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Abstract

A number of unconventional computational problems are described in which parallelism plays a

fundamental role. These problems highlight two recently uncovered aspects of parallel computation:

1. There exist computations for which the running time of a parallel algorithm, compared to that of

the best sequential algorithm, shows a speedup that is superlinear in the number of processors used,

a feat that was previously believed to be impossible.

2. There exist inherently parallel computations, that is, computations that can be carried successfully

in parallel, but not sequentially.

A surprising consequence of these discoveries is that the concept of universality in computation, long

held as a basic truth, is in fact false.
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1 Introduction

The purpose of this chapter is to show the important role played by parallel processing in a host of out-of-
the-ordinary computational problems, also referred to as unconventional computations.

For de�niteness, we shall use two models of computation. Our sequential model of computation is the
Random Access Machine (RAM) [1], which consists of a single processor p1, having access to a memory
that holds programs and data. The processor also possesses a number of local storage registers. The RAM
implements a (conventional) sequential algorithm. Each step of a RAM algorithm runs in constant time, by
de�nition a time unit, and consists of (up to) three phases:

1. A READ phase, in which the processor reads a datum from an arbitrary location in memory into one
of its registers,

2. A COMPUTE phase, in which the processor performs an elementary arithmetic or logical operation
on the contents of one or two of its registers, and

3. A WRITE phase, in which the processor writes the contents of one register into an arbitrary memory
location.

Our parallel model of computation is the Parallel Random Access Machine (PRAM) [1], which is endowed
with n processors p1, p2, . . . , pn, where n ≥ 2, and implements a parallel algorithm. The processors share
a common memory that holds data and to which they have access for reading or writing purposes. The
processors act synchronously under the control of a program, a copy of which each processor possesses
in its local registers. If needed, the processors may simultaneously access the same memory location in
the common memory, for the purpose of reading (Concurrent Read, CR) or writing (Concurrent Write,
CW). Write con
icts are resolved in several ways in order to determine what ends up being written in the
memory location to which several processors are attempting to write at the same time, as required by the
(unconventional) parallel algorithm. Thus, the repertoire of the PRAM includes CW instructions, such as
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for example, instructions of the form MIN CW (for selecting the minimum of several values), AND CW
(for obtaining the logical AND of several binary values), and SUM CW (for calculating the sum of several
values), and so on.

Each step of a PRAM algorithm runs in constant time, again by de�nition a time unit, the same as in
the RAM, and consists of (up to) three phases:

1. A READ phase, in which (up to n) processors read simultaneously from (up to n) memory locations.
Each processor reads from at most one memory location and stores the value obtained in a local
register,

2. A COMPUTE phase, in which (up to n) processors perform elementary arithmetic or logical operations
on their local data, and

3. A WRITE phase, in which (up to n) processors write simultaneously into (up to n) memory locations.
Each processor writes the value contained in a local register into at most one memory location.

The running time of a parallel algorithm designed for a certain problem is compared to that of the best
available sequential algorithm for the same problem, by computing a ratio known as the speedup, de�ned as
follows. Let t1 denote the worst-case running time of the fastest known sequential algorithm for the problem,
and let tn denote the worst-case running time of the parallel algorithm using n processors. Then the speedup
provided by the parallel algorithm is the ratio:

S(1, n) =
t1
tn

.

A good parallel algorithm is one for which this ratio is large. Usually (but not always) the speedup
equals (up to a constant factor) the number of processors used. For many computational problems, this is
the largest speedup possible; that is, the speedup is at most equal to the number of processors used by the
parallel computer. Because this condition is satis�ed by so many traditional problems, it has become part
of the folklore of parallel computation and is usually formulated as a theorem:

Speedup Folklore Theorem: For a given computational problem, the speedup provided by
a parallel algorithm using n processors, over the fastest possible sequential algorithm for the
problem, is at most equal to n; that is, S(1, n) ≤ n.

Another concept that is useful in studying the running time of parallel algorithms is slowdown (by contrast
with speedup). Slowdown measures the e�ect on running time of reducing the number of processors on a
parallel computer. Naturally, one would expect the running time of an algorithm to increase as the number
of processors decreases. The question is, how much slower is a parallel algorithm when solving a problem
with fewer processors? The traditional answer to this question has given rise to a second folklore theorem:

Slowdown Folklore Theorem: If a certain computation can be performed with n processors
in time tn and with p processors in time tp, where p < n, then tn ≤ tp ≤ tn + ntn/p.

The slowdown folklore theorem puts an upper bound on the running time of the machine with fewer
processors, essentially that tp/tn < n/p.

Both folklore theorems have been contradicted by counterexamples. Unconventional problems have been
presented which provide parallel speedups greater than predicted by the speedup folklore theorem, as well as
slowdowns greater than predicted by the slowdown folklore theorem when fewer than the required processors
are available. This chapter surveys the previously presented counterexamples and o�ers new ones.

The remainder of the chapter is organized as follows. Previous counterexamples to the two folklore
theorems are reviewed in Section 2. New unconventional computational problems that contradict these two
folklore theorems are presented in Sections 3{8. Consequences of these results are o�ered in Section 10.

2 Previous work

Several unconventional computational problems were recently described whose purpose was to highlight two
hitherto unknown aspects of parallelism [2]{[22], [29], [46]{[51]:
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1. There exists computations for which a parallel algorithm permits a superlinear speedup, a feat that
was previously believed to be impossible.

