1

The universality principle is the cornerstone of computing and the reason for the rapid as-
cendancy of the discipline as the most influential science of our time. According to this
principle, any general-purpose computer A can execute, through simulation, and more or
less efficiently, any computation that is possible on any other general-purpose computer B
[42]. In essence, the principle expresses a deep and important insight into the relationship
between computability and universality. Perspicuously stated, it says that a function is

Technical Report No. 2015-625
ON COMPUTABLE NUMBERS,
NONUNIVERSALITY, AND
THE GENUINE POWER OF PARALLELISM

Selim G. AkI* Nancy Salay!
July 29, 2015

Abstract

We present a simple example that disproves the universality principle. Unlike pre-
vious counter-examples to computational universality, it does not rely on extraneous
phenomena, such as the availability of input variables that are time varying, computa-
tional complexity that changes with time or order of execution, physical variables that
interact with each other, uncertain deadlines, or mathematical conditions among the
variables that must be obeyed throughout the computation. In the most basic case of
the new example, all that is used is a single pre-existing global variable whose value is
modified by the computation itself. In addition, our example offers a new dimension
for separating the computable from the uncomputable, while illustrating the power of
parallelism in computation.

Keywords and phrases: nonuniversality in computation; universal computer;
simulation; models of computation; time unit; time-varying variables; time-varying
computational complexity; rank-varying computational complexity; interacting vari-
ables; uncertain time constraints; mathematical constraints; finite and fixed number of
operations per time unit, general-purpose computer; finiteness condition; unbounded
space; unbounded time; communication with the outside world; Turing Machine; Ran-
dom Access Machine; Parallel Random Access Machine.

Introduction

*School of Computing and Department of Mathematics and Statistics, Queen’s University, Kingston,

Ontario, Canada K7L 3NG6, akl@Qcs.queensu.ca

"Department of Philosophy and School of Computing, Queen’s University, Kingston, Ontario, Canada

K7L 3N6, salay@Qqueensu.ca



computable if and only if its value can be obtained by simulation on any general-purpose
computer [1, 26, 29, 36, 37, 38, 42, 44, 45, 56]. Here, general-purpose computers, our do-
main of discourse, are to be understood as ones that are defined and fixed once and for
all; the capabilities of a general-purpose computer are never modified in order to fit the
computational problem to be solved. In theoretical computing, general-purpose comput-
ers are represented using computational models such as the Turing Machine, the Random
Access Machine (RAM), the Cellular Automaton, and the like [54]. In practice, they are
the processors in our tablets, our mobile phones, our cars, and so on. It follows from the
universality principle that any function that can be evaluated on any general-purpose com-
puter is a computable function. In other words, being universally simulatable is a sufficient
condition of computability. It also follows from this principle that a function that is not
universally simulatable must not be computable. In other words, being universally simulat-
able is a necessary condition of computability. A function that could not be evaluated on
some general-purpose computer, but could, nevertheless, be computed by another, would be
a counter-example to the necessity clause of the universality principle and would show us
that the connection between computability and universal simulatability is weaker than is
generally assumed: simulatability is sufficient for computability, but it is not necessary; that
is, a function can be computable in some contexts, but not in all contexts.

The universality principle does in fact hold for conventional computations, such as, for
example, sorting into non-decreasing order a list of numbers that are given in arbitrary order,
searching a list for a given datum, numerical computation, text processing, and so on. To
illustrate, consider the following parallel algorithm for sorting a sequence S = go, g1, .-, gn—1
of n distinct integers on a linear array of processors pg, p1, ..., Pn_1. Processor p; contains g;
and can communicate with its two neighbours p;_; and p;;1 (except for pg and p,_; which
have only one neighbour each, namely, p; and p,,_, respectively). In the “compare and swap
if needed” operation of the algorithm, processors p; and p;; compare their integers, placing
the smaller in p; and the larger in p;.1.

Parallel Sort

for k=0ton—1do
for i = 0 to n — 2 do in parallel
if 7 mod 2 = k mod 2
then p; and p;,; compare and swap if needed
end if
end for
end for. m

Algorithm Parallel Sort completes the sort in O(n) time [3]. If it so happens that only one
processor, namely pg, is available, then the parallel algorithm can be easily simulated by
having the single processor methodically imitate the operations of the n processors. The
sequential solution uses an array S to store the sequence to be sorted. Initially, S[i| contains
gi, for i = 0,1,...,n — 1. The algorithm is given in what follows. In it, the operation
“compare S[i| and S[i + 1] and swap if needed” compares the two integers currently in S/[i]
and S[i + 1], placing, as a result, the smaller in S[i] and the larger in S[i + 1].

