
Technical Report Number 2007-536

Penalty Minimization in Scheduling a Set of Soft

Real-Time Tasks∗

Arezou Mohammadi and Selim G. Akl

School of Computing

Queen’s University

Kingston, Ontario, Canada K7L 3N6

E-mail:{arezoum, akl}@cs.queensu.ca

June 13, 2007

Abstract

A soft real-time task is one whose completion time is recommended by a specific

deadline. However, should the deadline be missed, such a task is not considered to

have failed; only the later it finishes, the higher the penalty that is paid. For a set

of soft real-time tasks that are to be scheduled on a single machine under overload

conditions, our objective is to minimize the total penalty paid. This optimization

problem is NP-hard. In this paper, we prove a number of properties of any optimal

scheduling algorithm for the problem. Then, we provide a number of heuristic

algorithms which satisfy the properties obtained herein. Numerical simulations are

presented to compare the penalty to be paid by the algorithms. We also determine

an upper bound for the optimal solution to the problem. Numerical results that

compare the upper bound with the optimal solution and the heuristic algorithms

are provided.

Keywords: Soft Real-Time Tasks, Optimal Scheduling Algorithm, Upper Bound,

Heuristic Algorithms, Overload Conditions, Penalty Minimization.

∗This work was supported in part by Natural Sciences and Engineering Research Council (NSERC)

of Canada.

1



1 Introduction

The purpose of a real-time system is to produce a response within a specified time-

frame. In other words, for a real-time system not only the logical correctness of the

system should be satisfied, but also it is required to fulfill the temporal constraints of the

system. Although missing deadlines is not desirable in a real-time system, soft real-time

tasks could miss some deadlines and the system will still work correctly while certain

penalties will have to be paid for the deadlines missed. In this paper, we focus our

attention on scheduling of a set of soft real-time tasks.

The problem under study in this paper occurs in overload conditions where it can not

be guaranteed that all tasks can meet their deadlines. In this case, it is unavoidable to

miss some deadlines, while we aim to minimize the penalty that should be paid.

Consider a system that consists of a set of soft real-time tasks, T = {τ1, τ2, ..., τn}.

Task τi is a soft real-time task, meaning that the later the task τi finishes its computation

after its deadline, the more penalty it pays. A release time ri, an execution time ei and

a deadline di are given for each task τi ∈ T (see Section 2 for the definition of these

terms). The finishing time of each task τi ∈ T , denoted by Fi, depends on the scheduling

algorithm which is used to schedule the execution of the tasks [19]. Suppose that the

tasks are scheduled by some scheduling algorithm A. A penalty function ϕ(τi) is defined

for the task. If Fi ≤ di, ϕ(τi) = 0; otherwise ϕ(τi) > 0. The value of ϕ(τi) is a non-

decreasing function of Fi − di. The penalty function of a given scheduling algorithm A

for a given set T is denoted by ϕ(T ) =
∑l

i=1
ϕ(τi).

The fact known about our problem, as is true for most of the problems in this class,

is that it is NP-hard [11]. Recently, there has been a lot of progress in the design of

approximation algorithms for a variety of scheduling problems in the aforementioned

class [12, 2, 21, 3, 1, 7, 8, 14]. Also, in the real-time literature, several scheduling

algorithms have been proposed to deal with overloads. For instance, one may refer to [6,

Chapter 2] and the references therein. A relevant and recent work is [20], in which the

problem is studied for the special case of non-preemptive tasks (see Section 2). In this

paper, we address a more general problem; namely, the scheduling of a set of preemptive

soft real-time tasks (see Section 2) where the objective function is to minimize the total

penalties that should be paid for the deadlines missed.