2. There exist inherently parallel computations, that is, computations that can be carried successfully in
parallel, but not sequentially.

These unconventional problems are reviewed in this section.

2.1 One-way functions

A function f is said to be one-way if the function itself takes little time to compute, but (to the best of our
knowledge) its inverse f−1 is computationally prohibitive. For example, let x1, x2, . . . , xn be a sequence of
integers. It is easy to compute the sum of a given subset of these integers. However, starting from a sum,
and given only the sum, no e�cient algorithm is known to determine a subset of the integer sequence that
add up to this sum.

Consider that in order to solve a certain problem, it is required to compute g(x1, x2, . . . , xn), where g is
some function of n variables. The computation of g requires 
(n) operations. For example, g(x1, x2, . . . , xn) =
x21 + x22 + · · ·+ x2n, might be such a function. The inputs x1, x2, . . . , xn needed to compute g are received as
n pairs of the form 〈xi, f(x1, x2, . . . , xn)〉, for i = 1, 2, . . . , n.

The function f possesses the following property: Computing f from x1, x2, . . . , xn is done in n time units;
on the other hand, extracting xi from f(x1, x2, . . . , xn) takes 2

n time units.
Because the function g is to be computed in real time, there is a deadline constraint: If a pair is not

processed within one time unit of its arrival, it becomes obsolete (it is overwritten by other data in the
�xed-size bu�er in which it was stored).

Sequential Solution. The n pairs arrive simultaneously and are stored in a bu�er, waiting in queue to
be processed by the RAM. In the �rst time unit, the pair 〈x1, f(x1, x2, . . . , xn)〉 is read and x21 is computed.
At this point, the other n − 1 pairs are no longer available. In order to retrieve x2, x3, . . . , xn, the single
processor p1 needs to invert f . This requires (n− 1)× 2n time units. It then computes g(x1, x2, . . . , xn) =
x21 + x22 + · · ·+ x2n. Consequently, t1 = 1+ (n− 1)× 2n + 2× (n− 1) time units. Clearly, this is optimal for
the RAM considering the time required to obtain the data.

Parallel Solution. Once the n pairs are received, they are processed by the n-processor PRAM
immediately. Processor pi reads the pair 〈xi, f(x1, x2, . . . , xn)〉 and computes x2i , for i = 1, 2, . . . , n. The
PRAM processors now compute g(x1, x2, . . . , xn) using a SUM CW. Consequently, tn = 1.

Speedup and slowdown. The speedup provided by the PRAM over the RAM, namely, S(1, n) =
(n− 1)× 2n + 2n− 1, is superlinear in n and thus contradicts the speedup folklore theorem. What if only p
processors are available on the PRAM, where 2 ≤ p < n? In this case, only p of the n variables (for example,
x1, x2, . . . , xp) are read directly from the input bu�er (one by each processor). Meanwhile, the remaining
n− p variables vanish and must be extracted from f(x1, x2, . . . , xn). It follows that

tp = 1 + d(n− p)/pe × 2n + (

logp(n−p)∑
i=1

d(n− p)/pie) + 1,

where the �rst term is for computing x21 + x22 + · · · + x2p, the second for extracting xp+1, xp+2, . . . , xn, the
third for computing x2p+1+x2p+2+ · · ·+x2n, and the fourth for producing g. Therefore, tp/tn is asymptotically
larger than dn/pe by a factor that grows exponentially with n, and the slowdown folklore theorem is violated.

Throughout the remainder of this section, both the speedup folklore theorem and the slowdown folklore
theorem will fail, and neither the speedup nor the slowdown will be measurable. Indeed, each one of the
computations described in Sections 2.2{ 2.8 is feasible if and only if an n-processor PRAM is available. No
RAM and no PRAM with fewer processors than n can succeed in performing these computations, and as a
result their running times are unde�ned.

2.2 Sorting with a twist

There exists a family of computational problems where, given a mathematical object satisfying a certain
property, we are asked to transform this object into another which also satis�es the same property. Further-
more, the property is to be maintained throughout the transformation, and be satis�ed by every intermediate
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object, if any. More generally, the computations we consider here are such that every step of the computation
must obey a certain prede�ned mathematical constraint. Analogies from popular culture include picking up
sticks from a heap one by one without moving the other sticks, drawing a geometric �gure without lifting
the pencil, and so on.

An example of computations obeying a mathematical constraint is provided by a variant to the problem
of sorting a sequence of numbers stored in the memory of a computer. For a positive even integer n, where
n ≥ 8, let n distinct integers be stored in an array A with n locations A[1], A[2], . . . , A[n], one integer per
location. Thus, A[j], for all 1 ≤ j ≤ n, represents the integer currently stored in the jth location of A. It is
required to sort the n integers in place into increasing order, such that:

1. After step i of the sorting algorithm, for all i ≥ 1, no three consecutive integers satisfy:

A[j] > A[j + 1] > A[j + 2] ,

for all 1 ≤ j ≤ n− 2.

2. When the sort terminates we have:

A[1] < A[2] < · · · < A[n].

