perspective, 
if for example the core Internet Explorer binary churns 
very frequently with a large delta LOC, then all 
binaries that have dependencies with this binary might 
churn (or change) appropriately to be in synch with the 
core Internet Explorer binary. If they are not in synch 
then it could lead to build failures which would be very 
expensive to fix late in the development process. This 
also explains our motivation to integrate churn and 
architectural dependency metrics to explain post-

Area

Component 

Binaries 
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release failures. As with the dependencies each binary 
has its associated delta LOC, churn files and churn 
count mapped to it. 

2.3 Metrics description 
We utilize a set of seven metrics, four related to the 

dependency metrics and the remaining three based on 
the software churn measures. These metrics are 
described in Table 2.  

In the computation in Table 2 we make two 
mathematical transformations. In the dependence 
ratios, all the denominator values are count+1 in order 
to eliminate division by zero. Second, we take a log 
transformation of the delta LOC in the software churn 
measures to scale the variables into a standard 
comparison scale [16]. 
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The rationale for the dependence ratio is best described 
with an example. Consider two binaries, say X and Y, 
where binary X has a same component count of 2 and 
frequency of 7. Binary Y similarly has a same component 
count of 1 and frequency of 7. Computing a ratio lets us 
leverage the fact that though binaries X and Y have a 
similar number of dependencies they may differ in their 
failure-proneness ability as binary X is related to two 
different binaries compared to binary Y. This relative 
approach is similar to our prior work on code churn 
measures[19] where a relative approach yielded better 
predictors for estimating system defect density than 
absolute measures.  

Table 2: Metric descriptions 
Metric name Description 

Software Dependence Metrics 
Same component ratio Same Component Frequency         

Same Component Count 
Different component 
ratio 

Different Component Frequency    
Different Component Count 

Same area ratio Same Area Frequency           
Same Area Count 

Different area ratio Different Area Frequency          
Different Area Count 

Software Churn Measures 
Churn count See Section 3.2 
Churn files See Section 3.2 
Delta LOC See Section 3.2 

3. Experimental analysis 
This section presents our experimental analysis of the 

relationship between software dependencies, churn and 
post-release failures. Section 4.1 investigates the empirical 
relationship between the software dependency and churn 
measures with the post-release failures using a Spearman 
rank correlation. Section 4.2 demonstrates the ability of the 
dependence ratios and software churn measures to explain 
the number of post-release failures, via multiple regression 
analysis. Section 4.3 shows how the metrics can be used to 
estimate the failure-proneness probabilities using logistic 
regression techniques. Section 4.4 discusses the threats to 
the validity of our study. 

3.1 Correlation results 
In order to identify the relationship between the software 

dependence ratios, churn measures and post-release failures 
we run a Spearman rank correlation (  between the 
measures and the post-release failures. Spearman rank 
correlation is a commonly-used robust correlation 
technique [9] because it can be applied even when the 
association between elements is non-linear.  The correlation 
results magnitude and sign can be used to identify the 
strength and characteristics of the relationship between the 
software dependence ratios, churn measures and post-
release failures. The results of such a correlation are 

presented below in Table 3. From the correlation matrix it 
is interesting to observe the relationship between the same 
component ratio, delta LOC, churn times and churn files 
measures. These correlations show a positive statistically 
significant value confirming that when there are more 
dependencies for a binary and there are changes then there 

dependencies, 
as indicated by the increase in the number of files churned 
and the number of times churned. This also confirms our 
initial argument about the propagation of churn across 
dependencies. We observe a similar relationship for the 
same area ratios also. 

We see that correlations with failures except the 
different component/area ratio of dependencies are 
statistically significant at 99% confidence1. The lack of 
statistical significance of the different component/area can 
be attributed to the fact that compared to the number of 
dependencies among components; there is a proportionally 
smaller number of dependencies among areas.  

The churn measures and other dependency correlations 
are all positive and statistically significant; indicating that 
with an increase in the ratios there is an increase in churn 
measures. These results indicate that with an increase in 
the software dependency ratios the churn measures also 
increase (H1) except for the lack of statistical significance 
for the different component/area ratio which is due to the 
relatively small number of different area dependencies. 
This is purely a correlation and is thus only a preliminary 
result. We plan to do a causal root-cause analysis for 
confirming this hypothesis in future work. 