2



Sequential Sort

for k=0ton—1do
fori=0ton—2do
if 7 mod 2 = k mod 2
then compare S[i] and S[i + 1] and swap if needed
end if
end for
end for. m

Algorithm Sequential Sort completes the sort in O(n?) time (clearly not the best sorting
algorithm sequentially, but a sufficient illustration of the idea of simulation for our purposes).

But here’s the rub: simulation is always feasible only for conventional computations.
Several classes of unconventional computations have been uncovered recently for which sim-
ulation is not always possible and, consequently, for which universality does not hold. These
classes include computations that involve time-varying variables, time-varying computational
complexity, rank-varying computational complexity, interacting variables, uncertain time
constraints, mathematical constraints, and so on [11, 12, 13, 14, 15, 16, 17, 18]. While these
unconventional computations can be executed successfully on certain computers, they can-
not be simulated on a unique fixed computer. Because simulation is not always possible,
the universality principle as currently understood is false. This conclusion is referred to as
nonuniversality in computation [6, 7, 8, 9, 10].

Let time be divided into discrete time units. The nonuniversality result is usually stated
as follows: no computer U can be universal if it is capable of only a finite and fixed number
of basic arithmetic and logical operations, such as addition, comparison, exclusive-or, and
so on, per time unit.

Nonuniversality Proof: Assume that computer U can perform D(i) operations
during time unit ¢ of a computation, for : = 0,1,... For any computation C'
requiring F(i) operations during time unit ¢, where E(i) > D(i) for at least one
1, U will fail to successfully complete C'. Therefore, U cannot be universal. Note
that C' is computable on another computer U’ capable of E(i) operations during
time unit 7. However, U’, in turn, will be defeated by another computation C’
requiring F'(i) operations during time unit ¢, where F'(i) > E(1), for at least one
i, and consequently U’ cannot be universal either.

One example of such a computation C calls for sorting an input sequence of elements,
while imposing an extra condition to be satisfied by any candidate algorithm. Thus, in
this unconventional version of the standard sorting problem presented earlier in this section,
a sequence S = go,91,--.,9n—1 of n distinct integers is given. It is required to transform
the sequence S in situ into a sequence S’ = ¢, g1,...,9,_, whose elements are the same
as those of S, with the difference that, at the end of the computation, g{ < ¢} < g5 <
s < gh o < gh_y. So far, this is the classic sorting problem. The unconventional variant
adds a new requirement: at no time, once the sorting process has begun, should there

be three consecutive elements of an intermediate sequence S” = gj,47,...,¢g,_;, such that
g > gl > glo, for i = 0,1,...,n — 3. A complete description of this example, and

3



its implications can be found in [14]. It suffices to note here that algorithm Parallel Sort
succeeds in carrying out this computation for all input sequences S of size n, while algorithm
Sequential Sort fails when presented with a sequence S = g, g1, ..., gn_1 in which go > g1 >
go >+ > Gn_o > gn_1. A parallel computer with fewer than n — 2 processors also fails to
solve this problem.

Every reasonable model of computation is, by definition, capable of only a finite and
fixed number of operations per time unit. The same is obviously true for any practical
computer which is built once and for all; it too can only perform a finite (and fixed) number
of operations per time unit. Given the nonuniversality proof, it follows that unless the
unreasonable assumption is made that a computer is capable at the outset of an infinite
number of operations per time unit, universality cannot be achieved by any computer [6, 7,
8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 46, 47, 48, 49, 50, 51].

In this paper we present an even stronger result: there are computable functions that are
not computable universally, even on systems capable of an infinite number of operations per
time unit, so long as the general purpose computers in question are constrained to perform
operations sequentially. This is supported by the simplest counter-example to the universality
principle of which we are aware. As a bonus, the counter-example that we propose illustrates
the true, often unappreciated, power of the idea of parallelism in computation: parallelism
does not just speed up sequential computations; it makes certain computations possible. An
example of the lack of appreciation of what parallelism brings to computing is the Speedup
Theorem and specifically its ‘proof’ [2, 35, 39, 40, 41]. This theorem states that the best
sequential (that is, single-processor computer) solution to a given problem P can be sped
up, at most, by a factor of n if an n-processor parallel computer is used instead. The proof
goes as follows.