This is the standard sorting problem in computer science, but with a twist. In it, the journey is more
important than the destination. While it is true that we are interested in the outcome of the computation
(namely, the sorted array, this being the destination), in this particular variant we are more concerned with
how the result is obtained (namely, there is a condition that must be satis�ed throughout all steps of the
algorithm, this being the journey). It is worth emphasizing here that the condition to be satis�ed is germane
to the problem itself; speci�cally, there are no restrictions whatsoever on the model of computation or the
algorithm to be used. Our task is to �nd an algorithm for a chosen model of computation that solves the
problem exactly as posed. One should also observe that computer science is replete with problems with an
inherent condition on how the solution is to be obtained. Examples of such problems include: inverting
a nonsingular matrix without ever dividing by zero, �nding a shortest path in a graph without examining
an edge more than once, sorting a sequence of numbers without reversing the order of equal inputs (stable
sorting), and so on.

An oblivious (that is, input-independent) algorithm for an n/2-processor parallel computer solves the
aforementioned variant of the sorting problem handily in n steps, by means of prede�ned pairwise swaps
applied to the input array A, during each of which A[j] and A[k] exchange positions (using an additional
memory location for temporary storage) [1]. This is illustrated in what follows:

Parallel Sort

for k = 1 to n do
for i = 1 to n− 1 do in parallel
if i mod 2 = k mod 2
then A[i] and A[i+ 1] are compared, and swapped if needed
end if

end for
end for.

An input-dependent algorithm succeeds on a computer with (n/2)− 1 processors. However, a RAM and
a PRAM with fewer than (n/2)− 1 processors, both fail to solve the problem consistently, that is, they fail
to sort all possible n! permutations of the input while satisfying, at every step, the condition that no three
consecutive integers are such that A[j] > A[j + 1] > A[j + 2] for all j. In the particularly nasty case where
the input is of the form

A[1] > A[2] > · · · > A[n] ,

any RAM algorithm and any algorithm for a PRAM with fewer than (n/2)− 1 processors fail after the �rst
swap.
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2.3 Computational complexity as a function of time

Here, the computational complexity of the problems at hand changes with the passage of time (rather than
being, as usual, a function of the problem size). Thus, for example, in real life, an illness that is undiagnosed
for a long period becomes more di�cult to treat, and an object lost in the forest is harder to �nd as
darkness falls. Similarly, a digital �le to which successive layers of encryption have been applied over time
is increasingly more computationally demanding to cryptanalyze.

A certain computation requires that n independent functions, each of one variable, namely,

f1(x1), f2(x2), . . . , fn(xn),

be computed. Computing fi(xi) at time t requires 2t algorithmic steps, for t ≥ 0 and 1 ≤ i ≤ n. Further,
there is a strict deadline for reporting the results of the computations: All n values f1(x1), f2(x2), . . . , fn(xn)
must be returned by the end of the third time unit, that is, when t = 3.

It should be easy to verify that the RAM, which by de�nition is capable of exactly one algorithmic step
per time unit, cannot perform this computation for n ≥ 3. Indeed, f1(x1) takes 2

0 = 1 time unit, f2(x2)
takes another 21 = 2 time units, by which time three time units would have elapsed. At this point none
of f3(x3), . . . , fn(xn) would have been computed. By contrast, an n-processor PRAM solves the problem
handily. With all processors operating simultaneously, processor pi computes fi(xi) at time t = 0, for
1 ≤ i ≤ n. This consumes one time unit, and the deadline is met.

2.4 Computational complexity as a function of rank

A computation consists of n stages. There may be a certain precedence among these stages, or the n stages
may be totally independent, in which case the order of execution is of no consequence to the correctness
of the computation. Let the rank of a stage be the order of execution of that stage. Thus, stage i is the
ith stage to be executed. Here we focus on computations with the property that the number of algorithmic
steps required to execute stage i is a function of i only.

When does rank-varying computational complexity arise? Clearly, if the computational requirements
grow with the rank, this type of complexity manifests itself in those circumstances where it is a disadvantage,
whether avoidable or unavoidable, to being ith, for i ≥ 2. For example, the precision and/or ease of
measurement of variables involved in the computation in a stage s may decrease with each stage executed
before s.

The same analysis as in Section 2.3 applies by substituting the rank for the time.

2.5 Variables that vary with time

For a positive integer n larger than 1, we are given n functions, each of one variable, namely, f1, f2, . . . , fn,
operating on the n physical variables x1, x2, . . . , xn, respectively. Speci�cally, it is required to compute fi(xi),
for i = 1, 2, . . . , n. For example, fi(xi) may be equal to x2i . What is unconventional about this computation,
is the fact that the xi are themselves (unknown) functions x1(t), x2(t), . . . , xn(t), of the time variable t. It
takes one time unit to evaluate fi(xi(t)). The problem calls for computing fi(xi(t)), 1 ≤ i ≤ n, at time
t = t0. Because the function xi(t) is unknown, it cannot be inverted, and for k > 0, xi(t0) cannot be
recovered from xi(t0 + k). Note that the time taken by the value of an input variable xi(t) to change (that
is, become xi(t+1)), is equal to the time taken by a processor to evaluate the function fi(xi(t)); both occur
in one time unit.

The RAM fails to compute all the fi as desired. Indeed, suppose that x1(t0) is initially operated upon.
By the time f1(x1(t0)) is computed, one time unit would have passed. At this point, the values of the n− 1
remaining variables would have changed. The same problem occurs if the RAM attempts to �rst read all
the xi, one by one, and store them before calculating the fi.