3.2 Post-release failure analysis 
For explaining the post-release failures we use multiple 

linear regression (MLR), where the post-release failures 
form the dependent variable and the seven metrics 
described in Table 2 form the independent variables. The 
goal of this analysis is to identify if the software 
dependence ratios and churn measures can be used to 
model (explain at statistically significant levels) and 
estimate the post-release failures. In multiple linear 
regression, we measure the R2 value and the F-test 
significance. R2 is a measure of variance in the dependent 
variable that is accounted for by the model built using the 
predictors [3]. R2 is a measure of the fit for the given data 
set. Additionally we present the adjusted R2 measure also. 
Adjusted R2 explains for any bias in the R2 measure by 
taking into account the degrees of freedom of the 
independent variables and the sample population, i.e. in 
other words R2 values keep increasing if we add more 
variables. The adjusted R2 eliminates that bias regarding the 
number of variables. The adjusted R2 tends to remain 
constant as the R2 measure for large population samples. 
The computation of the adjusted R2 is shown

                                                 
1 SPPS® for computation that does not give an accuracy of greater than 3 
decimal places. So p=0.000 should be interpreted as p<0.0005 
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Table 3: Correlation results between the dependency ratios, churn measures and failures 

in Equation 1. 
Adjusted R2 =        R2 - (Vi - 1)              
             (n- Vi ) * (1- R2)          

where n is the number of samples used to build the 
regression model and Vi  is the number of independent 
variables used to build the regression model. The F-test 
is a test of statistical significance used to test the 
hypothesis that all regression coefficients are zero. The 
F-test and its associated p values govern the 
acceptability of the built regression model in terms of 
statistical significance. 

One difficulty associated with MLR is 
multicollinearity among the metrics that can lead to an 
inflated variance in the estimation of the failures. One 
approach that has been used to overcome this difficulty 
is Principal Component Analysis (PCA) [13]. With 
PCA, a smaller number of uncorrelated linear 
combinations of metrics that account for as much 
sample variance as possible are selected for use in 
regression (linear or logistic).  From Table 3 we can 
see the statistically significant inter-correlations among 
the metrics. We ran a PCA on the seven metrics 
discussed in Table 2; the resulting principal 
components that account for a variance greater than 
95% are shown below in Table 4. These resulting five 
principal components can be used to build regression 
models with minimal loss of information compared to 
the original metrics while handling the problem of 
multicollinearity. A logistic regression equation also 
can be built to model data using the principal 
components as the independent variable [7]. The 
individual and cumulative variances for each principal 

component that altogether account for 95% of the total 
sample variance is explained in Table 4. 

Table 4: Principal component variances 

Principal 
Components 

Initial Eigenvalues 

Total 
% of 

Variance 
Cumulative 

% 
1 2.739 39.128 39.128 
2 1.69 24.14 63.268 
3 1.395 19.935 83.203 
4 0.607 8.675 91.877 
5 0.324 4.623 96.501 

These five principal components are used to build 
our multiple regression equation. The overall fit using 
these principal components as the independent variable 
and the failures as the dependent variable is performed 
using all the 2075 binaries. The overall R2 value of the 
regression fit is 0.629, (adjusted R2 value =0.628) 
F=686.188, p<0.0005. The general form of the fit 
regression is shown in Equation 2.  

Post-release failures = c + a1PC1+ a2PC2+ a3PC3+ 
a4PC4+ a5PC5                          
where c is the regression constant and a1 5 are the 
regression coefficients. PC1 PC5 represent the 
principal components obtained from using the 
dependency and churn measures.  

The regression model characteristics are shown 
Table 5. The coefficients of the multiple regression 
equation are removed to protect proprietary 
information. The individual metrics statistical 
significance is evaluated by the use of a t-test that 
indicates the significance of the principal components 
towards explaining the failures in terms of the multiple 

  
 

Same 
comp ratio 

Diff comp 
ratio 

Same 
area ratio 

Diff area 
ratio 

Churn 
count 

Churn 
files 

Delta 
LOC Failures 

Same comp ratio  1.000 .187 .954 .021 .496 .538 .472 .401 
 (p) . (.000) (.000) (.334) (.000) (.000) (.000) (.000) 

Diff comp ratio   1.000 .104 .032 .161 .176 .122 .181 
 (p)  . (.000) (.150) (.000) (.000) (.000) (.000) 

Same area ratio    1.000 .018 .478 .519 .453 .382 
 (p)   . (.406) (.000) (.000) (.000) (.000) 

Diff area ratio     1.000 .036 .040 .047 .014 
 (p)    . (.101) (.070) (.033) (.522) 

Churn count      1.000 .946 .902 .642 
 (p)     . (.000) (.000) (.000) 

Churn files       1.000 .917 .652 
 (p)      . (.000) (.000) 

Delta LOC        1.000 .592 
 (p)       . (.000) 

Failures         1.000 
 (p)        . 
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regression equation. The t-test and R2 values show the 
efficacy of our regression model built for 2075 binaries 
using the five principal components as the independent 
variables.  