In this paper, we formally define the problem and prove a number of properties of

any optimal scheduling algorithm for the problem. Then, we derive a number of heuristic

algorithms which hold the properties obtained herein. The heuristic algorithms differ in

the way that the tasks priorities are assigned. These algorithms assign priorities by using

functions of task execution times, penalty factors or deadlines. We present simulation

2



results and compare the performances of the proposed algorithms. Finally, we derive a

tight upper bound for the optimal solution. Since the running time of finding an optimal

solution grows exponentially with the number of tasks, we compare the upper bound

with the optimal solution for small sets of soft real-time tasks. We also compare the

upper bound with the heuristic algorithms provided in the paper.

The remainder of this paper is organized as follows. We introduce the terminology

in Section 2. In Section 3, we formally define the problem to be solved. In Section 4,

we derive and prove some of the properties of any optimal scheduling algorithm for the

problem. Then, in Section 5, we provide a class of heuristic algorithms, present simulation

results and compare the performance of the proposed algorithms. In Section 6, we find

an upper bound for the objective function, present the simulation results and compare

the upper bound with the optimal solution. We also compare the upper bound with the

best heuristic algorithm provided in the paper. Section 7 contains the conclusions.

2 Terminology

For a given set of tasks the general scheduling problem asks for an order according to

which the tasks are to be executed such that various constraints are satisfied. For a

given set of real-time tasks, we want to devise a feasible allocation/schedule to satisfy

timing constraints. The release time, the deadline and the execution time of the tasks are

some of the parameters that should be considered when scheduling tasks on a real-time

system. The timing properties of a given task τj , where τj ∈ T , refer to the following

[16, 18, 22, 9]:

• Release time (or ready time (rj)): Time at which the task is ready for processing.

• Deadline (dj): Time by which execution of the task should be completed.

• Completion time (Cj): Maximum time taken to complete the task, after the task

is started.

• Finishing time (Fj): Time at which the task is finished: Fj = Cj + rj .

• Execution time (ej): Time taken without interruption to complete the task, after

the task is released.

• priority function (fa,j): Priority of task τj is defined as relative urgency of the task.

In this paper, we derive a number of heuristic algorithms which differ in the way

that the tasks priorities are assigned. For each algorithm, we consider a priority

3



function fa,j, where a is the name of the algorithm and τj is a task in the task set

that should be scheduled by the algorithm. In other words, the priority function is

the relative urgency of a task in a given algorithm.

• Penalty factor (Pj): Penalty that should be paid per time unit after the deadline

of task τi.

• Makespan factor (αj): Ratio of Cj to ej , i.e., αj = Cj/ej , where ej and Cj are

respectively the execution time of task τj and the completion time of the task in

the schedule. This factor depends on schedule.

Other issues to be considered in real-time scheduling are as follows.

• Periodic/Aperiodic/Sporadic tasks

Periodic real-time tasks are activated (released) regularly at fixed rates (periods).

A majority of sensory processing is periodic in nature. Aperiodic real-time tasks

are activated irregularly at some unknown and possibly unbounded rate. The time

constraint is usually a deadline. Sporadic real-time tasks are activated irregularly

with some known bounded rate. The bounded rate is characterized by a minimum

inter-arrival period; that is, a minimum interval of time between two successive

activations. The time constraint is usually a deadline [17, 15, 13, 5].

• Preemptive/Non-preemptive tasks

In some real-time scheduling algorithms, a task can be preempted if another task

of higher priority becomes ready. In contrast, the execution of a non-preemptive

task should be completed without interruption once it is started [17, 16, 13, 5].

• Fixed/Dynamic priority tasks

In priority driven scheduling, a priority is assigned to each task. Assigning the

priorities can be done statically or dynamically while the system is running [10, 22,

16, 17, 5].

3 Problem Definition

Consider a set of n soft real-time tasks. There exists one processor. The tasks are

preemptive, independent and aperiodic. For each task τi, we assume that ri, ei, Pi, and

di, which are respectively the release time, execution time, penalty factor and deadline

of the task, are known.

4



We define the penalty function of task τi as

ϕ(τi) = (Fi − di)
+Pi, (1)

where Fi = ri + αiei is the finishing time of task τi, αi is the makespan factor (αi ≥ 1),

and

(Fi − di)
+ =

{

Fi − di if Fi − di > 0

0 otherwise.