Let t; be the running time of the best sequential algorithm for P, and let ¢,
be the running time of a parallel algorithm. Assume that the speedup t;/t, is
larger than n. In that case we can simply simulate the parallel algorithm on a
single processor, resulting in a running time of n x ¢,, < t;, which is impossible,
since t; is already, by definition, the best possible sequential running time. The
assumption is therefore false and ¢; /¢, cannot be larger than n.

A demonstration of the fallacy of this ‘theorem’; through several counter-examples that
achieve speedups ezponential in n, is provided in [3, 4], where a number of additional refer-
ences can also be found. Even in popular science writing, claims can be found to the effect
that parallel computing can do no more, in principle, than sequential computing [52].

The remainder of this paper is organized as follows. Our counter-example is described in
Section 2. Some consequences of our result are derived in Section 3. In Section 4 we generalize
our counter-example using two different models of parallel computation. Conclusions are
offered in Section 5.

2 The global variable paradigm

Our computation, call it Cy, consists of two distinct and separate processes Py and P; operat-
ing on a global variable x. The variable x is time-critical in the sense that its value throughout
the computation is intrinsically related to real (external or physical) time. Actions taken
throughout the computation, based on the value of x, depend on = having that particular

4



value at that particular time. Here, time is kept internally by a global clock. Specifically, the
computer performing Cy has a clock that is synchronized with real time. Henceforth, real
time is synonymous with internal time. In this framework, therefore, resetting x artificially,
through simulation, to a value it had at an earlier time is entirely insignificant, as it fails to
meet the true timing requirements of Cjy. At the beginning of the computation, z = 0.

Let the processes of the computation Cy, namely, Fy and Py, be as follows:

Fy: if x =0 then x <~ x + 1 else loop forever end if.

Py: if x = 0 then read y; z < = + y; return x else loop forever end if.

In order to better appreciate this simple example, it is helpful perhaps to put it in some
familiar context. Think of x as the altitude of an airplane and think of Py and P; as software
controllers actuating safety procedures that must be performed at this altitude. The local
nonzero variable y is an integral part of the computation; it helps to distinguish between the
two processes and to separate their actions.

The question now is this: on the assumption that Cy succeeds, that is, that both Py and
Py execute the “then” part of their respective “if” statements (not the “else” part), what
is the value of the global variable x at the end of the computation, that is, when both F,
and P; have halted?

We examine two approaches to executing Py and P;:

1. Using a single processor: Consider a sequential computer, based, for example, on
the RAM model of computation [24], equipped, by definition, with a single processor
po- The processor executes one of the two processes first. Suppose it starts with Py: pg
computes x = 1 and terminates. It then proceeds to execute P;. Because now x # 0,
po executes the nonterminating computation in the “else” part of the “if” statement.
The process is uncomputable and the computation fails. Note that starting with P;
and then executing ) would lead to a similar outcome, with the difference being that
P, will return an incorrect value of x, namely y, before switching to F,, whereby it
executes a nonterminating computation, given that now x # 0.

2. Using two processors: The two processors, namely, py and p;, are part of a shared
memory parallel computer, based, for example, on the Concurrent-Read Exclusive-
Write Parallel Random Access Machine (CREW PRAM) model of computation [3]. In
this model, two or more processors can read from, but not write to, the same memory
location simultaneously. In parallel, p, executes Fy and p; executes P;. Both terminate
successfully and return the correct value of z, that is, x = y + 1.

Two observations are in order:

1. The first concerns the sequential (that is, single-processor) solution. Here, no ex post
facto simulation is possible or even meaningful. This includes legitimate simulations,
such as executing one of the processes and then the other, or interleaving their execu-
tions, and so on. It also includes illegitimate simulations, such as resetting the value
of z to 0 after executing one of the two processes, or (assuming this is feasible) an ad
hoc rewriting of the code, as for example,

5



if z =0 then z <+ x+1; read y; z < x +y; return z else loop forever end if.

and so on. To see this, note that for either Py or P; to terminate, the then operations
of its if statement must be executed as soon as the global variable x is found to be
equal to 0, and not one time unit later. It is clear that any sequential simulation must
be seen to have failed. Indeed:

e A legitimate simulation will not terminate, because for one of the two processes,
x will no longer be equal to 0, while

e An illegitimate simulation will “terminate” illegally, having executed the “then”
operations of one or both of Py or P; too late.