Table 5: Complete model summary 
 t significance 

(Constant) 56.441 p < 0.0005 
Principal component 1 46.788 p < 0.0005 
Principal component 2 -6.075 p < 0.0005 
Principal component 3 -28.272 p < 0.0005 
Principal component 4 15.336 p < 0.0005 
Principal component 5 -13.055 p < 0.0005 
In order to assess the ability of the regression 

models to predict the post-release failures we use the 
technique of data splitting [17]. That is, we randomly 
pick two-thirds (1384) of the binaries to build our 
prediction model and the remaining one-third (691) to 
verify the efficacy of the built model. Table 6 shows 
the results obtained on performing such random splits. 
In order to ensure the repeatability of our results we 
performed the random splitting five times. From Table 
6 we see consistent R2 and adjusted R2 values that 
indicate the efficacy of the regression models built 
using the random splitting technique. The correlation 
results (both Spearman and Pearson) between the 
actual failures and estimated failures are at similar 
levels of strength and are statistically significant. This 
indicates the sensitivity of the predictions to estimate 
post-release failures. That is, an increase/decrease in 
the estimated values is accompanied by a 
corresponding increase/decrease in the actual values of 
post-release failures. 

Table 6: Random data splits summary 
R2 Adj. 

R2 
F-test Pearson   

* 
Spearman

* 
0.641 0.639 480.776, 

p<0.0005 
0.778 0.676 

0.628 0.627 435.561, 
p<0.0005 

0.793 0.662 

0.634 0.633 468.756, 
p<0.0005 

0.785 0.624 

0.654 0.653 509.410, 
p<0.0005 

0.748 0.620 

0.614 0.612 427.999, 
p<0.0005 

0.809 0.664 

* All correlations are statistically significant at 99% 
confidence 

Thus using principal component analysis of the 
metrics we can estimate the post-release failures at 
statistically significant levels. As the dependency 
information and churn measures are available early in 
the development process, we can use the software 
dependency ratios and churn measures as early 

indicators of post-release failures (H2).These 
estimates can be used to identify the binaries that will 
have a higher number of failures than acceptable 
standards and how testing can be directed more 
effectively at these binaries.  
3.3 Failure-proneness analysis 

In order to assess failure-proneness (i.e. simply 
stated the probability of a binary to fail in the field) we 
use a binary logistic regression approach. The overall 
goal of this analysis is to use the software dependence 
ratios and churn measures as early indicators of failure-
proneness modeled using logistic regression 
techniques. The higher the failure-proneness of a 
binary, the higher is the likelihood of it failing in the 
field. For the purpose of using a binary logistic 
regression we need to define a binary-cutoff point for 
failure-proneness. For this purpose, we define binaries 
with no failures as not failure-prone and vice versa. 
The general form of a binary logistic regression is 
shown in Equation 3: 

e (c + a1PC1+ a2PC2+ a3PC3+ a4PC4+ a5PC5)         3)  
1+ e (c + a1PC1+ a2PC2+ a3PC3+ a4PC4+ a5PC5) 

where the cut-off value for probability of failure 
0.5 to classify binaries as failure-prone or not. 

We perform the binary logistic regression using the 
principal components generated from the dependency 
ratios and the churn measures (independent variables) 
and failure-proneness (dependent variable). We also 
perform a repeated random splitting approach where 
we use two-thirds of the binaries to build the logistic 
regression equation and the remaining one-thirds to 
evaluate the built logistic regression model. Table 7 
shows the results of this model building and the 

2  and the Cox and Snell R2 [3] to 
present the overall consistency. The Nagelkerkes R2 

and the Cox and Snell R2 are consistent across the five 
random splits (different from the random splits in 
Section 4.2) indicating the efficacy of the built logistic 
regression models in terms of the consistency of the 
datasets.  