A slot is the smallest time unit.

The objective is to minimize
∑n

i=1
ϕ(τi). Therefore, we can formally express the

objective function as follows. Let us define

xi,t =







1 if the processor is assigned to task τi

at time slot t

0 otherwise

Our goal is to minimize the objective function

n
∑

i=1

(ri + αiei − di)
+Pi, (2)

subject to the following conditions

n
∑

i=1

xi,t = 1,

which means only one processor is working at any given time t, and

∞
∑

t=1

xi,t = ei,

meaning that the total time slots assigned to any given task i over time is equal to its

execution time.

As mentioned earlier, the problem defined in this section is known to be NP-hard.

Thus, the only known algorithm for obtaining an optimal schedule requires time that

grows exponentially with the number of tasks. It is beneficial to know the behavior

of any optimal scheduling algorithm when the optimal order of priorities is provided.

Knowing a number of properties of any optimal schedule for the problem will lead us to

designing heuristic algorithms which in some properties behave the same as the optimal

schedule. Also, it is desired to find an upper bound for the objective function which,

unlike the optimal algorithm, it would be computationally feasible. The upper bound

may also be useful for design and comparison purposes.

5



τi idle τi

Fi

� -� -� -

Figure 1: Status of processor in the proof of Lemma 1.

4 Properties of Optimal Solution

In this section, we prove a number of properties for any optimal schedule of the problem

min
∑n

i=1
(ri +αiei − di)

+Pi. For all of the following theorems we have one processor and

a set of soft real-time tasks.

Lemma 1: In an optimal schedule, the processor is not idle as long as there exists a

task to be executed.

Proof: We prove this lemma by contradiction. Suppose that in a given optimal

schedule the processor is idle while all or a part of task τi is ready to be executed (see

Figure 1).

There exists at least one other schedule which has a smaller value for the finishing

time of task τi (i.e., F ∗

i ≤ Fi, where F ∗

i denotes the new finishing time of task τi) and

the finishing times of the other tasks in the system remain unchanged. This schedule

will result in a smaller value for
∑n

i=1
(Fi − di)

+Pi. The new schedule is achieved just by

moving the starting point of the remaining part of task τi to the starting point of the

idle time. This replacement does not affect the finishing times of the other tasks that

are possibly in the system (see Figure 2). Therefore, the first algorithm (Figure 1) is not

optimal. �

τi idle
F

∗

i

� -� -

Figure 2: Status of processor for an optimal schedule in the proof of Lemma 1.

From the above lemma, it follows that if there is a task to be executed, the processor

cannot be idle. In other words, if the processor is idle in any optimal schedule for our

problem, there is no task to be executed during that time interval. Considering the

fact that idle times are time intervals during which there is no task to be executed, it

is enough that we prove the following theorems for time intervals during which there is

no idle times (henceforth referred to as task-bursts). Since any schedule, including the

optimal schedules, is a combination of idle times and task-bursts, the following theorems

hold for any optimal schedule.

6



If the priorities of the tasks for the optimal scheduling are given, we could use the

following theorems to achieve an optimal schedule whose running time grows polynomially

with the number of tasks. Unfortunately, we do not have the priorities. However, we

can define the concept of priority for any optimal schedule for the problem studied in

this paper as follows. Suppose that task τj arrives while the processor is executing task

τi. Task τj has a higher priority than task τi if preempting τi by task τj will result in

a smaller value in
∑n

i=1
(Fi − di)

+Pi. Therefore, a task with a higher priority than the

current task will preempt the current task. In the following theorem, we prove that task

τj preempts τi immediately after it arrives.

Theorem 1: Suppose that task τi is currently being executed by the processor. In

an optimal schedule, when a higher-priority task τj arrives, task τi will be immediately

preempted and task τj will begin execution.