2. The second observation follows directly from the first. It is clear that Fy and P, must
be executed simultaneously for a proper outcome of the computation. The parallel
(that is, two-processor) solution succeeds in accomplishing exactly this.

Finally, a word about the role of time. Real time, as mentioned earlier, is kept by a
global clock and is equivalent to internal computer time. It is important to stress here that
the time variable is never used explicitly by the computation Cy. Time intervenes only in
the circumstance where it is needed to signal that Cj has failed (when the “else” part of
an “if” statement, either in P, or in P, is executed). In other words, time is noticed solely
when time requirements are neglected.

3 Consequences

The two-process computation C of Section 2 shows that no sequential (that is, uniprocessor)
computer can ever be universal. Even if it is given an unbounded amount of memory and an
unlimited amount of time (like a Turing Machine, for example), processor p, fails to solve
the problem. FEven if it is permitted interaction with the outside world (unlike a Turing
Machine), pyg fails. Finally, and most importantly for our purposes in this paper, even if pg
is capable of an infinite number of sequential operations per time unit (like an Accelerating
Machine [33] or, more generally, a Supertask Machine [27, 30, 58]), it still fails to meet the
requirements of the computation Cj.

Notice that the parallel (that is, multiprocessor) computer succeeded in performing Cy
satisfactorily. This demonstrates an important and often overlooked feature of parallelism:
far from being simply a faster alternative to sequential computing, it is essential for the
success of certain inherently parallel computations [18, 19, 46, 47, 48, 49, 50, 51|. The two-
process problem is uncomputable by a sequential computer and computable by a parallel
one. Thus, the example not only serves to make the nonuniversality result more general and
therefore stronger, it also offers a new way to distinguish computability from uncomputability
via sequential and parallel computing.

Does this mean that the parallel computer is universal? Certainly not, for it is possible
to construct a computation with three processes, namely, Py, P;, and P», for which a two-
processor computer fails. A three-processor computer may succeed, but it will then be
thwarted by a four-process computation. Such reasoning continues indefinitely. Taking this
argument to its logical conclusion, only a computer capable of an infinite number of parallel
operations per time unit can be universal.



4 Generalizations

Various options are available to generalize our result. In this section, we describe two such
generalizations. Recall that in Section 2 we used the CREW PRAM as the parallel model
of computation. In this model, several processors can read simultaneously from the same
shared memory location, but no simultaneous write is allowed. Two alternative shared mem-
ory parallel models are the Exclusive Read Exclusive Write Parallel Random Access Machine
(EREW PRAM) and the Concurrent-Read Concurrent-Write Parallel Random Access Ma-
chine (CRCW PRAM) [3]. In the EREW PRAM, at most one processor can gain access
to a shared memory location during a time unit, either for reading or for writing. In the
CRCW PRAM, a shared memory location can be accessed simultaneously by several proces-
sors during a time unit, either for reading by all of them (when executing a concurrent-read
instruction) or for writing by all of them (when executing a concurrent-write instruction).
In the latter case, memory conflicts are resolved in a variety of ways, including the priority
concurrent-write instruction, where the processor with the highest writing priority succeeds
in writing and all others fail, the common concurrent-write instruction, where the write op-
eration succeeds if and only if all processors are attempting to write the same value, and
the combining concurrent-write instruction, where all the values being written are combined
into one (using, for example, the arithmetic sum, the logical and, the mazimum, and so on)
[3]. For our purposes in this paper, we shall use the combining with arithmetic sum as our
write instruction.

Let C; and Cy be the two generalizations of the computation Cj, to be proposed in
Sections 4.1 and 4.2, respectively. Both C; and C5 use the idea hinted to in Section 3,
whereby several processes are part of the computation to be carried out. We will show that C'
is possible if an n-processor EREW PRAM is available, while an n-processor CRCW PRAM
is needed to execute Cy. Furthermore, both C; and Cs cannot be performed successfully,
neither by a RAM nor by a PRAM, of any type, equipped with fewer than n processors.

