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Abstract

Quantum key distribution algorithms use a quantum communication chan-

nel with quantum information and a classical communication channel for

binary information. The classical channel, in all algorithms to date, was

required to be authenticated. Moreover, Lomonaco [8] claimed that authen-

tication is not possible using only quantum means. This paper reverses this

claim. We design an algorithm for quantum key distribution that does au-

thentication by quantum means only. Although a classical channel is still

used, there is no need for the channel to be authenticated. The algorithm

relies on two protected public keys to authenticate the communication part-

ner.
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1 Introduction

Most cryptosystems commercially used today, rely on the principles of public

key cryptography. Invariably, such cryptosystems aim to o�er the means

of exchanging secret messages securely and reliably. Suppose two entities,

Alice and Bob, want to exchange secret messages; speci�cally, Bob prepares

a secret message to be sent to Alice. Unfortunately, all they have available is

a classical insecure communication channel. This means, a malevolent third

party, Eve, makes every e�ort to ruin the secrecy or content of Bob's message.

Eve can listen to the communication channel to �nd out the content of Bob's

message. And also, Eve can tamper with Bob's message, adding, deleting or
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editing parts of the message. The security of the public key cryptosystem

relies on the di�culty of inverting particular algebraic functions, also called

"one-way" functions.

Secure communication is achieved using two types of keys: a public key

and a private key. If Bob wants to send a secret message to Alice, he uses

the public key to encrypt the message. Alice then reads the message after

using her private key for decoding. There are a few characteristics worth

mentioning about the two keys implied in this communication. Alice's private

key is secret, and not shared with anybody else. In particular, Bob does

not need to know Alice's private key. This is a major advantage, as the

private key is never seen on any communication channel and therefore, its

secrecy is ensured. The public key is available to anybody. Bob needs to

know it, and also an eavesdropper, Eve, has access to it. In order for the

protocol to work, the public key is guaranteed to be protected. This means,

there is a consensus about the public key value. Both Bob and Alice are

sure that they use the correct, same public key. Eve cannot masquerade as

Alice and change the value of the public key, making Bob use a false public

key to encrypt his message. This feature of the public key is important.

Our authentication protocol for quantum key distribution makes use of this

property of the protected public key. It is crucial in both the classical sense

of authentication protocols, as well as in our protocol, that such a public key

can be published with the guarantee that the key is and remains protected

from masquerading.

The security of the public key distribution protocol relies on the theo-

retically unproven assumption that factoring large numbers is intractable on

classical computers. As described in [7], quantum computers can break some

of the best public key cryptosystems.

Quantum cryptography aims to design mechanisms for secret communi-

cation with higher security than protocols based on the public key approach.

Privacy of a message and its credibility is well satis�ed in a private key

cryptosystem setting. Alice and Bob share one and the same secret key, ks.

Bob uses the secret key for encryption and Alice consequently decrypts the

message with the same key. As long as ks is unknown to anybody else, the

secrecy of the communication is satis�ed. There exist various encryption /

decryption functions using ks, such that the encrypted message reveals no

information whatsoever about the content of the message, provided the key

ks is unavailable.

Quantum key distribution protocols establish secret keys via insecure

quantum and/or classical channels. Existing quantum key distribution al-

gorithms generally use two communication channels between Alice and Bob:

a quantum channel which transmits qubits and a classical channel for classical
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binary information. The classical channel is used to communicate measure-

ment strategy, or the basis for measurement, and to check for eavesdropping.

Quantum key distribution protocols may derive their e�ciency from dif-

ferent quantum properties. The �rst protocol developed by Charles Bennett

and Gilles Brassard, known as the BB84 protocol [2], relies on measuring

qubits in two di�erent orthonormal bases. The same idea applies to any two

nonorthogonal bases [1]. In [5] the quantum key distribution algorithm is

derived from the quantum Fourier transform. Based on the property of en-

tanglement, Artur Ekert [4] gave a quantum key distribution solution using

entangled qubits to be shared by Alice and Bob. A simpler version with

qubits entangled in the same way, namely in the Bell states, is described in

[3].

Note that all quantum key distribution algorithms mentioned above re-

quire that the classical channel be authenticated. Authentication is supposed

to be done by classical means. The authenticated classical channel prevents

Eve from masquerading as someone else and tamper with the communication.

It was claimed by Lomonaco [8] that authentication is not possible in quan-

tum computation, that for any secure quantum communication a classical

authentication scheme needs to be used.

