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Abstract

In this report, we study the problem of scheduling a set of n periodic preemp-

tive independent hard real-time tasks on the minimum number of processors. We

assume that the partitioning strategy is used to allocate the tasks to the proces-

sors and the EDF method is used to schedule the tasks on each processor. It is

known that this problem is NP-hard; thus, it is unlikely to find a polynomial time

algorithm to schedule the tasks on the minimum number of processors.

In this work, we derive a lower and an upper bound for the number of processors

required to satisfy the constraints of our problem. We also compare a number of

heuristic algorithms with each other and with the bounds derived in this report.

Numerical results demonstrate that our lower bound is very tight and it is very

close to the optimal solution.
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1 Introduction

The purpose of a real-time system is to produce a response within a specified time-

frame. In other words, for a real-time system not only the logical correctness of the

system should be satisfied, but also it is required to fulfill the temporal constraints of the

system. Typically, a real-time system consists of a controlling system (e.g. a computer)

and a controlled system (e.g. an environment). The controlling system interacts with

its environment. On a real-time computer which controls a device or process, sensors

will provide readings at periodic intervals and the computer must respond by sending

signals to actuators. There may be unexpected or irregular events and these must also

receive a response. In all cases, there will be a time bound within which the response

should be delivered. A real-time application is normally composed of multiple tasks with

different levels of criticality. Failure to meet the timing constraint for a response can have

different consequences; although missing deadlines is not desirable in a real-time system,

some real-time tasks could miss some deadlines and the system will still work correctly

while certain penalties will have to be paid for the deadlines missed. On the other hand,

some real-time tasks cannot miss any deadlines, otherwise, undesirable or fatal results

will be produced in the system [13, 24, 17, 23]. The latter class, called hard real-time

tasks, is the type of real-time tasks which we consider in this report.

The ability of a computer to meet the timing constraints depends on its capacity

to perform the necessary computations. If a number of events occur close together,

the computer will need to schedule the computations so that each response is provided

within the required time bounds. It may be that, even so, the system is unable to meet

all possible unexpected demands. In order to prevent failure of the system, one should

increase the number of the processors. Having a sufficient number of processors, one is

able to schedule the tasks without missing any deadlines.

Multiprocessor scheduling algorithms are categorized into either Partitioning or Global

strategy. In this report, we focus our attention on algorithms that use a partitioning

strategy. Partitioning strategies reduce a multiprocessor scheduling problem to a set of

uniprocessor ones, thereby allowing well-known uniprocessor scheduling algorithms to be

applied to each processor. Using the partitioning approach, we need to consider both

an allocation algorithm to determine the processor that should be assigned to each task

and a scheduling algorithm to schedule the tasks assigned on each processor. One of the

main concerns in designing a partitioning strategy is finding an algorithm to allocate the

tasks to the minimum number of processors that are required.

Many methods have been devised to make a good combination of the pair of (allo-

cation, scheduling) algorithms. The most popular scheduling algorithms are the Rate
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Monotonic (RM) and the Earliest Deadline First (EDF) algorithms, since both of them

are optimal scheduling algorithms on uni-processor systems [16]. By optimality, we mean

that if an optimal algorithm cannot schedule a task set on a processor such that deadlines

are met, there is no other scheduling algorithm that can do so.

Some researchers have focused on the problem when RM scheduling is used on each

processor (see, for example, [19, 20]). However, our concern is solving the problem by

employing a partitioning method, when the EDF scheduling algorithm is used on each

processor and the allocation algorithm fits into the following frame. In this report,

we generally talk about any allocation algorithm which picks up tasks one by one and

assigns each task to one of the existing processors and if there is not enough room on

them for the new task, then we add a new processor. It is proved in [1, 10, 15] that the

problem is reducible to the Bin Packing problem (BPP), and consequently the problem

is NP-hard. Therefore, the most efficient known algorithms use heuristics, which may

not be the optimal solution, to accomplish very good results in most cases. The Best-Fit

(BF), First-Fit (FF), Best-Fit Decreasing (BFD), First-Fit Decreasing (FFD), Modified

First-Fit Decreasing (MFFD), Next-Fit (NF), Annealing Genetic (AG) algorithms are a

number of heuristic algorithms derived so far for the problem [14, 5, 6, 21].