Table 7: Logistic regression model characteristics 
Random 

split 
Nagelkerkes 

R2 
Cox and Snell 

R2 
1 0.247 0.333 
2 0.241 0.325 
3 0.232 0.312 
4 0.229 0.308 
5 0.244 0.328 

Similarly in order to evaluate the efficacy of the 
built logistic regression we use statistical correlations 
and compute the precision and recall ratios. A positive 
and strong correlation (we present both Spearman and 
Pearson correlations) between the predicted failure-
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proneness probability and the actual number of failures 
indicates the sensitivity of the failure-proneness 
probability (i.e. the higher the failure-proneness 
probability the higher the actual number of failures that 
occurred in the field). We use the precision and recall 
rates defined in Equation 4 and 5 to govern the 
accuracy of our models to identify failure-prone 
binaries. The results of the sensitivity of the 
predictions in terms of the correlations for the five 
random splits and precisions and recall values are 
shown in Table 8. 
Precision = Correctly predicted failure-prone binaries (4)  

         All predicted failure-prone binaries 
Recall = Correctly predicted failure-prone binaries     (5) 

      All Observed failure-prone binaries 
The correlation results in Table 8 are positive and 

statistically significant indicating that with increase in 
the predicted failure-proneness of the binaries there is 
an increase in the number of actual post-release 
failures. The precision and recall values indicates the 
accuracy of the predictions comparable  with respect to 
earlier studies [23]. 

Table 8: Logistic regression random splits results 
Pearson

* 
Spearman* Precision Recall 

0.577 0.613 71.4 % 77.4 % 
0.595 0.632 73.4 % 75.3 % 
0.619 0.660 75.3 % 76.1 % 
0.614 0.657 74.3 % 78.3 % 
0.606 0.627 76.4 % 72.0 % 

* All correlations are statistically significant at 99% 
confidence  

Based on these results we can assess the ability of 
software dependency ratios and churn measures to be 
used as early indicators of the failure-proneness of the 
binaries (H3). For each binary we can compute this 
probability of failure using the logistic regression 
equation based on its evolution (churn) and 
architecture. Such failure-proneness information can be 
used to make early decisions on the quality of the 
binaries by focusing more test effort. 

3.4 Threats to validity 
In this section we discuss the main threats to 

validity of our study. The data analysis is performed as 
a post-mortem operation, i.e. all the data points are 
from the same software system. It is possible that these 
results might be valid only for the current system under 
study. We intend to address this issue in our future 
work plans by incorporating this methodology into the 
next generation Windows operating system 
development. These results were applicable to the 
Windows system that has strong prior history 
information that could be leveraged. This project had a 

timeline of analysis of 4.5 years. In the absence of 
prior historical information in this context it is not 
possible to make early estimates regarding the post-
release failures/ failure proneness. We plan to 
investigate the topic of building prediction models 
using comparable projects in the absence of historical 
information. For a replication standpoint the MaX tool 
used for extracting the dependencies is internal to 
Microsoft. But there exists public tools like for Java, 
Dependency Finder or JDepend that can be used to 
extract dependencies to replicate these studies on open 
source systems. As with all empirical studies, these 
analyses should be repeated in different environments 
and in different contexts before generalizing the 
results. Results that were found in this study on the 
Windows operating system might differ with other 
software systems based on environment, context, size 
etc. We plan to join with researchers working on open 
source systems (similar to studies performed on 
Eclipse) to build an empirical body of knowledge of 
these results. 

4. Related Work 
Over the years research related to software 

architectures has ranged from analysis of mismatch of 
components in the architectural composition [6, 10] to 
architectural description languages [15]. Perry and 
Wolf [21] formulated a model of software architecture 
that emphasizes the architectural elements of data, 
processing, and connection, their relationships and 
properties. Shaw et al. [24] define architectural style to 
mean a set of design rules that identify the kinds of 
components and connectors that may be used to 
compose a system or subsystem, together with local or 
global constraints on the way the composition is done.  

Prior studies [1] analyzed and investigated error 
propagation through software architectures, focusing 
on the level of components and connectors (rather than 
dependencies between code). Von Mayrhauser [27] et 
al. investigated the relationship of the decay of 
software architectures with faults using a bottom-up 
approach of constructing a fault-architecture model. 
The fault-architecture model was constructed 
incorporating the degree of fault-coupling between 
components and how often these components are 
involved in a defect fix [27]. Their results indicated for 
each release what the most fault-prone relationships 
were and showed that the same relationships between 
components are repeatedly fault-prone, indicating an 
underlying architectural problem. Similarly studies 
have explored the use of software architectures for 
testing [22]. Our work is closely related to this effort as 
estimates of post-release failures can identify files that 
require more testing effort. Related to the prior work in 
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this area we do not discuss any new ways for 
formalizing architectural connections or the use of any 
new architectural description languages. We simply 
leverage the software dependency metrics combined 
with the software churn measures to explain post-
release failures. 