4.1 Using several global and local variables

In our first generalization of the example in Section 2, we assume the presence of n global
variables, namely, xg,z1,...,2,_1, all of which are time critical, and all of which are ini-
tialized to 0. There are also n nonzero local variables, namely, yo,vy1,...,yn_1, belonging,
respectively, to the n processes Fy, Py, ..., P,_; that make up C;. The computation C is as
follows:

Py: if zg = 0 then x; <+ y, else loop forever end if.
Py: if 1 = 0 then x5 <+ y; else loop forever end if.

Py if 9 = 0 then x3 < 1y, else loop forever end if.

P, o if x,,_o =0 then x,,_ < y,_» else loop forever end if.

P, 1: if z, 1 =0 then zy < y,_1 else loop forever end if.




Suppose that the computation C begins when z; = 0, for . = 0,1,...,n — 1. For every
1, 0 <1 <n—1,if P;is to be completed successfully, it must be executed while z; is indeed
equal to 0, and not at any later time when x; has been modified by F;_1)mod» and is no
longer equal to 0. On an EREW PRAM with n processors, namely, pg, p1, ..., Pn_1, it is
possible to test all the x;, 0 < i < n — 1, for equality to 0 in one time unit; this is followed
by assigning to all the z;, 0 < i < n — 1, their new values during the next time unit. Thus
all the processes P;, 0 <1i < n—1, and hence the computation C}, terminate successfully. A
RAM has but a single processor py and, as a consequence, it fails to meet the time-critical
requirements of Cy. At best, it can perform no more than n—1 of the n processes as required
(assuming it executes the processes in the order P, 1, P,_s, ..., P, then fails at Py since
was modified by P,_1), and thus does not terminate. An EREW PRAM with only n — 1
processors, pg, Pi, - - -, Pn_2, cannot do any better. At best, it too will attempt to execute
at least one of the P; when x; # 0 and hence fail to complete at least one of the processes
on time.

4.2 Using a single global variable and no local variable

Our second generalization of the example in Section 2 requires the presence of only a single,
time-critical, global variable z. Let x = 0 initially. With n processes, Fy, Py, ..., P,_1, the
computation Cy looks as follows:

Fy: if x = 0 then = < 1 else loop forever end if.

Py: if x =0 then = < 1 else loop forever end if.

Ps: if x = 0 then x < 1 else loop forever end if.

P,_1: if x = 0 then z < 1 else loop forever end if.

If the computation Cy starts when x = 0, it is required that the “then x < 1”7 operation
be performed as soon as it is determined that x is indeed equal to 0.

The n processors of a CRCW PRAM, namely pg, p1, ..., Pn_1, read x in parallel, find
it equal to 0, and simultaneously increment z, by 1 each, resulting in x = n. Now all
the processes, and hence the computation Cs, halt gracefully. A single-processor computer
is hopeless to perform this computation, but so also is the n-processor CRCW PRAM if
presented with an n + 1 process version of Cy; they will both run forever.

5 Conclusion

Despite considerable evidence to the contrary [15, 16, 21, 22, 23, 28, 31, 34, 55, 57, 59, 60, 62,
63], belief in the universality principle, particularly (but not exclusively) in connection with
the Turing Machine, remains one of the most enduring myths in computer science (see, for
example, [5, 32, 38]). In this paper we presented a new counter-example to it, the simplest
such counter-example of which we are aware. Unlike previous counter-examples to compu-
tational universality, it does not rely on extraneous phenomena, such as the availability of



input variables that are time varying, computational complexity that changes with time or
order of execution, physical variables that interact with each other, uncertain deadlines, or
mathematical conditions among the variables that must be obeyed throughout the compu-
tation. In the most basic case of the new example, all that is used is a single pre-existing
global variable whose value is modified by the computation itself.

Further to its extreme simplicity, this new nonuniversality result is more powerful than
earlier ones. It was previously thought, based on past counter-examples, that only a com-
puter capable of an infinite number of basic operations per time unit could be universal
[6]. We have shown in this paper that even a computer capable of an infinite number of
basic sequential operations cannot be universal. Thus, computational universality requires
an infinite number of basic parallel operations per time unit.