In [3], it is proved that the worst-case achievable utilization (see Section 2) on M

processors for all of the above-mentioned heuristics (and also for an optimal partitioning

algorithm) is only (M + 1)/2, even when an optimal uniprocessor scheduling algorithm

such as EDF is used. In other words, there exist task systems with utilization slightly

greater than (M +1)/2 that cannot be correctly scheduled by any partitioning approach.

It is proved in [18] that the problem of finding the minimum number of processors

with l priority levels to schedule a set of tasks is NP-hard.

Let an implementation consist of a hardware platform and the scheduler under which

the program is executed. An implementation is said to be feasible if every execution of

the program meets all its deadlines. Based on the properties of the real-time system,

the parameters of the system, and the algorithm applied for scheduling, we may deter-

mine sufficient conditions for feasibility of the scheduling algorithm. In what follows, by

schedulability test, we mean checking whether the sufficient conditions of a given schedul-

ing algorithm hold for a set of real-time tasks. For instance, for a set of periodic hard

real-time tasks, there exist simple schedulability tests corresponding to the case where

the relative deadlines are all equal to the periods. In such a case, if all tasks are periodic

and have relative deadlines equal to their periods, they can be feasibly scheduled by the

EDF algorithm if and only if the utilization factor of the set of the tasks is smaller than

or equal to 1. In this report, we use EDF scheduling on each processor. Therefore, we

should look for an appropriate allocation algorithm to assign the tasks to the minimum
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number of processors while the EDF-schedulability condition is satisfied on each pro-

cessor. The problem is reducible to the BPP, and therefore, we take advantage of the

existing heuristic algorithms for BPP. We derive upper and lower bounds for the number

of processors required by any allocation algorithm with the EDF schedulability test for

each processor.

We compare our bounds with a number of heuristic algorithms using simulations. As

expected, the number of processors as determined by the heuristic algorithms is bounded

by our upper and lower bounds.

The upper bound derived here is for the number of processors achieved by any allo-

cation algorithm in our framework and with EDF-schedulability test on each processor.

Therefore, the number of processors required by the allocation algorithms should not

exceed the upper bound derived in the paper.

The lower bound that is obtained in this report is very tight and its results are very

close to the results of the FFDU and BFDU algorithms discussed in Section 6.1. The

minimum number of the processors required for scheduling is equal to or larger than the

proposed lower bound for the number of processors and smaller than the best heuristic

algorithm. Since we look for the algorithm with the minimum number of processors,

the best heuristic algorithm amongst the above heuristic algorithms is the one with the

least guaranteed performance. Simulation results lead us to the fact that the difference

between the number of processors achieved by the FFDU and BFDU algorithm and the

results of an optimal algorithm is negligible.

The remainder of this paper is organized as follows. We introduce terminology in

Section 2. Then, in Sections 3 and 4, the EDF scheduling algorithm and the Bin Pack-

ing problem and a number of its approximation algorithms are discussed, respectively.

In Section 5, we formally define the problem under study. In Section 6, we discuss a

number of heuristic algorithms and derive the upper and lower bounds for the number of

processors. In Section 7, we present simulation results and compare the performance of

the heuristic algorithms with the upper and lower bounds derived in this report. Section

8 contains the conclusions.

2 Terminology

For a given set of tasks the general scheduling problem asks for an order according to

which the tasks are to be executed such that various constraints are satisfied. For a

given set of real-time tasks, we want to devise a feasible allocation/schedule to satisfy

timing constraints. The release time, the deadline and the execution time of the tasks

are some of the parameters that should be considered when scheduling tasks on a real-
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time system. The timing properties of a given task τj ∈ T = {τ1, τ2, ..., τn} refer to the

following [13, 17, 24, 7]:

• Release time (or ready time (rj)): Time at which the task is ready for processing.

• Deadline (dj): Time by which execution of the task should be completed.

• Completion time (Cj): Maximum time taken to complete the task, after the task

is started.

• Execution time (ej): Time taken without interruption to complete the task, after

the task is started.

• Priority (ρj): Relative urgency of the task.

• Period (Pj): In the case of a periodic task τj , a period means once per a time

interval of Pj or exactly Pj time units apart.

• Utilization factor (uj): The utilization factor of a periodic task τj is defined by

ej/Pj. The utilization factor of a set of n periodic tasks is defined by
∑n

i=1 ei/Pi.

Other issues to be considered in real-time scheduling are as follows.