As will be clear from the algorithm described in this paper, authentication

of a quantum communication protocol can be done by the quantum protocol

itself. The classical channel in our algorithm is not authenticated. Yet Alice

and Bob do have an authentication step at the end of the protocol, with the

help of protected public keys. Authentication is derived from the quantum

algorithm itself and can catch any masquerading over the classical channel.

Shi et. al [9] describe in their paper a quantum key distribution algorithm

that does not use a classical channel at all. Authentication is done by a

trusted authority, that provides the entangled qubits to Alice and Bob. In

our paper, such a trusted authority is not needed. The entangled qubits may

come from an insecure source.

The rest of the paper is organized as follows: Section 2 de�nes entan-

glement and describes the particular entanglement based on phase incom-

patibility used by our algorithm. Section 3 describes the algorithm with

authentication and security checking. Section 4 concludes the paper and

o�ers some future directions for investigation.

2 Entangled Qubits

The key distribution algorithm we present in the following sections relies on

entangled qubits. Alice and Bob, each possess one of a pair of entangled

qubits. If one party, say Alice, measures her qubit, Bob's qubit will collapse
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to the state compatible with Alice's measurement.

The algorithms mentioned above [4, 3, 9], all rely on Bell entangled qubits.

The qubit pair is in one of the four Bell states:

1p
2
(j00i � j11i)

1p
2
(j01i � j10i)

Suppose Alice and Bob share a pair of entangled qubits described by the

�rst Bell state:

1p
2
(j00i+ j11i)

Alice has the �rst qubit and Bob has the second. If Alice measures

her qubit and sees a 0, then Bob's qubit has collapsed to j0i as well. Bob

will measure a 0 with certainty, that is, with probability 1. Again, if Alice

measures a 1, Bob will measure a 1 as well, with probability 1. The same

scenario happens if Bob is the �rst to measure his qubit.

Note that any measurement on one qubit of this entanglement collapses

the other qubit to a classical state. This property is speci�c to all four Bell

states and is then exploited by the key distribution algorithms mentioned

above: If Alice measures her qubit, she knows what value Bob will measure.

The entanglement employed in this paper and algorithm does not have this

property directly.

2.1 Entanglement Caused by Phase Incompatibility

Let us look now at an unusual form of entanglement. Consider the following

ensemble of two qubits:

� =
1

2
(�j00i+ j01i+ j10i+ j11i)

The ensemble has all four components, j00i, j01i, j10i, and j11i, in its

expression. And yet, this ensemble is entangled.

Consider the following proof. Suppose the ensemble � is not entangled.

This means � can be written as a scalar product of two independent qubits:

� =
1

2
(�1j0i+ �1j1i)(�2j0i+ �2j1i)

Matching the coe�cients from each base vector, we have the following

conditions:
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1. �1�2 = �1

2. �1�2 = 1

3. �2�1 = 1

4. �1�2 = 1

The multiplication of conditions 1 and 4 have the result: �1�2�1�2 = �1.
From conditions 2 and 3, we have: �1�2�1�2 = 1. This is a contradiction.

The product �1�2�1�2 cannot have two values, both +1 and �1. It follows
that � cannot be decomposed and thus the two qubits are entangled.

The entanglement of the ensemble is caused by the signs in front of the

four base vector components. Thus, it is not that some vector is missing in

the expression of the ensemble, but the phases of the base vectors keep the

two qubits entangled.

2.2 Measurement

Let us investigate what happens to the ensemble �, when the entanglement

is disrupted through measurement.

If the �rst qubit q1 is measured and yields q1 = j0i = 0 then the second

qubit collapses to q2 = 1p
2
(�j0i + j1i). This is not a classical state, but a

simple Hadamard gate transforms q2 into a classical state. The Hadamard

gate is de�ned by the matrix

H =
1p
2

"
�1 1

1 1

#

Applying the Hadamard gate to an arbitrary qubit, we have H(�j0i +
�j1i) = �

j0i+j1ip
2

+�
j0i�j1ip

2
. For our collapsed q2, we haveH(q2) = H( 1p

2
(�j0i+

j1i)) = �j1i. This is a classical 1.

The converse happens when qubit q1 yields 1 through measurement. In

this case q2 collapses to q2 = 1p
2
(j0i + j1i). Applying the Hadamard gate

transforms q2 to H(q2) = H( 1p
2
(j0i+ j1i)) = j0i = 0. Again this is a classical

state 0.

It follows that by using the Hadamard gate, there is a clear correlation

between the measured values of the �rst and second qubit. In particular,

they always have opposite values.