By contrast, a PRAM endowed with n independent processors may perform all the computations at once:
For 1 ≤ i ≤ n, and all processors working at the same time, processor pi computes fi(xi(t0)), leading to a
successful computation.

2.6 Variables that influence one another

A physical system has n variables, x1, x2, . . . , xn, each of which is to be measured or set to a given value at
regular intervals. One property of this system is that measuring or setting one of its variables modi�es the
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values of any number of the system variables uncontrollably, unpredictably, and irreversibly.
The RAM measures one of the values (x1, for example) and by so doing it disturbs an unknowable

number of the remaining variables, thus losing all hope of recording the state of the system within the given
time interval. Similarly, the RAM approach cannot update the variables of the system properly: Once x1
has received its new value, setting x2 may disturb x1 in an uncertain way.

A PRAM with n processors, by contrast, will measure all the variables x1, x2, . . . , xn simultaneously (one
value per processor), and therefore obtain an accurate reading of the state of the system within the given
time frame. Consequently, new values x1, x2, . . . , xn can be computed in parallel and applied to the system
simultaneously (one value per processor).

2.7 Deadlines that are uncertain

In this paradigm, we are given a computation consisting of three distinct stages, namely, input, calculation,
and output, each of which needs to be completed by a certain deadline. However, unlike the standard
situation in conventional computation, the deadlines here are not known at the outset. In fact, to add to
the unconventional character of this problem, we do not know at the moment the computation is set to
start, what needs to be done, and when it should be done. Certain physical parameters, from the external
environment surrounding the computation, become spontaneously available. The values of these parameters,
once received from the outside world, are then used to evaluate two functions, f1 and f2, that tell us precisely
what to do and when to do it, respectively.

The di�culty posed by this paradigm is that the evaluation of the two functions f1 and f2 is itself quite
demanding computationally. Speci�cally, for a positive integer n, the two functions operate on n variables
(the physical parameters). Only a PRAM equipped with n processors can succeed in evaluating the two
functions on time to meet the deadlines.

2.8 Working with a global variable

A computation C1 consists of two distinct and separate processes P1 and P2 operating on a global variable x.
The variable x is time-critical in the sense that its value throughout the computation is intrinsically related
to real (external or physical) time. Actions taken throughout the computation, based on the value of x,
depend on x having that particular value at that particular time. Here, time is kept internally by a global
clock. Speci�cally, the computer performing C1 has a clock that is synchronized with real time. Henceforth,
real time is synonymous with internal time. In this framework, therefore, resetting x arti�cially, through
simulation, to a value it had at an earlier time is entirely insigni�cant, as it fails to meet the true timing
requirements of C1. At the beginning of the computation, x = 0.

Let the processes of the computation C1, namely, P1 and P2, be as follows:

P1: if x = 0 then x← x+ 1 else loop forever end if.

P2: if x = 0 then read y; x← x+ y; return x else loop forever end if.

In order to better appreciate this simple example, it is helpful to put it in some familiar context. Think
of x as the altitude of an airplane and think of P1 and P2 as software controllers actuating safety procedures
that must be performed at this altitude. The local nonzero variable y is an integral part of the computation;
it helps to distinguish between the two processes and to separate their actions.

The question now is this: on the assumption that C1 succeeds, that is, that both P1 and P2 execute the
\then" part of their respective \if" statements (not the \else" part), what is the value of the global variable
x at the end of the computation, that is, when both P1 and P2 have halted?

We examine two approaches to executing P1 and P2:

1. Using a single processor: Consider the RAM equipped, by de�nition, with a single processor p1.
The processor executes one of the two processes �rst. Assuming it starts with P1: p1 computes x = 1
and terminates. It then proceeds to execute P2. Because now x 6= 0, p1 executes the nonterminating
computation in the \else" part of the \if" statement. The process is uncomputable and the computa-
tion fails. Note that starting with P2 and then executing P1 would lead to a similar outcome, with the
di�erence being that P2 will return an incorrect value of x, namely y, before switching to P1, whereby
it executes a nonterminating computation, given that now x 6= 0.
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2. Using two processors: Consider a PRAM with two processors, namely, p1 and p2. In parallel, p1
executes P1 and p2 executes P2. Both terminate successfully and return the correct value of x, that is,
x = y + 1.

Two observations are in order:

1. The �rst concerns the RAM (that is, the single-processor) solution. Here, no ex post facto simulation
is possible or even meaningful. This includes legitimate simulations, such as executing one of the
processes and then the other, or interleaving their executions, and so on. It also includes illegitimate
simulations, such as resetting the value of x to 0 after executing one of the two processes, or (assuming
this is feasible) an ad hoc rewriting of the code, as for example,

if x = 0 then x← x+ 1; read y; x← x+ y; return x
else loop forever

end if.

and so on. To see this, note that for either P1 or P2 to terminate, the then operations of its if statement
must be executed as soon as the global variable x is found to be equal to 0, and not one time unit
later. It is clear that any sequential simulation must be seen to have failed. Indeed:

• A legitimate simulation will not terminate, because for one of the two processes, x will no longer
be equal to 0, while

• An illegitimate simulation will \terminate" illegally, having executed the \then" operations of
one or both of P1 or P2 too late.