In his classic, discipline-creating paper [61], Alan Turing defined what it means for a
number to be computable or uncomputable. The distinction is made by fixing a model of
computation and determining whether or not that model is capable of producing a desired
number. Thus, the mathematical constants 7w and e, for example, are computable (to a
desired precision). By contrast, there are uncomputable numbers, namely, those that are
the outcome of unsolvable problems such as, for example, the Halting Problem [25]. This
conventional distinction between the computable and the uncomputable has hitherto been
adopted, almost universally, with respect to the Turing Machine, as the ‘ultimate’ model of
computation, the baseline. The present paper provides an alternative but complementary
way to distinguish between computable and uncomputable numbers. While the background
of Turing’s distinction is a fixed model of computation, our examples exploit the fact that
there exist multiple possible general-purpose computer models, not all equivalent. A number
that may be uncomputable on some models, may be computable on others. For example, the
number x in Cj is computable on a parallel computer with the proper number of processors,
but uncomputable otherwise (whether sequentially or in parallel). The same is true for the
numbers in C and C5. Our examples, therefore, offer up parallelism as a new baseline model
for computation, acknowledging that other models yet to be dreamed up will eventually
replace it [46].

Our counter-example to universality also serves to illustrate the importance of parallelism
in computing. Virtually the entire body of literature on parallel computation suggests that
the raison d’étre of parallel computers is to speed up sequential computations [20, 43, 53, 64].
We have shown here that parallel computing is considerably more valuable since it can make
the difference between computability and uncomputability. Specifically, we have identified
a problem that a parallel computer can solve while a sequential computer cannot. In other
words, the set of problems solvable in parallel is a strict superset of the set of problems
solved sequentially. Therefore, on the hierarchy of computational models, in which models
are ranked by their power [42, 54|, a parallel computer is strictly more powerful than a
sequential one.

In summary, our paper offers three contributions. It strengthens the notion of nonuniver-
sality in computation by extending the domain in which it holds to all sequential machines,
even those capable of an infinite number of operations per time unit; it offers a new uncon-
ventional way to distinguish between what is computable and what is uncomputable; and it
puts in sharp focus an important difference between sequential and parallel computing.



References

1]

2]

[10]

[11]

[12]

[13]

[14]

Abramsky, S. et al, Handbook of Logic in Computer Science, Clarendon Press, Oxford,
1992.

AKkl, S.G., The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood
Cliffs, New Jersey, 1989.

AKkl, S.G., Parallel Computation: Models and Methods, Prentice Hall, Upper Saddle
River, New Jersey, 1997.

AKkl, S.G., Superlinear performance in real-time parallel computation, The Journal of
Supercomputing, Vol. 29, No. 1, 2004, pp. 89-111

Akl, S.G., Universality in computation: Some quotes of interest, Technical Report No.
2006-511, School of Computing, Queen’s University, Kingston, Ontario, April 2006, 13
pages. http://www.cs.queensu.ca/home/akl/techreports/quotes.pdf

AKkl, S.G., Three counterexamples to dispel the myth of the universal computer, Par-
allel Processing Letters, Vol. 16, No. 3, September 2006, pp. 381-403.

Akl, S.G., Conventional or Unconventional: Is Any Computer Universal?, Chapter
6 in: From Utopian to Genuine Unconventional Computers, A. Adamatzky and C.
Teuscher, Eds., Luniver Press, Frome, United Kingdom, 2006, pp. 101-136.

Akl, S.G., Godel’s incompleteness theorem and nonuniversality in computing, Proceed-
ings of the Workshop on Unconventional Computational Problems, Sixth International
Conference on Unconventional Computation, Kingston, Canada, August 2007, pp. 1—
23.

Akl, S.G., Even accelerating machines are not universal, International Journal of Un-
conventional Computing, Vol. 3, No. 2, 2007, pp. 105-121.

Akl, S.G., Unconventional computational problems with consequences to universality,
International Journal of Unconventional Computing, Vol. 4, No. 1, 2008, pp. 89-98.

AKkl, S.G., Evolving Computational Systems, Chapter 1 in: Parallel Computing: Mod-
els, Algorithms, and Applications, S. Rajasekaran and J.H. Reif, Eds., Taylor and
Francis, CRC Press, Boca Raton, Florida, 2008, pp. 1-22.

Akl, S.G., Ubiquity and simultaneity: The science and philosophy of space and time in
unconventional computation, Keynote address, Conference on the Science and Philos-
ophy of Unconventional Computing, The University of Cambridge, Cambridge, United
Kingdom, 2009.

Akl S.G., Time travel: A new hypercomputational paradigm, International Journal
of Unconventional Computing, Vol. 6, No. 5, 2010, pp. 329-351.

