
International Journal of Computers and Applications, Vol. 25, No. 2, 2003

REAL-TIME COMPUTATION: A FORMAL

DEFINITION AND ITS APPLICATIONS

S.D. Bruda∗ and S.G. Akl∗

Abstract

The concept of real time has different meanings in the systems and
theory communities. Thus, the existing formal real-time models do
not capture all the practically relevant aspects of such computations.
This article proposes a new definition that, we believe, allows
a unified treatment of all practically meaningful variants of real-
time computations. We use the developed formalism to mode two
important features of real-time algorithms, namely the presence of
deadlines and the real-time arrival of input data. We also emphasize
the expressive power of our model by using it to formalize aspects
from the areas of real-time database systems and ad hoc networks.
We offer formulations of the recognition problem for real-time
database systems and of the routing problem in ad hoc networks.
Finally, we suggest a variant of our formalism that is suited for
modelling parallel distributed real-time algorithms. We believe that
the proposed formalism is a first step towards a unified and realistic
complexity theory for real-time parallel computations.

Key Words

Real-time computation, timed languages, ω-languages, parallel
complexity, real-time databases, ad hoc networks

1. Introduction

The area of real-time computations has a strong practical
grounding in domains-like operating systems, databases,
and the control of physical processes. Besides these practi-
cal applications, however, research in this area is primarily
focused on formal methods and on communication issues
in distributed real-time systems. By contrast, little work
has been done in the direction of applied complexity the-
ory. In fact, the limited extent of this work is emphasized
by the fact that even a realistic general definition for
real-time algorithms is missing, although implicit defini-
tions can be found in many places. Some papers have
tried to address this issue, providing abstract machines
that model real-time algorithms. In this context, the real-
time Turing machine [1, 2] fails to capture many aspects

∗ Department of Computing and Information Science, Queen’s
University, Kingston, Ontario, K7L 3N6 Canada; e-mail:
{bruda, akl}@cs.queensu.ca

(paper no. 202-1217)

that are important in practice, whereas the real-time pro-
ducer/consumer paradigm [3] is suitable for modelling
certain real-time systems rather than for developing a
general complexity theory. Finally, the power of the the
languages recognized by timed automata [4] is limited,
as there are real-time problems that cannot be formal-
ized as languages recognizable by memoryless finite-state
models.

Indeed, the domain of real-time systems is very
complex, with requirements varying from application to
application. This complexity is probably the main obsta-
cle to a unified theory. In this work, we try to address
this issue. We believe that the model of timed languages
[4] is a powerful tool, but the device used as acceptor is
rather weak. We suggest, therefore, an extension of this
study. We keep most of the important ingredients in the
definition of timed languages, but we apply such a defi-
nition to a larger extent, suggesting a general model for
the acceptors of such languages. We introduce a variant of
the model from [4], called well-behaved timed ω-languages.
Then we present the structure of an acceptor for them.
We believe that our construction captures all the practi-
cal aspects of real-time computations. That is, our thesis
is that well-behaved timed ω-languages model exactly all
real-time computations.

Starting from Section 3, this article can be viewed
as split into two main parts. The first part (Section 3)
introduces the theory of timed ω-languages and real-time
algorithms. The second part (Sections 4 and 5) supports
our thesis. Indeed, we show in Section 4 how those ingre-
dients that, when present, give to some problem the
“real-time” qualifier (namely, computing with deadlines,
and input data that arrive in real-time) can be modelled
using our formalism. The expressiveness of the formalism is
emphasized in Section 5, by modelling important practical
problems from the domains of real-time database systems
and ad hoc networks. We also identify in Section 6 a variant
of our model that is particularly suited for studying parallel
and distributed real-time systems by explicitly modelling
the parallelism and distributedness of the system.

We believe that, starting from the formalism developed
in this article, a unified complexity theory for real-time
systems can be naturally developed.

1

2. Preliminaries

Σ∗ is the set of all the words of finite length over Σ;
ω = |N|; Σω contains exactly all the words over Σ of length
ω. Given two (infinite or finite) words σ = σ1σ2 · · · and
σ′ = σ′

1σ
′
2 · · · , we say that σ′ is a subsequence of σ iff (1)

for each σ′
i there exists a σj such that σ′

i = σj , and (2)
for any i, j, k, l ≥ 0 such that σ′

i = σj and σ′
k = σl, it

holds that i > k iff j > l. A finite automaton is a tuple
A = (Σ, S, s0, δ, F). Σ is the input alphabet, S is a (finite)
set of states, s0 is the initial state, δ ∈ S × S × Σ is the
transition relation, and F ⊆ S is the set of accepting states.