2. The second observation follows directly from the �rst. It is clear that P1 and P2 must be executed
simultaneously for a proper outcome of the computation. The PRAM (that is, the two-processor)
solution succeeds in accomplishing exactly this.

A word about the role of time. Real time, as mentioned earlier, is kept by a global clock and is equivalent
to internal computer time. It is important to stress here that the time variable is never used explicitly by
the computation C1. Time intervenes only in the circumstance where it is needed to signal that C1 has
failed (when the \else" part of an \if" statement, either in P1 or in P2, is executed). In other words, time
is noticed solely when the time requirements are neglected.

To generalize the global variable paradigm, we assume the presence of n global variables, namely,
x1, x2, . . . , xn, all of which are time critical, and all of which are initialized to 0. There are also n nonzero
local variables, namely, y1, y2, . . . , yn, belonging, respectively, to the n processes P1, P2, . . . , Pn that make
up C2. The computation C2 is as follows:

P1: if x1 = 0 then x2 ← y1 else loop forever end if.

P2: if x2 = 0 then x3 ← y2 else loop forever end if.

P3: if x3 = 0 then x4 ← y3 else loop forever end if.
...

Pn−1: if xn−1 = 0 then xn ← yn−1 else loop forever end if.

Pn: if xn = 0 then x1 ← yn else loop forever end if.

Assume that the computation C2 begins when xi = 0, for i = 1, 2, . . . , n. For every i, 1 ≤ i ≤ n, if Pi is
to be completed successfully, it must be executed while xi is indeed equal to 0, and not at any later time
when it is no longer equal to 0, having been modi�ed by pi−1 for i > 1, or by pn for i = 1. On a PRAM
with n processors, namely, p1, p2, . . . , pn, it is possible to test all the xi, 1 ≤ i ≤ n, for equality to 0 in one
time unit; this is followed by assigning to all the xi, 1 ≤ i ≤ n, their new values during the next time unit.
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Thus, all the processes Pi, 1 ≤ i ≤ n, and hence the computation C2, terminate successfully. The RAM has
but a single processor p1 and, as a consequence, it fails to meet the time-critical requirements of C2. At
best, it can perform no more than n − 1 of the n processes as required (assuming it executes the processes
in the order Pn, Pn−1, . . . , P2, then fails at P1 since x1 was modi�ed by Pn), and thus does not terminate.
A PRAM with only n− 1 processors, p1, p2, . . . , pn−1, cannot do any better. At best, it too will attempt to
execute at least one of the Pi when xi 6= 0 and hence fail to complete at least one of the processes on time.

Finally, and most importantly, even a computer capable of an infinite number of algorithmic steps per
time unit (like an Accelerating Machine [31] or, more generally, a Supertask Machine [23], [28], [58]) would
fail to perform the computations required by the global variable paradigm if it were restricted to execute
these algorithmic steps sequentially.

3 Data rearrangement

An array X[1], X[2], . . . , X[n] is given that contains n distinct integers I1, I2, . . . , In in the range (−∞, n]
such that X[i] = Ii for 1 ≤ i ≤ n. It is required to modify the array X so that for all i, 1 ≤ i ≤ n, X[Ii] = Ii
if and only if 1 ≤ Ii ≤ n; otherwise, X[i] = Ii. In what follows we show that the PRAM and RAM solutions
to this problem lead to a contradiction with the speedup folklore theorem.

A PRAM with n processors solves the problem in one READ-COMPUTE-WRITE step executed simul-
taneously by all processors:

for i = 1 to n do in parallel
if X[i] > 0
then X[X[i]]← X[i]
end if

end for.

Now consider a RAM. Any algorithm for performing this computation includes (possibly among other
steps) READ-COMPUTE-WRITE steps of the form:

if Ii > 0
then X[Ii]← Ii
end if.

Consider the �rst such step executed by the algorithm. Since a positive Ii may take any value from 1 to
n, the WRITE operation can occur at any position of array X, thus destroying its old contents. Therefore,
the remaining n − 1 Ij 's (j 6= i, 1 ≤ j ≤ n) must have been \seen" previously by the algorithm in n − 1
steps involving READ operations and preceding the current step. Since, in addition, there could be n steps
involving WRITE operations, any RAM algorithm must require 2n − 1 steps. A RAM algorithm requiring
exactly this many READ-COMPUTE-WRITE steps uses an additional array W of n − 1 locations, and is
as follows:

for i = 1 to n− 1 do
W [i]← X[i]

end for
if X[n] > 0
then X[X[n]]← X[n]
end if
for i = 1 to n− 1 do
if W [i] > 0
then X[W [i]]←W [i]
end if

end for.
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Since S(1, n) = 2n − 1, the speedup is larger than that predicted by the speedup folklore theorem (i.e.,
n), albeit by a constant multiplicative factor.

4 Cyclic shift

Given an array X[1], X[2], . . . , X[n] containing arbitrary data and an integer q that divides n evenly, it is
required to shift cyclically the contents of every sequence of q consecutive elements of X by one position to
the right.

Two PRAM solutions to this problem, one with n processors and one with p processors, where 2 ≤ p < q,
lead to a contradiction with the slowdown folklore theorem, as demonstrated in the following.

A PRAM with n processors clearly solves the problem in one step. Each group of q processors performs
a cyclic shift on a di�erent group of q consecutive elements of X.

for j = 1 to n/q do in parallel
for i = (j − 1)q + 1 to jq do in parallel
X[[i+ 1] mod jq]← X[i]

end for
end for.