Studies have also been performed on the 
distribution of faults during development and their 
relationship with metrics like size, complexity metrics 
[8]. From a design metrics perspective there have been 
studies involving the CK metrics [5]. These metrics 
can be a useful early internal indicator of externally-
visible product quality [2]. The CK metric suite consist 
of six metrics (designed primarily as object oriented 
design measures): weighted methods per class (WMC), 
coupling between objects (CBO), depth of inheritance 
(DIT), number of children (NOC), response for a class 
(RFC) and lack of cohesion among methods (LCOM). 
The CK metrics have also been investigated in the 
context of fault-proneness. Basili et al. [2] studied the 
fault-proneness in software programs using eight 
student projects. They observed that the WMC, CBO, 
DIT, NOC and RFC were correlated with defects while 
the LCOM was not correlated with defects. Further, 
Briand et al. [4] performed an industrial case study and 
observed the CBO, RFC, and  LCOM to be associated 
with the fault-proneness of a class.  

Software evolution via code churn has been studied 
[11, 19, 20] to understand its relationship on software 
quality. Prior studies have involved analysis of code 
churn measures in isolation and using a relative code 
churn approach [19] to predict defects at statistically 
significant levels and as part of a larger suite of metrics 
[14] to understand defect density. Graves et al. [11] 
predict fault incidences in software systems using 
software change history. Ohlsson et al. [20] identify 25 
percent of the most fault-prone components 
successfully by analyzing legacy software through 
successive releases using predominantly size and 
change measures. Zimmermann et al. [28] mined eight 
large scale open source systems (Eclipse, Postgres, 
KOFFICE, gcc, Gimp, JBOSS, JEdit and Python) 
version histories to guide programmers along related 
changes. They predict where future changes take place 
in systems and upon evaluation using these open 
source projects the top three recommendations made 
by them contained a correction location for future 
change with an accuracy of 70%. Schröter et al. [23] 
also showed that the import dependencies  can predict 
defects in large systems like Eclipse. 

We have discussed prior work on software 
architectures and the relationship between software 
metrics, churn and quality. Prior studies show that 
architectural mismatch, poor architectural design (or 
layout), and excessive dependence on a particular 

component are detrimental to the quality of software 
systems. Studies have also investigated how the 
architecture of the system can be used in the testing 
process. To the best of our knowledge, this paper is the 
first large scale empirical study in this area that uses 
architectural metrics and software churn to explain 
failures. The quantification of the propagation of 
failures in the system based on the churn (or evolution) 
and architecture of the system helps in early 
identification of binaries that require further testing. 
5. Conclusions and future work 

Software developers can benefit from an early 
estimate regarding the quality of their product as field 
quality information is often available late in the 
software lifecycle to affordably guide corrective 
actions. Identifying early indicators of field quality (in 
terms of failures/failure-proneness) is crucial in this 
regard. In this paper we have studied the software 
dependency and churn measures from the standpoint of 
the post-release failures for Windows Server 2003. 
From our analysis in section 4.1 we observe a 
preliminary correlation that with an increase in 
software dependency ratios there is an increase in the 
code churn measures. Based on statistical models built 
from a random two thirds of the data points to 
construct a prediction model and the remaining one 
third to evaluate the built model we get statistically 
significant results between the actual and estimated 
values for both, predicting post-release failures and 
failure-proneness. Table 6 and Table 8 summarize the 
strength of the statistical results in terms of the 
correlation between the actual and estimated values for 
estimating failures and failure-proneness and the 
precision and recall values across all the ten random 
splits (five for estimating the failures and five for 
estimating failure-proneness). The strength of the 
correlations indicates the sensitivity of the predictions 
which are all consistent across different random splits. 
These results indicate that we can predict the post-
release failures and failure-proneness of the binaries at 
statistically significant levels. These predictions can 
help identify binaries that are more likely to fail in the 
field which can be used to focus efforts more 
efficiently to prioritize testing, perform code 
inspections etc. 

Our current focus has been to leverage the 
architectural dependency and churn measures. We plan 
on using data from the testing process, pre-release 
faults, inspection data, faults found using static 
analysis tools etc. in future investigations. We also 
plan to do similar studies on other Microsoft products 
and with external researchers on non-Microsoft 
systems to compare our results to understand the 
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underlying differences in architecture for different 
systems.  
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