Proof: We prove the theorem by contradiction. Suppose that in the optimal schedule,

task τi can be preempted a while after task τj arrives (see Figure 3).

6τi τj τi

Fj

6

rj

� -� -� -

Figure 3: Status of processor in the proof of Theorem 1.

Because there exists at least one other schedule that has a smaller value for the

finishing time of task τj (i.e., F ∗

j ≤ Fj) and the finishing time of the other tasks in the

system remain unchanged, this schedule will result in a smaller value for
∑n

i=1
(Fi−di)

+Pi

(see Figure 4 for an example). �

6τi τj τi

F
∗

j

6

rj Fj

� -� -� -

Figure 4: Status of processor for a more efficient schedule in the proof of Theorem 1.

Theorem 2: In an optimal schedule, if task τi is preempted by another task τj and the

execution of task τj is not finished yet, task τj can not be preempted by task τi

Proof: We prove the theorem by contradiction. Suppose that in an optimal schedule,

task τj can be preempted by task τi (see Figure 5).

On the other hand, there exists at least one other schedule that has a smaller value

for the finishing time of task τj (i.e., F ∗

j ≤ Fj) and the finishing time of the other tasks

7



6

ri

6

rj

6

Fj

6

Fi

τi τj τi τj τi� -� -� -� -� -

Figure 5: Task preemption in the proof of Theorem 2.

in the system remain unchanged. The new schedule will result in a smaller value for
∑n

i=1
(Fi − di)

+Pi (see Figure 6). �

6

ri

6

rj

6

F
∗

j

6

Fi

τi τj τi

Fj

� -� -� -

Figure 6: Example of a more efficient schedule for the proof of Theorem 2.

Theorem 3: In an optimal schedule, a task can not be preempted more than once by

another task.

Proof: This is a direct consequence of Theorem 3. �

5 Heuristic Algorithms

5.1 Algorithms Description

Although we can not find an optimal schedule in polynomial time, we have developed

a set of heuristic algorithms for which the properties discussed in the theorems hold.

Class of algorithms, which will hereafter be referred to as algorithm S, represents a set

of algorithms which are the same, except in their priority function. For each algorithm

in the class, we consider a priority function fa,j , where a is the name of the algorithm

and τj is a task in the task set that should be scheduled by the algorithm (refer to Table

1). We perform the scheduling based on the priority function. For an algorithm a and a

pair of tasks τh and τj with respective priority functions fa,h and fa,j, by fa,j ≺ fa,h, we

mean that task τh has a higher priority than task τj .

The priority function for each algorithm in the aforementioned class of algorithms can

be found in Table 1. One of the data structures, which we consider for each algorithm,

is a matrix called Priorityq. Priorityq contains all of the tasks that have arrived and

either so far have not had a chance to be executed or preempted by a higher-priority

task. The matrix is always kept sorted based on the priority of the tasks. For each task

8



in the Priorityq we have the following information: release time, remaining execution

time, penalty factor, deadline. An arbitrary algorithm a in the class of algorithms S has

the following steps:

• When a new task τi arrives, we check if the processor is idle or busy. If it is idle,

we load the task on it. Otherwise, we verify if the execution of the current task

(τj) on the processor is finished.

If execution of τj is finished, its termination time is computed. Then, the priority

of task τi is compared with the task located on the top of the Priorityq matrix. If

the priority of task τi is higher, the processor is allowed to execute τi. Otherwise,

the position of task τi in Priorityq matrix is found and the task that has the highest

priority in Priorityq matrix is taken.

If execution of τj has not been finished yet, we check if fa,j ≺ fa,i, where τj is the

task that is running currently by the processor.

• If fa,j ≺ fa,i, then τi preempts τj . Task τj should be inserted into Priorityq

at the appropriate position. Tasks are sorted in Priorityq based on their

priorities. The position of task τj can be found by comparing its priority with

the priority of the tasks in Priorityq.