• Periodic/Aperiodic/Sporadic tasks

Periodic real-time tasks are activated (released) regularly at fixed rates (periods).

Aperiodic real-time tasks are activated irregularly at some unknown and possibly

unbounded rate. The time constraint is usually a deadline. Sporadic real-time

tasks are activated irregularly with some known bounded rate. The bounded rate

is characterized by a minimum inter-arrival period, that is, a minimum interval of

time between two successive activations. The time constraint is usually a deadline.

A majority of sensory processing is periodic in nature. For example, a radar that

tracks flights produces data at a fixed rate [16, 12, 11, 2].

• Preemptive/Non-preemptive tasks

In some real-time scheduling algorithms, a task can be preempted if another task

of higher priority becomes ready. In contrast, the execution of a non-preemptive

task should be completed without interruption once it has started [16, 13, 11, 2].
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• Fixed/Dynamic priority scheduling

A priority is assigned to each task in priority driven scheduling. Assigning the

priorities can be done statically or dynamically while the system is running [8, 24,

13, 16, 2].

As for the second group of real-time scheduling problems, there exist polynomial al-

gorithms which provide feasible schedules of any task set which satisfy some specific

conditions. For example any set of periodic tasks which satisfy
∑n

i=1 Ci/Pi ≤ 1 is

guaranteed to be feasibly scheduled using EDF. Recall that an optimal scheduling

algorithm is one which may fail to meet a deadline only if no other scheduling algo-

rithm can meet the deadline. Therefore, a feasible scheduling algorithm is optimal if

there is no other feasible algorithm with looser conditions. In order to prove the op-

timality of a scheduling algorithm, the feasibility conditions of the algorithm must

be known. For example, there is no dynamic-priority scheduling algorithm that

can successfully schedule a set of periodic tasks where
∑n

i=1 Ci/Pi > 1. Therefore,

EDF is an optimal algorithm.

The optimal algorithm for a real-time scheduling problem is not unique. For in-

stance, in addition to the EDF algorithm, there is another optimal dynamic-priority

scheduling algorithm, which is the least laxity first (LLF) algorithm.

• Multiprocessor/Single-processor systems

The number of available processors is one of the main factors in deciding how to

schedule a real-time system. In multiprocessor real-time systems, the scheduling

algorithms should prevent simultaneous access to shared resources and devices.

Moreover, the best strategy to reduce the communication cost should be provided

[16, 11].

Multiprocessor scheduling techniques fall into two general categories:

– Global scheduling algorithms

Global scheduling algorithms store the tasks that have arrived, but not finished

their execution, in one queue which is shared among all processors. Suppose

there exist m processors. At every moment, the m highest priority tasks of

the queue are selected for execution on the m processors using preemption

and migration if necessary [16].

– Partitioning scheduling algorithms

Partitioning scheduling algorithms partition the set of tasks such that all tasks

in a partition are assigned to the same processor. Tasks are not allowed to
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migrate, hence the multiprocessor scheduling problem is transformed to many

uniprocessor scheduling problems [16].

For systems that contain more than one processor, we not only should decide about

the appropriate scheduling algorithm, but also we have to specify the allocation al-

gorithm which assigns the tasks to the available processors. For multiprocessor

real-time systems, calculating the utilization bounds associated with (scheduling,

allocation) algorithm pairs leads us to achieving the sufficient conditions for fea-

sibly scheduling, analogous to those known for uniprocessors. This approach has

several interesting features: it allows us to carry out fast schedulability tests and

to qualify the influence of certain parameters, such as the number of processors,

on scheduling. For some algorithms, this bound considers not only the number of

processors, but also the number of the tasks and their sizes [8, 13, 16]. Global

strategies have several disadvantages as compared with the partitioning strategies.

Partitioning usually has a low scheduling overhead compared to global scheduling,

because tasks do not need to migrate across processors. Furthermore, partitioning

strategies reduce a multiprocessor scheduling problem to a set of uniprocessor ones

and hence they allow the use of well-known uniprocessor scheduling algorithms for

each processor. However, partitioning has two negative consequences. First, find-

ing an optimal assignment of tasks to processors is a bin-packing problem, which

is an NP-complete problem. Thus, tasks are usually partitioned using non-optimal

heuristics. Second, as shown in [3], task systems exist that are schedulable if and

only if tasks are not partitioned. Still, partitioning approaches are widely used

by system designers. In addition to the above approaches, we can apply hybrid

partitioning/global strategies.