As our model is based on the theory of timed automata,
it what follows we briefly review in what follows this
theory, according to [4]. A Büchi-automaton is a finite-state
automaton A = (Σ, S, s0, δ, F) whose accepting condition
is modified: given an (infinite) word σ = σ1σ2 · · · , the
sequence r = s0

σ1→ s1
σ2→ s2

σ3→· · · is called a run of A over
σ whenever (si−1, si, σi) ∈ δ, i > 0. inf(r) is the set of all
the states s in r such that s = si for infinitely many i. σ is
accepted iff there exists a run r such that inf(r) ∩ F 	= ∅.

A time sequence τ = τ1τ2 · · · is an infinite sequence of
positive real values, such that the following constraints are
satisfied: (1) monotonicity: τi ≤ τi+1 for all i ≥ 0; and (2)
progress: for any t ∈ R, there exists some i ≥ 1 such that
τi > t. A timed ω-word over some alphabet Σ is a pair
(σ, τ), where σ ∈ Σω and τ is a time sequence. The time
value τi associated with some symbol σi can be considered
the time at which the corresponding symbol becomes
available. A timed ω-language is a set of timed ω-words.

A clock x is a variable over R, with two associated
operations: reading the value of x and resetting x to zero.
The value of x corresponds to the time elapsed from the
moment when x has been most recently reset. For a set X
of clocks, a set of constraints Φ(X) is defined by: d ∈ Φ(X)
iff d is of the form x ≤ c, c ≤ x, ¬d1, or d1 ∧ d2, for
a constant c, x ∈ X and d1, d2 ∈ Φ(X). A timed Büchi
automaton (TBA) is a tuple A = (Σ, S, s0, δ, C, F), where
C is a finite set of clocks and δ ⊆ S × S × Σ× 2C × Φ(C).
If (s, s′, a, l, d) ∈ δ, then l is the set of clocks to be reset
during the transition and d ∈ Φ(C). The transition is
enabled only if d is valued to true using the current values
of the clocks in C.

A run r of a TBA A = (Σ, S, s0, δ, C, F) over
(σ, τ) is an infinite sequence of the form: r = (s0, ν0)
σ1,τ1−→ (s1, ν1)

σ2,τ2−→ (s2, ν2)
σ3,τ3−→ · · · where σ = σ1σ2 · · · , τ =

τ1τ2 · · · , νi ∈ {f |f : C → R}, i ≥ 0, and the following
conditions hold: ν0(x) = 0 for all x ∈ C; and for all
i > 0, there exists a transition (si−1, si, σi, li, di) ∈ δ such
that (νi−1 + τi − τi−1) satisfies di, for all x ∈ C − li,
νi(x) = νi−1(x) + τi − τi−1, and, for all x′ ∈ li, νi(x

′) = 0.
A timed ω-language accepted by some TBA is ω-regular.

3. Timed Languages

Even if timed regular languages look well suited for mod-
elling real-time computations, the TBA is not sufficiently
powerful for this purpose:

Theorem 1. There exist languages formed by infinite
words (ω-languages) that are not ω-regular. Thus, there
exist timed ω-languages that are not (timed) ω-regular.

Proof. Consider the (nonregular) language L =
{aubxcvdx|u, x, v > 0}. Let Lω = {l1$l2$l3$ · · · |li ∈ L,
i > 0, $ 	∈ Σ}. Assume that Lω is ω-regular. Then there
exists a run r of some Büchi automaton A over x ∈ Lω

such that inf(r) ∩ F 	= ∅. Let S1 (S2) be the set of all the
states in r that A is into immediately after (before) parsing
a symbol $, S1, S2 ⊆ S. We construct a finite automaton
A′ that recognizes L: the initial state of is s′ 	∈S; the set
of states is S ∪ {s′}; the set of final states is S2; and the
transition relation is δ, augmented with λ-transitions from
s′ to each state in S1. The existence of A

′ is a contradiction.
✷

Note that the language Lω built in the proof of Theo-
rem 1 is not uninteresting from a practical point of view,
as it models a search into a database (aubxcv) for a given
key (dx) matched in the database by bx. We just found
some practical situation that does not pertain to the class
of (timed) ω-regular languages.