A similar scenario can be developed, when the second qubit q2 is measured

�rst. In this case, the �rst qubit q1, transformed by a Hadamard gate, yields

the opposite value of q2.
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3 The Algorithm

Alice and Bob wish to establish a secret key, to be used henceforth to encrypt

/ decrypt messages. One session is required to establish a binary secret key,

called secret, such that Alice and Bob are in consensus about the value of

the secret key. The secret key secret consists of n bits, secret = b1b2:::bn.

Technically, to perform the algorithm, Alice and Bob need a classical com-

munication channel, an array of entangled qubit pairs, and two protected

public keys.

On the classical channel, classical binary information can be exchanged.

The channel is unprotected and not authenticated. The channel, being un-

protected, is sensitive to attacks of eavesdropping: Eve may attempt and

successfully read information from the channel. Also, the channel, not being

authenticated, is sensitive to masquerading: Eve may disconnect the channel

and then talk to Alice pretending she is Bob, and talk to Bob pretending she

is Alice.

The array of the entangled qubits has length l, it consists of l qubit

pairs denoted (q1A; q1B); (q2A; q2B); :::; (qlA; qlB). The array is split between

Alice and Bob. Alice receives the �rst qubit of each entangled qubit pair,

namely q1A; q2A; :::; qlA, and Bob receives the second half of the qubit pairs,

q1B; q2B; :::; qlB. The entanglement of the qubit pair is of the type described

in the previous section, namely, phase incompatibility. The array of qubits

is unprotected either. There is no guarantee that the qubits of a pair are

indeed entangled, Eve may have disrupted the entanglement. Also, Eve may

have masqueraded as either Alice or Bob, modifying the entangled qubits,

such that Alice's qubit is actually entangled with a qubit in Eve's possession

rather than Bob's, and the same holds for Bob.

Two public keys are needed by the algorithm. Alice has a public key keyA

and Bob has a public key keyB. The two public keys keyA and keyB are

independent. These keys are necessary for authentication. They have some

characteristics that are di�erent from the classical public keys. The keys

are established during the computation. They are not known prior to the

key distribution algorithm and are de�ned in value during the computation

according to the measured values of some of the qubits. This means that

the keys are available after the key distribution protocol. Consequently, the

keys have to be posted after the algorithm, which is unlike the classical case,

where a public key is known in advance. Also, the two public keys keyA

and keyB are valid for one session, for one application of the key distribution

algorithm. If Alice and Bob want to distribute a second secret key using the

same algorithm, they will have to create new public keys, which are di�erent

in value from the public keys of the previous session.

The key distribution algorithm, like all quantum key distribution algo-
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rithms, develops the value of the secret key during the computation. Implic-

itly, the values of the public keys as well are developed during the compu-

tation. There exists no knowledge whatsoever about the values of the keys

(secret and public) prior to running the algorithm.

The algorithm follows the steps below:

� Step 1 - Establish the value of the secret key

For each entangled qubit pair (qiA; qiB) in the array, the following ac-

tions are taken. On the classical channel, Alice and Bob decide ran-

domly who is going to perform the �rst measurement.

Suppose it is Alice. Therefore, Alice measures her qubit qiA thereby

collapsing Bob's qubit qiB to the state consistent with Alice's measure-

ment. If Alice has measured a 0, qiA = 0 then Bob's qubit has collapsed

to qiB = 1p
2
(�j0i+j1i). If Alice's measurement resulted in qiA = 1 then

Bob's qubit collapsed to qiB = 1p
2
(j0i+ j1i). Now, Bob transforms his

qubit via a Hadamard gate. For Alice's qiA = 0, Bob has a HqiB = 1,

and conversely for Alice's qiA = 1, Bob has a HqiB = 0. Bob now

measures and his value will consistently be the complement of Alice's.

If Bob is the one who measures �rst his qubit qiB, the procedure is

simply mirrored. Alice now has to apply a Hadamard gate on her

qubit, thus obtaining HqiA. Again Alice and Bob will have measured

complementary binary digits.

Ideally, with no interference from Eve, be it through eavesdropping

or masquerading, applying this measurement and Hadamard measure-

ment on each qubit is enough to establish the secret key. After going

through all the qubit pairs, Alice and Bob will have complements of

the same binary number. This, for example Alice's binary number, is

the established secret key.

� Step 2 - Authentication and Eavesdropping Checking

Some 2m qubits will be sacri�ced for security checking, where 2m < l.

The secret key will be formed by the remaining n = l � 2m qubits.