• Hyper period

Typically, if tasks τ1, τ2, τ3, ..., τn have periods P1, P2, P3, ..., Pn, scheduling must be

covered for a length of time equal to the least common multiple of the periods, i.e.,

lcm(P1, P2, P3, ..., Pn), as that is the time at which each task will have an integral

number of invocations. If any of the Pi are co-primes, this length of time can be

extremely large, so where possible it is advisable to choose values of Pi that are

small multiples of a common value. We define a hyper period as the period equal to

the least common multiple of the periods P1, P2, P3, ..., Pn of the n periodic tasks.
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3 EDF scheduling

The EDF scheduling algorithm is a priority driven algorithm in which a higher priority is

assigned to the request that has an earlier deadline, and a higher priority request always

preempts a lower priority one [8, 13, 16, 11].

The following assumptions are made for the EDF algorithm.

(a) No task has any nonpreemptable section and the cost of preemption is negligible.

(b) Only processing requirements are significant; memory, I/O, and other resource

requirements are negligible.

(c) All tasks are independent; there are no precedence constraints.

(d) The tasks do not have to be periodic.

This scheduling algorithm in an example of priority driven algorithms with dynamic

priority assignment in the sense that the priority of a request is assigned as the request

arrives. Suppose each time a new ready task arrives, it is inserted into a queue of ready

tasks which is sorted by the deadlines. If sorted lists are used, the EDF algorithm takes

O((N + α)2) time in the worst case, where N is the total number of the requests in each

hyper period of n periodic tasks in the system and α is the number of aperiodic tasks.

EDF is an optimal uniprocessor scheduling algorithm. This can be proved by using

a time slice swapping techniques. Using this technique, we can show that any valid

schedule for any task set can be transformed into a valid EDF schedule [16].

It is shown in [16] that a set of periodic hard real-time tasks with relative deadlines

equal to their periods, can be feasibly scheduled by the EDF scheduling algorithm on a

uniprocessor system if and only if
∑n

i=1 ei/Pi ≤ 1 [16]. In Section 6, we discuss how to

use this fact to solve the problem.

4 The Bin Packing Problem (BPP)

The Bin Packing problem can be defined as follows. Given N objects to be placed

in bins of capacity V each, it is required to determine the minimum number of bins

to accommodate all N objects. More formally, we are asked to find a partition and

assignment of a set of objects such that a constraint is satisfied or an objective function

is minimized. In this report, we take advantage of the heuristic algorithms provided for

one-dimensional BPP.
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In computational complexity theory, the bin packing problem is a combinatorial NP-

hard problem, as observed in [1, 10, 15]. The Best Fit Decreasing (BFD) and First Fit

Decreasing (FFD) algorithms are two approximation algorithms for the problem that

use no more than (11/9)OPT + 1 bins, where OPT is the number of bins given by the

optimal solution [4]. The simpler of these, the FFD strategy, operates by first sorting

the items to be inserted in decreasing order by volume, and then by inserting each item

into the first bin in the list with sufficient remaining space. The sorting step is relatively

expensive, but without it for the Best Fit (BF) and First Fit (FF) algorithms, we only

achieve the looser bound of (17/10)OPT + 2. A more efficient version of FFD uses no

more than (71/60)OPT + 1 bins [9, 22].

5 Problem Definition

Consider a set of n hard real-time tasks T = {τ1, τ2, ..., τn}. The tasks are periodic,

independent and preemptive. Their deadlines are equal to their periods. Multiprocessing

is acceptable. The processors are identical. Migration is not allowed. Except for the

processors, there are no other shared resources in the system.

The objective is finding lower and upper bounds for the number of processors required

by the following class of algorithms:

1 A partitioning strategy is used. Therefore we consider a combination of (allocation

algorithm, scheduling algorithm) for any algorithm in this class.

2 The EDF scheduling algorithm is used on each processor.

3 Various allocation algorithms that are considered in this report share the following

common properties: Start with one processor. Take tasks one by one and decide

which of the existing processors should be assigned to the task, while sufficient con-

ditions of EDF-schedulability should be satisfied for each processor. Each allocation

algorithm adds a new processor to the system, only if there is not enough spare

capacity for the new task on the existing processors to guarantee the feasibility of

EDF-scheduling.