• If fa,i ≺ fa,j then the processor should continue executing task τj . Also, task

τi should be inserted into its appropriate position in array Priorityq.

• When there in no other task to arrive, the algorithm computes the termination

time of the current task. Then the task which is on the top of array Priorityq

is popped up and its termination time is computed. The process continues until

Priorityq becomes empty.

• Finally, the algorithm computes
n

∑

i=1

(Fi − di)
+Pi,

where Fi is the finishing time of task τi.

As mentioned earlier, we consider different priority functions each of which is used

by one algorithm. For example, the priority function used in algorithm S1 is diPi (see

Table 1). This means the priority of task τi is higher than τj if djPj < diPi. The priority

function used for each algorithm in this paper can be found in Table 1. All of the above

algorithms are different versions of algorithm S, which we discussed earlier.

The running time of the algorithm is O(nlogn), where n is the number of soft real-time

tasks.

9



Table 1: Priority functions considered for each algorithm
Name of Algorithm Priority Function

S1 diPi

S2 1/(diPi)

S3 di

S4 1/di

S5 ei

S6 1/ei

S7 ei/Pi

S8 Pi/ei

S9 di/Pi

S10 Pi/di

S11 Pi

S12 1/Pi

S13 eiPi

S14 1/(eiPi)

5.2 Simulation Results: Comparing Algorithms

We have implemented the algorithms for simulation purposes. Simulation conditions are

as follows.

Each set of data includes n soft real-time tasks. For each task, we randomly generate

ri, ei, di and Pi, which are the release time, execution time, deadline, and penalty factor,

respectively. When randomly generating di, the condition that ei + ri ≤ di should hold.

We generate 20 different data sets with size n. We execute each of the aforemen-

tioned algorithms on each data set. We compute the average of the aggregations of the

termination times of the 20 simulations for data set with size n. The simulation is done

for the algorithms for n = 1 to 500, with step 10.

Each algorithm computes
n

∑

i=1

(Fi − di)
+Pi,

where Fi is the finishing time of task τi.

As mentioned earlier, the heuristic algorithms diverge in the way that the task pri-

orities are assigned. We observe in Figure 7 that in the algorithms where the priority

assigned to each task is in non-decreasing order of Pi, non-increasing order of ei, or non-

10



increasing order of di, the total penalty to be paid is decreased. Algorithms S3 and S4 are

those which assign the priority to each task in non-decreasing and non-increasing order

of di, respectively. As a matter of fact, S4 is the Earliest Deadline First (EDF) algorithm

[17]. A scheduler for a set of tasks is said to be feasible if every execution of the program

meets all its deadlines. It is shown in [17] that on uni-processor systems, if the EDF

algorithm cannot feasibly schedule a task set on a processor, there is no other scheduling

algorithm that can do so. However, we study the problem under overload conditions.

Therefore, there is no algorithm that can feasibly schedule the task set. As we observe in

Figure 7, there are better algorithms as compared with S4. As represented in the figure

the best performance belongs to algorithm S8 whose priority function is in non-decreasing

order of Pi/ei. The optimal solution is smaller than the output of algorithm S8.

One may suggest to derive an algorithm whose priority function is in non-decreasing

order of Pi/(eidi). We refer to the new algorithm as S15. In Figure 8, we observe that

the results of S15 is not better than S8.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18
x 10

8

Number of tasks

Pe
na

lty
 to

 b
e 

Pa
id

S7
S9
S5
S12
S2
S3
S13
S14
S1
S4
S11
S6
S10
S8

Figure 7: Comparing different priority functions

6 An Upper Bound

6.1 Deriving an Upper Bound

We observe, in Figure 7, that algorithm S8 has the best solution as compared with the

other algorithms discussed in Chapter 5. In other words, when the number of tasks

grows, the penalty that should be paid by the schedule provided by the S8 algorithm is

11



0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
x 10

8

Number of tasks

Pe
na

lty
 to

 b
e 

Pa
id

S8
S15

Figure 8: Comparing S8 and S15

smaller than the other algorithms. The priority assigned to each task in algorithm S8

is non-decreasing in Pi/ei. The optimal solution should perform equally or better than

algorithm S8. Therefore, we take the priority rule of algorithm S8 to find the best upper

bound on penalty amongst the heuristic algorithms in Chapter 5. As a matter of fact,

corresponding to each heuristic algorithm in this paper, we can find an upper bound for

the problem. Each of the upper bounds can be computed in O(n2) time, where n is the

the number of tasks.