By contrast, on a PRAM with p processors, 2 ≤ p < q, the number of necessary and su�cient steps is
d(n/p) + n/(pq)e. We show this as follows.

(a) Assume that fewer than d(n/p)+n/(pq)e steps are su�cient. Since during each step, at most p memory
accesses can be performed, the total number of memory accesses is smaller than n+ (n/q). However,
because there are fewer processors than elements to be shifted, one supplementary memory access is
necessary for each cyclic shift in order that no element be lost. Hence, any solution to the problem
necessitates at least n+ (n/q) memory accesses, which contradicts the assumption.

(b) An algorithm requiring d(n/p) + n/(pq)e steps is obtained in the following way. For each group of q
consecutive elements to be shifted: Store the last element in an additional memory location, shift every
element (except the last) by one position to the right (starting from the end of the array and proceeding
to the beginning, in groups of p elements, with the last group to be shifted possibly containing fewer
that p elements), and �nally copy the content of the additional memory location into the location of
the �rst element.

The slowdown folklore theorem predicts a running time of at most 1 + (n/p). For pq < n, the time
required by the PRAM algorithm with p processors exceeds this bound.

5 Time stamps

Consider a PRAM variant that allows several processors to gain access to the memory simultaneously for
di�erent purposes. Thus, some processors may be reading, while others may be writing. If two processors
gain access to the same location at the same time, one for reading and one for writing, then the reading
takes place before the writing. An array X of n elements is stored in the shared memory. Each element X[i],
1 ≤ i ≤ n, is associated with a time stamp, giving the time when X[i] was last overwritten. This time stamp
is modi�ed every time a processor gains access to X[i] for the purpose of writing. Let r be the probability
that a given element of X is not overwritten during a given time unit. The task to be executed is as follows:
Select a time D, and return the value of X[i], 1 ≤ i ≤ n, at D.

There are two sets of processors: One set is executing some algorithm that causes entries of X to change,
while the second set is in charge of reading and reporting these values. In what follows we focus on the
second of these two sets.

We �rst observe that n processors can perform the task in one time unit. With n processors, all X[i],
1 ≤ i ≤ n, are read simultaneously at time D and produced as output. We now show that if fewer than n
processors are used, both the speedup and slowdown folklore theorems are violated.
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Assume that p = n/a processors are used, where n ≥ a > 1. We derive the probability that the task
is completed successfully (i.e., that all locations of X are read in a time units, without any of them being
modi�ed). With n/a processors, the time required to read all X[i], 1 ≤ i ≤ n, is a time units. Each processor
reads a entries of X. The probability that a processor reads the a entries X[j], X[j + 1], . . . , X[j + a − 1],
without some location X[j + i], 1 ≤ i ≤ (a− 1), being modi�ed after X[j] is read and before X[j + a− 1] is
read is ra(a−1)/2. The probability of this occurring for all n/a processors is rn(a−1)/2. Since a > 1, a linear
decrease in the number of processors has resulted in an exponential decrease in the probability of success.

Let us now assume that if n/a processors fail to execute the task, they must restart. The expected time
required by n/a processors to complete the task successfully is our main result in this section. With n/a
processors, the expected number of attempts before success is 1/(rn(a−1)/2). The expected running time of
an attempt is

(

a−1∑
x=1

xrx−1(1− r)) + ara−1 =
1− ra

1− r
.

To see this, note that one cannot fail on the �rst read. If after that the second entry (in a group of a entries)
has changed, then the current attempt would have taken one time unit. This explains the �rst term of the
summation, namely, 1 × r0(1 − r). In general, the exponent of r, i.e., x − 1, is one less than the number
of values read successfully in a group of a values (because one cannot fail on the �rst attempt), while the
random variable x is the number of time units spent reading successfully x values, and the factor (1− r) is
the probability that the (x + 1)st value has changed. If all a values in a group are read successfully, this
attempt is guaranteed to succeed, and last a time units. We therefore have the term ara−1 (without the
factor (1− r)).

Thus, the expected time before success is:

1

rn(a−1)/2
× 1− ra

1− r
.

It should be noted that it is not necessary to check the time stamp of the �rst value, and consequently
checking the (x+ 1)st time stamp is included in the time taken to read the xth value.

6 Data stream

In a certain application, a set of n data is received every k time units and stored in a computer's memory.
Here 2 < k < n; for example, let k = 5. The ith data set received is stored in the ith row of a two-dimensional
array A. In other words, the elements of the ith set occupy locations A[i, 1], A[i, 2], . . . , A[i, n]. At most 2n

such sets may be received. Thus, A has 2n rows and n columns. Initially, A is empty. The n data forming
a set are received and stored simultaneously: One time unit elapses from the moment the data are received
from the outside world to the moment they settle in a row of A. Once a datum has been stored in A[i, j], it
requires one time unit to be processed; that is, a certain operation must be performed on it which takes one
time unit. This operation depends on the application. For example, the operation may simply be

A[i, j]← (A[i, j])2.

The computation terminates once all data currently in A have been processed, regardless of whether more
data arrive later.

In what follows:

1. We compare the performance of a PRAM with n processors to that of a RAM in solving this problem,
and contrast the result with that predicted by the speedup folklore theorem.