4 Considering items 1 and 2 above, it is guaranteed that all of the deadlines are met

by any algorithm in this class. We prove this by contradiction as follows. Given an

algorithm in the class, we assume that there exists at least one task that can not

meet its deadline. In this case, there exists at least one processor which has been

assigned to a set of tasks, including the task that can not meet its deadline, where
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the EDF algorithm has not feasibly scheduled the set of tasks on the processor.

But this is not possible, because, while assigning the processors to the tasks, the

sufficient condition of feasibly scheduling by EDF is satisfied.

6 Lower and Upper Bounds and Heuristic Algorithms

Using the partitioning strategy, it is required to have an algorithm to allocate a processor

to each task and a scheduling algorithm to schedule the tasks on each processor. In this

report, we use either the BF or FF algorithm to determine the processor which should be

assigned to each task. One might also use any other allocation algorithm which is suitable

for the allocation algorithms discussed in Section 5. For any allocation algorithm in the

defined class, a distinct priority is assigned to each task according to some mechanisms.

This is why we sort the tasks and assign a higher priority to a task with higher index

in the sorted array. After the priority assignment is made, then tasks are assigned to a

number of processors based on an algorithm which we have chosen for allocation. After

assignments have been done, for the tasks assigned to a given processor, a task with

the earliest deadline receives the highest priority. It is the priority mechanism that is

used in EFD scheduling algorithm. As mentioned earlier, we use the EDF scheduling

algorithm for each processor, because employing the EDF algorithm allows the problem

to be reducible to BPP with fixed size bins with capacity equal to one. In case we had used

the RM scheduling algorithm, the problem would have been reduced to BBP with bins of

various sizes. The EDF algorithm is an optimal uniprocessor scheduling algorithm, which

is discussed in Section 3. Our problem will be reduced to finding an appropriate efficient

algorithm that allocates the tasks to the minimum number of processors while meeting

their deadlines is guaranteed. We know that so long as the sum of the utilizations of

the tasks assigned to a processor is no greater than 1, the task set is EDF-schedulable

on the processor. Therefore, the problem reduces to making task assignments with the

property that the sum of the utilizations of the tasks assigned to a processor does not

exceed 1. In this report, we study the allocation algorithms which pick the tasks one by

one, verify EDF-schedulability to check if there is enough room for the task on one of

the existing processors. If so, we assign the task to one of the processors, depending on

the allocation algorithm, that has enough room. Otherwise, a new processor should be

added to the system to accommodate the new task.

Our contributions in this report are as follows. We derive a lower bound for the

minimum number of processors for any allocation algorithm that has the properties

discussed earlier in this section. The lower bound that is obtained in this report is very

tight and its results are very close to the results of the FFDU and BFDU algorithms (See
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Section 6.1). The minimum number of the processors required for scheduling is equal

to or larger than the proposed lower bound for the number of processors and smaller

than the best heuristic algorithm. Since we look for the algorithm with the minimum

number of processors, the best heuristic algorithm amongst the heuristic algorithms in

Section 6.1 is the one with the least guaranteed performance. Simulation results lead

to the fact that the difference between the number of processors achieved by the FFDU

algorithm and the results of an optimal algorithm is negligible.

We also find an upper bound for the number of processors required by any allocation

algorithm in our framework and with EDF-schedulability test on each processor.

Finally, we implement 12 heuristic algorithms with an EDF schedulability test. These

algorithms are various combinations of a number of well-known algorithms. By imple-

menting the heuristics, we aim to compare their simulation results with each other and

with the upper and lower bounds derived in this report.

6.1 Heuristic Algorithms

We simulate the following heuristic algorithms. The heuristic scheduling algorithms can

be categorized into two types of algorithms: the FF algorithms and the BF algorithms.

In this work, we sort the tasks in increasing or decreasing order of execution time, period,

or utilization of tasks.

• FFIE algorithm: sorts the tasks in ascending order of their execution times and

then uses the FF algorithm with EDF-schedulability.

• FFIP algorithm: sorts the tasks in ascending order of their periods and then uses

the FF algorithm with EDF-schedulability.

• FFIU algorithm: sorts the tasks in ascending order of their utilization factors and

then uses the FF algorithm with EDF-schedulability.

• FFDE algorithm: sorts the tasks in descending order of their execution times and

then uses the FF algorithm with EDF-schedulability.

• FFDP algorithm: sorts the tasks in descending order of their periods and then uses

the FF algorithm with EDF-schedulability.