Alice and Bob decide via the classical channel, the set of qubit indices

to be sacri�ced. Alice looks at the �rst m qubits, and forms a binary

number with the values she reads. This is Alice's public key . Alice now

publishes her public key, which key can be seen by Bob. As the public

key is protected, Bob is certain that the public key is safe from mas-

querading. Note that this is the only step, where Bob is certain to have

contact with Alice with no masquerading. Bob now compares Alice's

public key with his own measured qubits. If these two binary numbers
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are complementary, then Bob concludes that he has been talking with

Alice all the while in the previous step, and also that no eavesdropper

has changed some of the qubit values. The same procedure applies to

Bob's public key formed by the second m sacri�ced qubits. If Bob or

Alice have encountered a mismatch in the values checked, they discard

the secret key and try again.

Let us analyze what Eve can do to get some knowledge about the secret

key without being caught.

One option would be that Alice's and Bob's qubits are not really entan-

gled, but Eve has sent qubits of her own choice to both of them. Eve also

can listen to the classical channel. The best she can do is send a classical

0 to Alice and a Hadamard 1 to Bob. Actually, all other combinations are

equivalent to, or less advantageous than, this one. Alice and Bob decide who

is to measure �rst once they already have the qubits. With 1=2 probability,

Alice is measuring, in which case the readings are consistent. Bob measures

�rst, again with probability 1=2. Bob will measure a 1 or 0 with equal prob-

ability. Then Alice transforms the classical 0 with a Hadamard gate, and

also reads a 0 or 1 with equal probability. This means that if Bob measures

�rst, Alice and Bob will read the same value with 1=2 probability. As such,

Eve is caught with 1=4 probability. If the number of qubits to be tested is

large, this probability can be made arbitrarily large.

Note that, the classical channel does not need to be authenticated. Eve

can masquerade, such that she completely severs all connection between Alice

and Bob. In this case, Eve will establish one secret key with Alice, and

another secret key with Bob. Unfortunately for Eve, she has no control over

the value of the secret keys, as their values are determined probabilistically,

through quantum measurement. Therefore, the two keys will necessarily

di�er. As Alice and Bob publish part of their secret keys as protected public

keys, they will notice the di�erence and consequently discard the keys.

This algorithm features a few notable characteristics. Checking for eaves-

dropping and authentication happens in one and the same step. Until this

checking phase, there is no certainty whatsoever about either the validity

of the key, the validity of the classical connection or the quantum qubit en-

tanglement. But then, the key is not useful or used before the checking

step.

Another interesting feature is the way in which the two public keys are

used in our case. In classical settings, the public key is established and known

by both parties, before the algorithm or communication begins. By contrast,

in this quantum distribution algorithm, the public keys are determined during

the computation and they are available only after the secret key is established.

The publishing of the public keys is the very last step of Alice and Bob's
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communication, whereas in previous algorithms this is the �rst step. The

usage of the public keys is in reverse order by comparison with classical

secret communications, such as those in the public key cryptosystems.

4 Conclusion

We have shown in this paper that quantum authentication in quantum key

distribution can be done through the quantum protocol, and does not need

to rely in any way on classical authentication procedures. Moreover, in our

algorithm authentication is easily done with the help of two protected public

keys.

The algorithm presented performs quantum key distribution based on

entangled qubit pairs. The entanglement type is not of the generally used

Bell states, but an unusual entanglement based on phase incompatibility.

The algorithm uses a quantum channel and a classical channel, but unlike

all previous quantum key distribution algorithms, the classical channel is not

authenticated. Authentication and security checking are done at the same

time, after the algorithm, with the help of two public keys.

Speci�c to quantum key distribution algorithms, is the fact that the value

of the secret key is not known prior to performing the distribution. The key

is developed during the execution. Likewise, in our algorithm, we have the

same behavior of the public keys. They are not known prior to the execution

of the algorithm and are developed during the execution. The consequence

is that the public keys are session speci�c, rather than permanent for one

person. The public keys are distinct for each application of the quantum key

distribution algorithm.

The algorithm presented here can be improved to work without a classi-

cal communication channel at all. In this case, Alice and Bob communicate

via the quantum channel of entangled qubits only. The tradeo� is a dou-

bling in the number of quantum bits used for a �nal secret key of the same

length. Also, the meaning of the public keys is more complex. This improved

algorithm is the subject of [6].

As shown in this paper, quantum authentication can be done with the help

of a variation of protected public keys. This might not be the only solution.

It is an open problem what other structures can support authentication of

quantum channels.

The principle of checking and authenticating at the end of the protocol

with public keys, is not restricted to the algorithm described here. The same

type of public keys, namely per session keys, posted after the execution of

the main body of the algorithm, can be successfully used in authenticating

other types of algorithms. This is also a direction worth investigating.
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