3.1 A Formal Definition

Despite the limited scope of the finite-state approach, the
concept of timed languages is a very powerful one. We
therefore propose a definition that is similar to the one
in [4], but is not restricted to finite-state acceptors. Our
presentation is clearer if we use a slightly modified concept
of time sequence.

Definition 1. A sequence τ ∈ N
ω, τ = τ1τ2 · · · , is a time

sequence if it is an infinite sequence of positive values,
such that the monotonicity constraint is satisfied. A finite
subsequence of a time sequence is also a time sequence. A
well-behaved time sequence is a time sequence for which
the progress condition holds.

A time sequence may be finite or infinite, whereas a
well-behaved time sequence is always infinite. In fact, a
well-behaved time sequence, in our terminology, is identical
to the concept of time sequence used in [4].

Definition 2. A (well-behaved) timed ω-word over an
alphabet Σ is a pair (σ, τ), where τ is a (well-behaved) time
sequence and, if τ ∈ N

k, then σ ∈ Σk, k ∈ N∪{ω}. Given a
symbol σi from σ, the associated τi of the time sequence τ
represents the time at which σi becomes available as input.
A (well-behaved) timed ω-language over some alphabet Σ
is a set of (well-behaved) timed ω-words over Σ.

Definition 2 is an natural extension of the definition of
timed regular languages, except that we added the “well-
behaved” qualifier, generated by the modified terminology
presented in Definition 1.

The union, intersection, and complement for timed
ω-languages are straightforwardly defined. One can rely

2

on the semantics of timed words in defining a mean-
ingful concatenation operation. Thus, the concatenation
of two timed words is defined as the union of their
sequences of symbols, ordered in nondecreasing order
of their arrival time:1 Let (σ′, τ ′) and (σ′′, τ ′′) be two
timed ω-words. Then (σ, τ) is the concatenation of (σ′, τ ′)
and (σ′′, τ ′′) ((σ, τ) = (σ′, τ ′)(σ′′, τ ′′)) iff (1) τ is a time
sequence; (σ′

1, τ
′
1)(σ

′
2, τ

′
2) · · · and (σ′′

1 , τ ′′
1)(σ

′′
2 , τ ′′

2) · · · are
subsequences of (σ1, τ1)(σ2, τ2) · · · ; for any i > 0, there
exists j > 0 and d ∈ {′, ′′} such that (σi, τi) = (σd

j , τ
d
j); (2)

for any d ∈ {′, ′′} and any 0 ≤ i < j, such that τd
k = τd

l

for any k, l, i ≤ k < l ≤ j, there exists m such that, for
any 0 ≤ ι ≤ j − i, (σm+ι, τm+ι) = (σd

i+ι, τ
d
i+ι); and (3)

for any i, j ≥ 0 such that τ ′
i = τ ′′

j , there exist k and l,
k < l, such that (σk, τk) = (σ′

i, τ
′
i) and (σl, τl) = (σ′′

j , τ ′′
j).

The concatenation of timed ω-words is clearly associative.
Given two timed ω-languages L1 and L2, the concatenation
of L1 and L2 is L1L2 = {w1w2|w1 ∈ L1, w2 ∈ L2}. The
notation

∏n
i=1 wi (

∏n
i=1 Li) is a shorthand for w1w2 · · ·wn

(L1L2 · · ·Ln). For some timed ω-language L, let L0 = ∅,
L1 = L, and Lk = LLk−1, k > 1. The Kleene closure of L
is L∗ =

⋃
0≤k<ω Lk.

Theorem 2. The set of (well-behaved) timed ω-
languages is closed under intersection, union, complement,
concatenation, and Kleene closure, under a proper def-
inition of the latter two operations. A subset of a
(well-behaved) timed ω-language is a (well-behaved) timed
ω-language.

3.2 Accepting Timed Languages

In light of Definition 2, we can also establish the general
form of an acceptor for timed languages:

Definition 3. A real-time algorithmA consists in a finite
control (i.e., a program), an input tape (i.e., an input
stream) that contains a timed ω-word, and a write-only
output tape (i.e., an output stream) containing symbols
from some alphabet ∆ that are written by A. The input
tape has the same semantics as a timed ω-word: if (σi, τi)
is an element of the input tape, then σi is available for A
at precisely the time τi. During any time unit, A may add
at most one symbol to the output tape. o(A,w) denotes
the content of the output tape of A working on input w.
A may have access to an infinite amount of storage space
(working tape(s), RAM memory, etc.) outside the input
and output tapes, but only a finite amount of this space
can be used for any computation.