2. We compare the performance of a PRAM with p < n processors to that of a PRAM using n processors
in solving this problem, and contrast the result with that predicted by the slowdown folklore theorem.

6.1 PRAM with n processors

A PRAM with n processors receives the �rst data set, stores it in:

A[1, 1], A[1, 2], . . . , A[1, n],
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and updates it to:
(A[1, 1])2, (A[1, 2])2, . . . , (A[1, n])2,

all in two time units. Since all data currently in A have been processed and no new data have been received,
the computation terminates.

A RAM receives the �rst set of n data in one time unit. It then proceeds to update it. This requires
n time units. Meanwhile, n/5 additional data sets would have arrived in A, and must be processed. The
RAM does not catch up with the arriving data until they cease to arrive. Therefore, the RAM must process
2n × n values. This requires 2n × n time units. The speedup is 2n × n/2, which is signi�cantly larger than
the maximum speedup of n predicted by the speedup folklore theorem.

6.2 PRAM with p < n processors

Let a PRAM with p processors be used, where p < n, and assume that (n/p) > 5. The �rst set of data is
processed in n/p time units. Meanwhile, (n/p)/5 new data sets would have been received. This way, the
PRAM never catches up with the arriving data until the data cease to arrive. Therefore, 2n × n data must
be processed, and this requires (2n × n)/p time units. This running time is asymptotically larger than the
2× (1 + (n/p)) time predicted by the slowdown folklore theorem.

7 Unpredictable data

Let n data on which a certain computation is to be performed be stored in the memory of a computer. For
example, it may be required to compute the sum of the n data currently in memory. Every n/2 time units,
the values of k of the data (not known ahead of time) change. There are at most n such updates (each
involving k values). If the result of the computation is reported after D time units, then it must be obtained
using the n values in memory at the end of D time units.

As in the previous section, we shall:

1. Compare the performance of a PRAM with n processors to that of a RAM in executing this compu-
tation, and contrast the result we obtain with that predicted by the speedup folklore theorem.

2. Assume that a PRAM with p < n processors is used to perform the computation and compare this
PRAM's performance to that of a PRAM using n processors, and contrast our result with that predicted
by the slowdown folklore theorem.

7.1 PRAM with n processors

For de�niteness, let k = n/2 and D = n/4. The sum of the values currently in memory must be reported
by time unit 1. If the sum is not ready, then the sum of the new values is reported at time D; if not, then
at time 2D, and so on. A PRAM with n processors computes the sum using one SUM CW instruction in
one time unit, delivers the sum by the �rst deadline, and terminates.

A RAM is not ready to deliver the sum at time D, since it would have only added n/4 numbers. It is still
not ready at time 2D. Now a change occurs, and if all n/2 values added up so far have changed, a new sum
must be computed. This continues with the RAM never able to catch up while changes occur. After the n
changes have taken place, that is, at time n2/2, the RAM uses at most n additional time units to deliver
the sum at time (2n+ 4)D.

The speedup is O(n2), which is asymptotically larger than the speedup of O(n) predicted by the speedup
folklore theorem.

7.2 PRAM with p < n processors

Recall that n processors compute the sum in one time unit and meet the �rst deadline.
Let D = (n/2)+(1/n2) and k > n/2 > p. In order to compute the sum with p PRAM processors, O(n/p)

time is required. This means that when the data change, the p processors will not be ready to deliver the
sum by the next deadline. Therefore, at the end of n2/2 time units, the p processors will take another
O(n/p) time units to compute the �nal sum, for a total time of O(n2 + (n/p)). This time is asymptotically
larger than the 1× (1 + (n/p)) time units predicted by the slowdown folklore theorem.
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8 Setting the elements of an array

An array A of size n, such that A[i] = 0 for 1 ≤ i ≤ n, is given. It is required to set A[i] ← T , for all i,
1 ≤ i ≤ n, where T = nx, for some positive integer constant x > 1, provided that at no time during the
update two elements of A di�er by more than a certain constant w. A PRAM with n processors solves the
problem in constant time, that is, tn = O(1). A RAM, on the other hand, updates each element of A by w
units at a time, thus requiring t1 = n× (T/w) = O(nx+1) time to complete the task. The speedup t1/tn is
O(nx+1). The speedup predicted by the speedup folklore theorem is n.

Now assume that p processors are available, where p < n. The PRAM now updates the elements of A
in groups of p elements by w units at a time. The total time required is tp = (n/p)× (T/w) = O(nx+1/p).
Thus, tp/tn = O(nx+1/p). The ratio predicted by the slowdown folklore theorem is 1 + (n/p).

9 Several data streams

Consider n independent streams of data arriving as input at a computer. Each stream contains a distinct
cyclic permutation of the values in a sequence S = {s1, s2, . . . , sn}. Thus, for n = 4, the four input streams
may be < s1, s2, s3, s4 >, < s2, s3, s4, s1 >, < s3, s4, s1, s2 > and < s4, s1, s2, s3 >. In addition, the ith value
in a stream is separated from the (i + 1)st value by 2i time units. Furthermore, a stream remains active if
and only if its �rst value has been read and stored by a processor.

A single processor can monitor the values in only one stream: By the time it reads and stores the �rst
value of a selected stream, it is too late to turn and process the remaining n − 1 values from the other
streams, which arrived at the same time.