We find the upper bound as follows. As mentioned in Section 2, Ci = αiei is maximum

time taken to complete the task, after the task is started. Therefore,

αiei = ei +
n

∑

k=1,
Pi/ei<Pk/ek,rk<ri<Fk

ek +
n

∑

l=1,
Pi/ei<Pl/el,ri<rl<Fi

el, (3)

where τk is any task which has arrived before τi, has a higher priority than τi, and has not

been finished when τi arrives, and τl is any task which arrives after τi and has a higher

priority than τi, and finishes before Fi. From Theorem 3, recall that a task cannot be

preempted more than once by another task.

It can be verified that

n
∑

k=1,
Pi/ei<Pk/ek,rk<ri<Fk

ek +

n
∑

k=1,
Pi/ei<Pk/ek,ri<rk<Fi

ek

12



≤
n

∑

j=1,
Pi/ei<Pj/ej

ej . (4)

Therefore, from (3) and (4), we obtain the following inequality

αiei ≤ ei +
n

∑

j=1,
Pi/ei<Pj/ej

ej.

Therefore, we conclude that
n

∑

i=1

(ri + αiei − di)
+Pi

≤
n

∑

i=1






ri + ei +

n
∑

j=1,
Pi/ei<Pj/ej

ej − di







+

Pi.

We hence obtain the following upper bound for the optimal penalty function

min
n

∑

i=1

(ri + αiei − di)
+Pi

≤

n
∑

i=1






ri + ei +

n
∑

j=1,
Pi/ei<Pj/ej

ej − di







+

Pi. (5)

Note on the right hand side of (5) that all of the parameters in this upper bound are

known before scheduling and it is not needed to run a scheduling algorithm to find them.

Also, the upper bound can be calculated in O(n2) time, where n is the number of tasks,

while finding min
∑n

i=1
(ri + αiei − di)

+Pi is an NP-hard problem.

We need to find the optimal solution to compare it with the results of the upper bound

and do not claim that the following algorithm is the best possible optimal algorithm for

the problem. In order to find the optimal solution, we use the following steps: we find

all of the n! possible permutations of order of priorities, which are assigned to a set

of n soft realtime tasks. Then, we call algorithm A for any individual permutation of

priorities, which computes Σn
i=1(Fi − di)

+Pi for each of them separately. Finally, we find

the minimum of Σn
i=1(Fi −di)

+Pi that corresponds to the optimal schedule. The running

time of the optimal scheduling algorithm proposed in this section is O(n!).

13



6.2 Simulation Results: The Upper Bound

We have implemented the optimal algorithm and computed the upper bound for n =

1, 2, · · · , 8 for simulation purposes and comparison. Simulation conditions in this section

are the same as those used in Section 5.2, except that the simulation is done for the

algorithms for n = 1 to 8.

The optimal algorithm finds min Σn
i=1(Fi − di)

+Pi, where Fi is the finishing time of

task τi. Figure 9 compares the results of the simulations by plotting the penalty to be

paid versus the number of tasks.

As mentioned in Section 5.2, for any given task τi, di is randomly generated under

the condition that ei + ri ≤ di holds. When there exists only one task to be scheduled

on the processor, there is no possibility to miss the deadline of the task. Therefore, the

upper bound and the optimal value of the penalty to be paid are zero. In other words,

the upper bound coincides with the optimal solution at n = 1. When there exists only

one task to be scheduled, the upper bound and the optimal value of the penalty are not

shown in the logarithmic figure (Figure 9). In general, we may have a set of one or more

tasks that can be feasibly scheduled by some algorithms on the processor without missing

any deadlines. In this case, the penalty to be paid by the algorithm is equal to zero.