• FFDU algorithm: sorts the tasks in descending order of their utilization factors

and then uses the FF algorithm with EDF-schedulability.

• BFIE algorithm: sorts the tasks in ascending order of their execution times and

then uses the BF algorithm with EDF-schedulability.
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• BFIP algorithm: sorts the tasks in ascending order of their periods and then uses

the BF algorithm with EDF-schedulability.

• BFIU algorithm: sorts the tasks in ascending order of their utilization factors and

then uses the BF algorithm with EDF-schedulability.

• BFDE algorithm: sorts the tasks in descending order of their execution times and

then uses the BF algorithm with EDF-schedulability.

• BFDP algorithm: sorts the tasks in descending order of their periods and then uses

the BF algorithm with EDF-schedulability.

• BFDU algorithm: sorts the tasks in descending order of their utilization factors

and then uses the BF algorithm with EDF-schedulability.

The BF and FF algorithms are described as follows.

The BF Algorithm: In the BF algorithm, we pick the tasks one by one from the sorted

array of the tasks, and then find the processor amongst the existing processors which has

the largest remaining capacity. We then check whether the selected processor has enough

room for the task in hand. If the chosen processor has enough room, we assign the task to

the processor. Otherwise, none of the other existing processors have enough space, and

we should add a new processor and assign the task to the new processor. We repeat the

above procedure for all of the tasks one by one. We have provided six various algorithms

of this type which are distinguishable by the order used to sort the tasks. The running

time of the BF algorithms is O(nlogn), where n is the number of hard real-time tasks.

The BF Algorithm with EDF-schedulability

1 Sort the tasks based on either descending order or ascending order of one of the

following parameters: execution time, period, or utilization factor.

2 Add one processor to the system and assign the first task to the processor

3 For all of the tasks,

– Find the processor amongst the processors available which has the most re-

maining utilization capacity.

– Check if the sum of the utilizations of the tasks assigned so far to the processor

and the utilization of the new task exceeds 1.
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∗ If not

Assign the task to the processor and add the utilization of the task to the

total utilizations of the tasks so far assigned to the processor.

∗ Otherwise, there is no processor among the existing processors that has

enough capacity for the new task.

Add a new processor, assign the task to the new processor and set the total

utilization of the tasks assigned to the processor as the utilization of the

new task.

end if

end for

4 Count the number of the processors used in the system.

The FF Algorithm: Similar to the previous algorithm, we sort the tasks based on one

of the above criteria into an array. We start with one processor. We pick the tasks one

by one from the sorted array and assign them to the recently added processor as long as

the utilization factor of the set of the tasks assigned to the processor does not exceed 1.

Once it exceeds unity, we add another processor and assign the last task, which could

not be assigned to the previous processor, to the new processor. We use the round robin

method to pick the tasks. As the previous algorithm, we have provided six various of

algorithms of this type which are distinguishable by the order used to sort the tasks. The

running time of the FF algorithms are O(nlogn), where n is the number of hard real-time

tasks. In the following algorithm, Vj is the number of tasks that so far have verified if

they can be assigned to processor j. Using Vj , we want to check if all of the unassigned

tasks have been verified for possibility of assigning them to the jth processor. TA is the

total number of tasks that are assigned during the program. The tasks and processors

are indexed by parameters i and j, respectively, in the following algorithm.

The FF Algorithm with EDF-schedulability

1 Sort the tasks based on either descending order or ascending order of one of the

following parameters: execution time, period, or utilization factor.

2 Let i = 1.

3 Add one processor to the system and assign the first task to the processor.

4 Set TA = 0.
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5 Set Vj = 1.

6 While TA < n,

– If task i has not been assigned yet,

∗ If there is enough room for task i on processor j,

· Assign task i to processor j.

· TA = TA + 1.

end if

end if

– i = i + 1.

– if i = (n + 1),

∗ i = 1.

end if

– Vj = Vj + 1.

– If Vj = n

% in this case, none of the remaining unas-

%signed tasks have the condition to be

% assigned to the current processor.