Akl, S.G., What is computation?, International Journal of Parallel, Emergent and
Distributed Systems, Vol. 29, No. 4, 2014, pp. 337-345.

10



[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]
[26]
[27]

28]
[29]

[30]

[31]

Akl, S.G., Nonuniversality in computation: Fifteen misconceptions rectified, Chapter
in: Advances in Unconventional Computing, A. Adamatzky, Ed., Springer, 2015.

Akl, S.G., Nonuniversality explained, to appear in International Journal of Parallel,
Emergent and Distributed Systems.

Akl, S.G. and Nagy, M., Introduction to Parallel Computation, Chapter 2 in: Parallel
Computing: Numerics, Applications, and Trends, R. Trobec, M. VajterSic, and P.
Zinterhof, Eds., Springer-Verlag, London, United Kingdom, 2009, pp. 43-80.

Akl, S.G. and Nagy, M., The Future of Parallel Computation, Chapter 15 in: Parallel
Computing: Numerics, Applications, and Trends, R. Trobec, M. Vajtersic, and P.
Zinterhof, Eds., Springer-Verlag, London, United Kingdom, 2009, pp. 471-510.

Akl, S.G. and Yao, W., Parallel computation and measurement uncertainty in non-
linear dynamical systems, Journal of Mathematical Modelling and Algorithms, Special
Issue on Parallel and Scientific Computations with Applications, Vol. 4, 2005, pp. 5-15.

Blazewicz, J., Ecker, K., Plateau, B., and Trystram, D., Eds., Handbook on Parallel
and Distributed Processing, Springer Verlag, Berlin, 2000.

Burgin, M., Super-Recursive Algorithms, Springer, New York, 2005.

Calude, C.S. and Paun, G., Bio-steps beyond Turing, BioSystems, Vol. 77, 2004, pp.
175-194.

Copeland, B.J., Super Turing-machines, Complexity, Vol. 4, 1998, pp. 30-32.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., Introduction to Algorithms,
MIT Press, Cambridge, Massachusetts, 2009.

Davis, M., Computability and Unsolvability, McGraw-Hill, New York, 1958.
Davis, M., The Unwersal Computer, W.W. Norton, 2000.

Davies, E.B., Building infinite machines, British Journal for Philosophy of Science,
Vol. 52, 2001, pp. 671-682.

Denning, P.J., Reflections on a Symposium on Computation, The Computer Journal,
Vol. 55, No. 7, 2012, pp. 799-802.

Deutsch, D., The Fabric of Reality, Penguin Books, London, United Kingdom, 1997.

Earman, J. and Norton, J.D., Infinite pains: The trouble with supertasks, in: Be-
nacerraf and his Critics, A. Morton and S.P. Stich, Eds., Blackwell, Cambridge, Mas-
sachusetts, 1996, pp. 231-261.

Etesi G. and Németi, I., Non-Turing computations via Malament-Hogarth space-times,
International Journal of Theoretical Physics, Vol. 41, No. 2, February 2002, pp. 341
370.

11



32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

Fortnow, L., The enduring legacy of the Turing machine, The Computer Journal, Vol.
55, No. 7, 2012, pp. 830-831.

Fraser, R. and Akl, S.G., Accelerating machines: a review, International Journal of
Parallel Emergent and Distributed Systems, Vol. 23, No. 1, February 2008, pp. 81-104.

Goldin, D. and Wegner, P., The Church-Turing thesis: Breaking the myth, Proceedings
of the First international conference on Computability in Europe: New Computational
Paradigms, Springer-Verlag, Berlin, 2005, pp. 152-168.

Greenlaw, R., Hoover, H.J., and Ruzzo, W.L., Limits to Parallel Computation, Oxford
University Press, New York, 1995.

Harel, D., Algorithmics: The Spirit of Computing, Addison-Wesley, Reading, Mas-
sachusetts, 1992.

Hillis, D., The Pattern on the Stone, Basic Books, New York, New York, 1998.

Hopcroft, J.E. and Ullman, J.D., Formal Languages and their Relations to Automata,
Addison-Wesley, Reading, Massachusetts, 1969.

Jaja, J., An Introduction to Parallel Algorithms, Addison-Wesley, Reading, Mas-
sachusetts, 1992.

Kronsjo, L., Computational Complexity of Sequential and Parallel Algorithms, John
Wiley & Sons, New York, 1985.