Also, we observe that the ratio of the upper bound to the optimal solution is less

than 1.09. We have also computed and plotted, in Figure 10, the upper bound for the

penalty to be paid versus the number of tasks for n = 1, 2, · · · , 500. Note that while it is

computationally infeasible to find the optimal penalty for a large number of tasks, our

upper bound can be easily calculated in a polynomial time.

1 2 3 4 5 6 7 8
2

2.5

3

3.5

4

4.5

5

5.5

Number of tasks

lo
g 10

(p
en

al
ty

)

Upper bound
Optimal schedule

Figure 9: The total penalty of the optimal solution and the upper bound in (5).

14



0 50 100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

Number of tasks

lo
g 10

(p
en

al
ty

)

Upper bound

Figure 10: The upper bound of the total penalty for a large number of tasks.

We have compared the upper bound with the algorithm S8. As we observe in Figure

11, the upper bound of the optimal penalty to be paid is smaller than the penalty paid

by algorithm S8. However, the upper bound just determines an upper bound for the

penalty to be paid by the optimal solution and it does not determine a schedule.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7
x 10

8

Number of tasks

Pe
na

lty

Upper bound
S8

Figure 11: Comparing the upper bound of the total penalty and S8.

15



7 Conclusions

In this paper, we study the problem of scheduling a a set of soft real-time tasks under

overload conditions on a single processor, where our objective is to minimize the total

penalty paid. Since the problem is NP-hard, it is not known whether an optimal schedule

can be found in polynomial time. In spite of that, we are interested to know the behavior

of any optimal algorithm for the problem. Hence, we prove a number of properties of any

optimal scheduling algorithm for the problem. Then, we provide a number of heuristic

algorithms which satisfy the properties obtained herein. The heuristic algorithms differ

in the way that the tasks priorities are assigned. We compare the penalty to be paid by

various algorithms derived in this paper. We observe that in the algorithms where the

priority assigned to each task is non-decreasing in Pi, we pay a smaller total penalty as

compared with the algorithms whose priority assignment is performed inversely. Sim-

ilarly, we pay a smaller total penalty for the algorithms whose priority assignment is

non-increasing in ei or non-increasing in di, as compared with the algorithms whose

priority assignment is performed inversely.

We conclude from the simulation results that algorithm S8 has the best solution as

compared with the other algorithms discussed in this paper. The priority assigned to

each task in algorithm S8 is non-decreasing in Pi/ei. The optimal solution should be

equal to or smaller than the output of algorithm S8. We try another heuristic algorithm

named S15.

We also provide a tight upper bound for the objective function. The running time of

computing the upper bound is O(n2), where n is the number of tasks. Therefore, it is

feasible to compute the upper bound for a set of large real-time tasks in a short time.

In order to determine the upper bound, we select the priority function of an algorithm

which has the best solution as compared with the other algorithms.

An optimal scheduling algorithm is given in the paper to compare the penalty to

be paid by the optimal solutions and its upper bound. The optimal algorithm grows

exponentially with the number of tasks. Therefore, the comparison among the upper

bound is done for small sets of real-time tasks.

The upper bound derived here is closer to the optimal as compared with even the best

heuristic algorithm provided in this paper. However, the upper bound does not provide

a schedule. Therefore, in practical problems, where we have to provide a schedule,

algorithm S8 is recommended.

Future work may include computing the ratio of our upper bound to the optimal

solution. Moreover, one may study finding a lower bound. For a given set of real-time

tasks, considering the fact that the problem is NP-hard, it is not known whether an

16



optimal schedule can be found in polynomial time. However, it would be worthy if one

can model the problem as a Linear Programming (LP) problem. In this case, some

polynomial time algorithms, such as those that lie into the category of the Interior Point

method [4], can be applied. These algorithms can find the value of the total penalties of

the optimal solution which grows in polynomial time with the number of constrains of

the LP problem.