∗ Add a new processor.

end if

end while

7 Count the number of the processors used in the system.

6.2 A Lower Bound

Theorem 1: Consider a set of n periodic, independent, preemptive and hard real-time

tasks T = {τ1, τ2, ..., τn}, where their deadlines are equal to their periods. Multiprocessing

is acceptable. The processors are identical. Migration is not allowed. Except for the

processors, there are no other shared resources in the system. We have

m ≤ h,
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where h is the number of the processors which are required to guarantee that the tasks can

meet their deadlines by any algorithm, which belongs to the class of algorithms defined in

Section 5, and m = ⌈
∑n

i=1(ei/Pi)⌉, with ei and Pi being the execution time and period of

task τi.

Proof: We prove this theorem by contradiction. Assume that to the contrary the

expression m � h is true.

In other words,

h < m (1)

We consider any arbitrary set Th of the tasks that are EDF-schedulable on h proces-

sors, when we use the partitioning strategy. Therefore, Th ⊆ T , and since

∑

τj is a task on the first processor(ej/Pj) ≤ 1
∑

τj is a task on the second processor(ej/Pj) ≤ 1
∑

τj is a task on the third processor(ej/Pj) ≤ 1
...
∑

τj is a task on the hth processor(ej/Pj) ≤ 1

we have
∑

τj∈Th

(ej/Pj) ≤ h (2)

On the other hand, from the fact that h is a natural number and from (2), we conclude

that








∑

τj∈Th

(ej/Pj)









≤ h (3)

Considering m = ⌈
∑n

i=1(ei/Pi)⌉ and from (1) and (3), we conclude that









∑

τj∈Th

(ej/Pj)









<

⌈

n
∑

i=1

(ei/Pi)

⌉

(4)

Therefore,

Th 6= T. (5)

From (5) and Th ⊆ T , we conclude that Th ⊂ T . Therefore, all of the tasks in T are

not EDF-schedulable on h processors. Hence, m ≤ h.
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6.3 An Upper Bound

Theorem 2: Consider a set of n periodic, independent, preemptive and hard real-time

tasks T = {τ1, τ2, ..., τn}, where their deadlines are equal to their periods. Multiprocessing

is acceptable. The processors are identical. Migration is not allowed. Except for the

processors, there are no other shared resources in the system. We have

h < 2m,

where h is the number of the processors which are required to guarantee that the tasks can

meet their deadlines by the algorithm, which belongs to the class of algorithms defined in

Section 5, and m = ⌈
∑n

i=1(ei/Pi)⌉, where ei and Pi are the execution time and period of

a task τi, respectively.

Proof: Suppose that the tasks have been assigned on h processors via one of the

algorithms that satisfy the assumptions of the problem.

The occupied portion of the kth processor is given by

Uk =
∑

τj is a task on the kth processor

ej

Pj

(6)

and the unoccupied portion of the kth processor is therefore

Rk = 1 − Uk. (7)

We define R and U as follows.

R =
∑

τj is a task assigned on one of the h processors

Rj (8)

U =
∑

τj is a task assigned on one of the h processors

Uj (9)

From (6) and (9), we obtain

U =

n
∑

i=1

(ei/Pi). (10)

Referring to the assumptions of the theorem, we have m = ⌈
∑n

i=1(ei/Pi)⌉. Therefore,

from (10), we obtain

m = ⌈U⌉. (11)

Having U ≤ ⌈U⌉ and from (11), we have the following inequality:
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U ≤ m. (12)

On the other hand, from (7), (8) and (9), we conclude

R + U = h. (13)

For any combination of (allocation algorithm, scheduling algorithm) of the class of

algorithms considered in this report (refer to Section 6), we have

Uj > Ri, (14)

where j > i. Otherwise, there was enough space for the tasks, which are currently

assigned to the jth processor, on the ith processor and it was not required to add the jth

processor to the system.

From (14), we can say that Uh > R1. Therefore, we have

1 − Uh < 1 − R1. (15)

Referring to (15) and (7), we obtain that

Rh < U1. (16)

From (16) and (14), we conclude the following set of inequalities:



























U1 > Rh

U2 > R1

U3 > R2

...

Uh > Rh−1

(17)

From (17), we conclude

R1 + R2 + · · ·+ Rh < U1 + U2 + · · · + Uh (18)

Considering (8), (9) and (18), we have

R < U (19)

From (19), (12), and (13), we conclude that h < 2m.

17



7 Simulation Results

We have implemented the 12 algorithms discussed in Section 6.1 to compare them with

the upper and lower bounds provided in this report. Simulation conditions are as follows.

