Problems

1. Illustrate DeMorgan’s Law \((A \cap B)^c = A^c \cup B^c\) using Venn diagrams.

![Venn Diagrams](image)

Figure 1: \((A \cap B)\) is shown in (a), and (c) and (d) illustrate \(B^c\) and \(A^c\) respectively. Finally (b) shows that \((A \cap B)^c = A^c \cup B^c\).

2. Let \(A_i = \{1, 2, 3, \ldots, i\}\) for all \(i \in \mathbb{N}\). For example \(A_4 = \{1, 2, 3, 4\}\).

 (a) What are the elements of the set \(\bigcup_{i=1}^{n} A_i\) ?

 \[
 \bigcup_{i=1}^{n} A_i = A_n
 \]

 (b) What are the elements of the set \(\bigcap_{i=1}^{n} A_i\) ?

 \[
 \bigcap_{i=1}^{n} A_i = A_1
 \]
3. Observe that $A \subseteq B$ has the same meaning as $A \cap B = A$. Draw a Venn diagram to illustrate this fact.

See Figure 2. If $A \subseteq B$ then every element $x \in A$ is also and element in B, which in turn implies that $A \cap B = A$.

4. Use a Venn diagram to show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

See Figure 2. $A \subseteq B$ implies that every element of A is also in B, $x \in A$ implies $x \in B$. Similarly $B \subseteq C$ implies that every element of B is also in C, $y \in B$ implies $y \in C$. Thus $A \subseteq C$.

5. Use the Principle of Exclusion and Inclusion to show that $|A \cup B| + |A \cap B| = |A| + |B|$. (It may help your understanding if you first explore an example such as $A = \{1,2,3\}$ and $B = \{3,4\}$).

By the Principle of Inclusion Exclusion we have $|A| + |B| - |A \cap B| = |A \cup B|$. These quantities are just non-negative integers so if we add $|A \cap B|$ to the right and left side of the equation, we get the desired result.

6. What are the cardinalities of the following sets?

 (a) $A = \{\text{winter, spring, summer, fall}\}$. $|A| = 4$.

 (b) $B = \{x : x \in \mathbb{Z}, 0 < x < 7\}$. $|B| = 6$.

 (c) $P(B)$, that is, the power set of B. $|P(B)| = 2^6 = 64$.

 (d) $C = \{x : x \in \mathbb{N}, x \text{ is even}\}$. This set has infinitely many elements.

7. Suppose that we have a sample of 100 students at Queen’s who take at least one of the following language courses, French-101, Spanish-101, German-101. Also suppose that 65 take French-101, 45 take German-101, 42 take Spanish-101, 20 take French-101 and German-101, 25 take French-101 and Spanish-101, and 15 take German-101 and Spanish-101.

 (a) How many students take all three language courses?
Let F, S, and G denote the sets of students taking French Spanish and German respectively. The Principle of Inclusion and Exclusion tells us that
\[|F \cup S \cup G| = |F| + |S| + |G| - |F \cap S| - |S \cap G| - |F \cap G| + |F \cap S \cap G| \]
The problem statement gives us values for each quantity in the equation except for \(|F \cap S \cap G| \). We can now simply fill in the numbers and solve for \(|F \cap S \cap G| \), as follows:

100 = 65 + 42 + 45 - 25 - 15 - 20 + |F \cap S \cap G|

So we conclude that \(|F \cap S \cap G| = 8 \).

(b) Draw a Venn diagram representing these 100 students and fill in the regions with the correct number.

(c) How many students take exactly 1 of these courses? Using the Venn diagram we can deduce that 28 + 10 + 18 = 56 students take exactly one of the language courses.

(d) How many students take exactly 2 of these courses? Using the Venn diagram we can deduce that 17 + 12 + 7 = 36 students take exactly two courses.

8. At an art class with 30 students, there are 14 women, and 16 men. Twenty-two of the students are right-handed. What is the minimum and maximum number of women that are right-handed?
With all of the men are right handed there must be 6 right handed women as the minimum. The maximum is when all of the women are right handed, that is 14.

9. Recall that the union operation is associative, that is $A \cup (B \cup C) = (A \cup B) \cup C$. Show that the relative complement set operation is not associative, that is, $A \setminus (B \setminus C) = (A \setminus B) \setminus C$, is incorrect for some sets A, B, C. (Note if relative complement is associative then the equation must be true for all sets A, B, C.)

Let $A = \{1, 2, 3\}$, $B = \{1, 2\}$ and $C = \{2, 3\}$. $A \setminus (B \setminus C) = \{2, 3\}$ and $(A \setminus B) \setminus C \neq \emptyset$.

10. Consider a set S of n elements, such that $\{a, b\} \subseteq S$.

(a) What is the cardinality of the power set of $S \setminus \{a\}$?

We know that S has n elements so $S \setminus \{a\}$ has $n - 1$ elements. The power set of $S \setminus \{a\}$ has 2^{n-1} elements.

(b) What is the cardinality of the power set of $S \setminus \{a, b\}$?

The power set of $S \setminus \{a, b\}$ has 2^{n-2} elements.

(c) How many subsets of S are there that contain the element a?

Here is a way to construct the subsets of S that contain the element a. For each subset $s \in P(S \setminus \{a\})$ construct the set $\{a\} \cup s$. This yields all subsets of S that contain a. Since there are 2^{n-1} subsets of $S \setminus \{a\}$, there are 2^{n-1} subsets of S that contain the element a.

We can obtain the same result by using a different argument. We know that there are 2^n subsets of S. The subsets of $S \setminus \{a\}$ are also subsets of S that do not contain a. The total number of subsets of $S \setminus \{a\}$ is 2^{n-1}. So the number of subsets of S that contain a is equal to $2^n - 2^{n-1} = 2^{n-1}$.

(d) How many subsets of S are there that contain the element a and exclude the element b?

Here is a way to construct the subsets of S that contain a and exclude b. For each subset $s \in P(S \setminus \{a, b\})$ construct the set $\{a\} \cup s$. This yields 2^{n-2} subsets of S.