References

[1] J. P. M. Arnaout and Gh. Rabadi, “Minimizing the toal weighted completion time on

unrelated parallel machines with stochastic times,” Proceedings of Simulation Con-

ference, 2005, December 4-7, 2005.

[2] I. D. Baev, W. M. Meleis, and A. Eichenberger , “An experimental study of algorithms

for weighted completion time scheduling,” Algorithmica, Vol. 33, No. 1, pp. 34-51,

2002.

[3] I. D. Baev, W. M. Meleis, and A. Eichenberger, “Algorithms for total weighted com-

pletion time scheduling,” Proceedings of the tenth annual ACM-SIAM symposium on

Discrete algorithms, Symposium on Discrete Algorithms, pp. 852-853, January 17-19,

1999, Baltimore, Maryland, USA.

[4] D. Bertsimas and J. N. Tsitsiklis , Introduction to linear optimization, Athena Scien-

tific, February 1997.

[5] G. C. Buttazzo, Hard Real-Time Computing Systems: predictable scheduling algo-

rithms and applications, Springer, September 2006.

[6] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccomo “Soft Real-Time Systems, Pre-

dictability vs. Efficiency, ” Springer, 2005, NY, USA.

[7] C. Chekuri and R. Motwani, “Precedence constrained scheduling to minimize

weighted completion time on a single machine,” Discrete Applied Mathematics,

Vol. 98, pp. 29-39, 1999.

[8] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, “Approximation techniques for

average completion time scheduling,” SIAM Journal on Computing, Vol. 31, No. 1,

pp. 146-166, 2001.

17



[9] W. Fornaciari, P. di Milano, Real-time operating systems scheduling lecturer, www.elet

elet.polimi polimi.it/ fornacia it/ fornacia.

[10] K. Frazer, Real-time operating system scheduling algorithms, 1997.

[11] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to the

theory of NP-completeness,” W. H. Freeman, January 15, 1979.

[12] M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang, “Single

machine scheduling with release dates,” 2001.

[13] W. A. Halang and A. D. Stoyenko, Real time computing, NATO ASI Series, Series

F: Computer and Systems Sciences, Volume 127, Springer-Verlag company, 1994.

[14] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, “Scheduling to minimize average

completion time: off-line and on-line approximation algorithms,” Mathematics of

Operations Research, Vol. 22, pp. 513-544, August 1997.

[15] D. Isovic and G. Fohler, Efficient scheduling of sporadic, aperiodic and periodic

tasks with complex constraints, in Proceedings of the 21st IEEE RTSS, Florida, USA,

November, 2000.

[16] M. Joseph, Real-time systems: specification, verification and analysis, Prentice Hall,

1996.

[17] C. M. Krishna and K. G. Shin, Real-time systems, MIT Press and McGraw-Hill

Company, 1997.

[18] P. A. Laplante, Real-time systems design and analysis, an engineer handbook, IEEE

Computer Society, IEEE Press, 1993.

[19] A. Mohammadi and S. Akl, Scheduling algorithms for real-time systems, Technical

Report 2005-499, School of Computing, Queen’s University, 2005.

[20] M. W. P. Savelsbergh, R. N. Uma, and J. Wein, “An experimental study of LP-based

approximation algorithms for scheduling problems,” INFORMS Journal of Comput-

ing, Vol. 17, No. 1, pp. 123-136, Winter 2005.

[21] M. Skutella, “List scheduling in order of alpha-points on a single machine,” in Ef-

ficient Approximation and on-line algorithms, editted by E. Bampis, K. Jansen and

C. Kenyon, 2002.

18



[22] J. A. Stankovic and K. Ramamritham, Tutorial on hard real-time systems, IEEE

Computer Society Press, 1988.

19