Each set of data includes n hard real-time tasks. For each task, we randomly generate

ei and pi, which are the execution time and period, respectively. While generating the

data sets, we have considered the relation ei < pi for each task. Then, we generate 20

different data sets with size n. We next execute each of the aforementioned algorithms,

namely the 12 heuristic algorithms and lower and upper bounds, on each data set. We

compute the average of the aggregations of the number of the processors of the 20 sim-

ulations for data set with size n. The simulation is done for the algorithms for n = 1 to

500, with step 10.

Each heuristic algorithm allocates and schedules the tasks on a number of proces-

sors and computes the number of processors required by the algorithm. Lower and upper

bounds are computed based on Theorem 1 and Theorem 2 derived in this report. Simula-

tion results are provided in Figure 1. As expected, the results of the heuristic algorithms

are between the upper and the lower bounds. We observe in Figure 1 that the FFDU

and then BFDU algorithms have the closest outputs to the lower bound. The optimal

solution lies between the lower bound and the FFDU. We also observe that the lower

bound is very tight and the results of both of the FFDU and FDBU algorithms are very

close to the optimal solution. For instance, it is shown in Figure 2 that for 20 sets of

n = 350 tasks, the average of the lower bound for the required processors is equal to 133,

where the FFDU and BFDU algorithms return 133.5 and 134 processors on the average,

respectively. The optimal value is in the range of 133 to 134 processors. As we observe,

the difference is negligible. In fact, the number of processors that are found by the lower

bound are very close to the numbers found by the optimal algorithm. The running time

of the lower bound is O(n).

Moreover, the FFDU algorithm has polynomial, as opposed to exponential, growth

in the number of tasks. In other words, it assigns a set of hard real-time tasks to a set

of processors in polynomial time and the number of processors, which is required by this

algorithm, is almost equal to minimum. As already stated, an efficient version of FFD

uses no more than (71/60)OPT + 1 bins in BPP [9, 22]. This ratio states the guaran-

teed performance of the approximation algorithm. Comparing the numerical results of

lower bound and the number of processors required by FFDU algorithm and consider-

ing the tightness of the lower bound, we observe that, on the average, the difference of

performance of FFDU and the optimal algorithm is negligible.

Calculating the upper bound, we find out that by a combination of any allocation
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algorithm (according to the definition given in this report) and the EDF scheduling

algorithm, we require no more than 2 ⌈
∑n

i=1(ei/Pi)⌉ processors to schedule the set of

hard real-time tasks.
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Figure 1: Number of processors required for scheduling n real-time tasks by various

EDF-based partitioning algorithms
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Figure 2: Enlarged version of a portion of Figure 1
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8 Conclusions

In this work, we studied the problem of scheduling a set of independent periodic hard

real-time tasks on the minimum number of identical processors such that the timing

constraints of the events are satisfied. We focused on the partitioning strategy and when

the EDF scheduling algorithm schedules the tasks assigned to each processor. Therefore,

we looked for an appropriate allocation algorithm to assign the tasks to as few processors

as possible, while the EDF-schedulablity test is satisfied on each processor. The problem

is reducible to the BPP problem. Considering the fact that the problem is NP-hard,

there is not any known polynomial algorithm to solve the problem. Since there exists

some approximation heuristic algorithms for BPP, we can take advantage of the existing

theorems for our problem.

In this report, we have derived an upper and a lower bound for the number of pro-

cessors of any combination of (allocation, EDF scheduling) algorithm, where allocation

algorithms are fit into the frame we have defined in Section 5. We implemented 12 heuris-

tic algorithms and as we expected, the number of processors required by the heuristic

algorithms lie between the bounds. Since we are looking for the algorithm that uses the

minimum number of processors required, the optimal algorithm should be between the

lower bound and the best approximation algorithm (the best algorithm among the 12

heuristic algorithms discussed in Section 4 are enough for our purposes). Among the 12

algorithms, the FFDU algorithm is the best and therefore, the optimal solution should

be placed between the lower bound and the number of processors given by the FFDU

algorithm. The lower bound is tight and the FFDU algorithm has a small guaranteed

performance as compared with the optimal algorithm. As noted in the numerical results,

the difference between the average number of processors from the FFDU algorithm and

the lower bound is minimal. In fact, since the lower bound is tight, the difference between

the results of the optimal algorithm and FFDU algorithm is negligible.

We have also derived an upper bound for the number of processors. This upper bound

is observed to satisfy the properties described in Theorem 2.
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