Leighton, F.T., Introduction to Parallel Algorithms and Architectures, Morgan Kauf-
mann, San Mateo, California, 1992.

Lewis, H.R. and Papadimitriou, C.H., Elements of the Theory of Computation, Prentice
Hall, Englewood Cliffs, New Jersey, 1981.

Lewis, T.G. and El-Rewini, H., Introduction to Parallel Computing, Prentice Hall,
Englewood Cliffs, New Jersey, 1992.

Mandrioli, D. and Ghezzi, C., Theoretical Foundations of Computer Science, John
Wiley, New York, New York, 1987.

Minsky, M.L., Computation: Finite and Infinite Machines, Prentice-Hall, 1967.

Nagy, M. and Akl, S.G., On the importance of parallelism for quantum computation
and the concept of a universal computer, Proceedings of the Fourth International Con-
ference on Unconventional Computation, Sevilla, Spain, October 2005, LNCS 3699,
pp- 176-190.

Nagy, M. and Akl, S.G., Quantum measurements and universal computation, Interna-
tional Journal of Unconventional Computing, Vol. 2, No. 1, 2006, pp. 73-88.

Nagy, M. and Akl, S.G., Quantum computing: Beyond the limits of conventional
computation, International Journal of Parallel, Emergent and Distributed Systems,
Special Issue on Emergent Computation, Vol. 22, No. 2, April 2007, pp. 123-135.

12



[49]

[52]
[53]

[54]
[55]

[56]

[63]

[64]

Nagy, M. and Akl, S.G., Parallelism in quantum information processing defeats the
Universal Computer, Proceedings of the Workshop on Unconventional Computational
Problems, Sixth International Conference on Unconventional Computation, Kingston,
Canada, August 2007, pp. 25-52; also in: Parallel Processing Letters, Special Issue on
Unconventional Computational Problems, Vol. 17, No. 3, September 2007, pp. 233 -
262.

Nagy, N. and Akl, S.G., Computations with uncertain time constraints: Effects on
parallelism and universality, Proceedings of the Tenth International Conference on Un-
conventional Computation, Turku, Finland, June 2011, LNCS 6714, pp. 152-163.

Nagy, N. and Akl, S.G., Computing with uncertainty and its implications to univer-
sality, International Journal of Parallel, Emergent and Distributed Systems, Vol. 27,
Issue 2, April 2012, pp. 169-192.

Penrose, R., The Emperor’s New Mind, Oxford University Press, New York, 1989.

Rajasekaran, S. and Reif, J.H., Eds., Parallel Computing: Models, Algorithms, and
Applications, Taylor and Francis, CRC Press, Boca Raton, Florida, 2008.

Savage, J.E., Models of Computation, Addison-Wesley, 1998.

Siegelmann, H.T., Neural Networks and Analog Computation: Beyond the Turing limit,
Birkhauser, Boston, 1999.

Sipser, M., Introduction to the Theory of Computation, PWS Publishing Company,
Boston, Massachusetts, 1997.

Stannett, M., X-machines and the halting problem: Building a super-Turing machine,
Formal Aspects of Computing, Vol. 2, No. 4, 1990, pp. 331-341.

Steinhart, E., Infinitely complex machines, in: Intelligent Computing Fverywhere, A.
Schuster, Ed., Springer, New York, 2007, pp. 25-43.

Stepney, S., Non-classical hypercomputation, International Journal of Unconventional
Computing, Vol. 5, Nos. 3-4, 2009, pp. 267-276.

Syropoulos, A., Hypercomputation, Springer, New York, 2008.

A.M. Turing, On computable numbers with an application to the Entscheidungsprob-
lem, Proceedings of the London mathematical Society, Ser. 2, Vol. 42, 1936, pp. 230-265;
Vol. 43, 1937, pp. 544-546.

Van Leeuwen, J. and Wiedermann J., The Turing machine paradigm in contempo-
rary computing, in: Mathematics Unlimited - 2001 and Beyond, B. Engquist and W.
Schmidt, Eds., Springer-Verlag, Berlin, 2000, pp. 1139-1156.

Wegner, P., Why interaction is more powerful than algorithms, Communications of
the ACM, Vol. 40, No. 5, May 1997, pp. 80-91.

Zomaya, A.Y., Ed., Parallel and Distributed Computing Handbook, McGraw-Hill, New
York, 1996.

13