Suppose that we need to compute the smallest value in S. A RAM selects a stream and reads the
consecutive values it receives, keeping track of the smallest encountered so far. In one time unit the RAM
processor can read a value, compare it to the smallest so far, and update the latter if necessary. It therefore
takes n time units to process the n inputs, plus (21 + 22 + · · · + 2n−1) = 2n − 2 time units of waiting time
in between consecutive inputs. Therefore, after exactly n+ 2n − 2 time units, the minimum value is known.

On the other hand, let the computer be an n-processor PRAM. In one parallel READ operation, each
processor reads one value from a distinct stream. This is followed by a MIN CW operation, the result of
which is to store the minimum value of S in a location in the shared memory. This requires one time unit.
The speedup is therefore (n + 2n − 2)/1 = O(2n), which is asymptotically larger than n, the number of
processors used on the parallel computer. A PRAM with fewer processors has the same performance as the
RAM.

10 Conclusion

For each of the computational problems described in Sections 2{9 we have the following:

1. Either the computational problem can be readily solved on a computer capable of executing n algo-
rithmic steps per time unit, but fails to be executed on a computer capable of fewer than n algorithmic
steps per time unit,

2. Or a computer capable of executing n algorithmic steps per time unit is superior in performance to
any computer capable of executing p algorithmic steps per time unit, where 1 ≤ p < n, by a factor
larger than n/p.

Furthermore, the problem size n itself is a variable that changes with each problem instance. As a result,
no computer, regardless of how many algorithmic steps it can perform in one time unit, can cope with
a growing problem size, as long as it obeys the \�niteness condition", that is, as long as the number of
algorithmic steps it can perform per time unit is �nite and �xed. This observation leads to a theorem that
there does not exist a finite computational device that can be called a Universal Computer. The proof of this
theorem proceeds as follows. Let us assume that there exists a Universal Computer capable of n algorithmic
steps per time unit, where n is a �nite and �xed integer. This computer will fail to perform a computation
requiring n′ algorithmic steps per time unit, for any n′ > n, and consequently lose its claim of universality.
Naturally, for each n′ > n, another computer capable of n′ algorithmic steps per time unit will succeed
in performing the aforementioned computation. However, this new computer will in turn be defeated by a
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problem requiring n′′ > n′ algorithmic steps per time unit. This holds even if the computer purporting to
be universal is endowed with an unlimited memory and is allowed to compute for an inde�nite amount of
time [7]{[16].

The only constraint that is placed on the computer (or model of computation) that aspires to be universal
is the aforementioned �niteness condition, namely, that the number of operations of which the computer is
capable per time unit be �nite and �xed once and for all. In this regard, it is important to note that:

1. The requirement that the number of operations per time unit, or step, be finite is necessary for any
\reasonable" model of computation; see, for example, [57], p. 141.

2. The requirement that this number be fixed once and for all is necessary for any model of computation
that claims to be \universal"; see, for example, [26], p. 210.

The condition that the number of operations per time unit be �nite and �xed is fundamental and of utmost
importance in computer science. Without it, the relevance of the theory of computation, in general, and of
the design and analysis of algorithms, in particular, would be severely diminished. The absence of a bound
on the number of operations per time unit, would make it possible for all algorithms to run in constant
time. A case in point is the celebrated question of whether P is equal to NP. Here, P stands for the class of
problems solvable in polynomial time on a deterministic Turing Machine, while NP is the class of problems
solvable in polynomial time on a nondeterministic Turing Machine. In the preceding de�nitions of the classes
P and NP, the phrase \polynomial time" means that there exists an algorithm for solving every problem of
size n in either one of the two classes, whose running time is a polynomial function of n. Note that both
complexity classes P and NP are de�ned in terms of the time required to solve a problem, not in terms of the
number of operations (as they technically should). This means that time has been equated with the number
of operations. In other words, the number of operations per time unit must be �nite and �xed. Failing this,
the question \P = NP?" is nonsensical, for it is clear that P = NP when the number of operations per time
unit is neither �nite nor �xed.

It should be noted that computers obeying the �niteness condition include all \reasonable" models of
computation, both theoretical and practical, such as the Turing Machine, the Random Access Machine, and
other idealized models [54], as well as all of today's general-purpose computers, including existing conven-
tional computers (both sequential and parallel), and contemplated unconventional ones such as biological
and quantum computers [7]. It is true for computers that interact with the outside world in order to read
input and return output (unlike the Turing Machine, but like every realistic general-purpose computer). It
is also valid for computers that are given unbounded amounts of time and space in order to perform their
computations (like the Turing Machine, but unlike realistic computers). Even Accelerating Machines that
increase their speed at every step at a rate of acceleration that is de�ned in advance, once and for all, and
in no way is a function of input characteristics, cannot be universal.

As a result, it is possible to conclude that the only possible universal computer would be one capable of
an in�nite number of algorithmic steps per time unit executed in parallel.

In fact, this work has led to the discovery of computations that can be performed on a quantum computer
but that cannot, even in principle, be performed on any classical computer (even one with in�nite resources),
thus showing for the �rst time that the class of problems solvable by classical means is a true subset of the
class of problems solvable by quantum means [48]. Consequently, the only possible universal computer would
have to be quantum (as well as being capable of an in�nite number of algorithmic steps per time unit executed
in parallel).
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