A real-time algorithm A accepts the timed ω-language
L if, on any input w, |o(A,w)|f = ω iff w ∈ L, for some
designated symbol f ∈ ∆.

1 Intuitively, such an operation is similar to merging two
sequences of pairs (symbol, time value), that are sorted with
respect to the time values. Two additional constraints (ordering
the result in the absence of any ordering based on the arrival
time) are imposed, so that nondeterminism is eliminated.

It is assumed that the input of a real-time algorithm is
always a (not necessarily well-formed) timed ω-word.

It is worth mentioning that the actual meaning of the
symbol f might be different from algorithm to algorithm,
but such a distinction is immaterial for the global theory of
timed ω-languages. Indeed, consider an aperiodic real-time
computation, for example, a computation with some dead-
line. If for some particular input, the computation meets
its deadline, then from now on the real-time algorithm
that accepts the language modelling this problem may
keep writing f on the output tape; the first appearance
of f signals a successful computation, but the subsequent
occurrences do not add any information, being present for
the sole purpose of respecting the acceptance condition.
On the other hand, consider the timed language associ-
ated with a periodic computation, for example, a periodic
query in a real-time database system. Then f might appear
on the output tape each time an occurrence of the query
is successfully served (obviously, a failure could prevent
further occurrences of f , should the specification of the
problem require that all the queries be served). In this
case, each occurrence of f signals a successfully served
query. However, even if the actual meaning of the fs on
the output tape can vary from application to application,
the acceptance condition remains invariant throughout the
domain of real-time computations.

Note that a TBA is equipped with a set of clocks, as
a finite automaton does not have access to any amount
of storage space, but it has to keep track of time. On the
other hand, clocks are not mentioned in Definition 3. This
omission is intentional. As opposed to a TBA, a real-time
algorithm has access to storage space; hence it can use (part
of) this storage for time-keeping purposes. The absence of
clocks implies that, by contrast to TBA, there are no time
constraints on state transitions in a real-time algorithm.
Such constraints are, however, made immaterial by the
semantics of the input tape. Indeed, an input symbol is
not available to the algorithm at a time smaller than the
timestamp of that symbol. We believe that this constraint
is sufficient as, conforming to Definition 3, time restrictions
are imposed by the input itself. Note that real world real-
time applications have the same property: their behaviour
should conform to time restrictions imposed on their input
and/or output rather than internal temporal constraints.

3.3 Comments

The term real-time is used complexity theorists in a
somewhat different manner than by those in the real-
time systems community. Indeed, systems researchers use
the term to refer to those computations in which the
notion of correctness is linked to the notion of time [5].
By contrast, theorists often use real-time as synonym
for online or linear time (the real-time Turing machine
[1, 2] is probably the best example for the latter use). The
model of well-behaved timed ω-languages intends to bridge
this gap: although it is a formal model, it captures all
the features of real-time computations as understood by
the systems community. Therefore, this model has little

3

in common with the theorists’ real-time concept. However,
we believe not only that well-behaved timed ω-languages
accurately model the notion of real-time computation used
in the systems community, but also that our model can be
the basis of a meaningful complexity theory of real-time
systems.

Claim 1. Well-behaved timed ω-languages model exactly
all real-time computations.

We intend to investigate a complexity-theoretical
approach to real-time computations. In other words, our
intended research direction is to define complexity classes
for timed ω-languages, that capture an intuitive notion of
real-time efficiency, and study the relations between these
classes and between them and existing complexity classes.
Classical complexity theory is of central concern not only
for theorists but also for practitioners. For example, the
existence of a lower complexity bound for some problem
is an important point: no matter how clever a program
is, the bound cannot be overcome. Practitioners in the
real-time systems area do not have such a theory to refer
to. As a consequence, any question related to resource
allocation and even solvability for a real-time problem is
unique, in the sense that the answer to such a question
should be developed from scratch (by either experiments
or individualized proofs). A complexity-theoretic approach
to real-time algorithms should offer a common ground
to which practitioners can refer in order to get readily
available answers to the mentioned questions.

Suppose we prefix real-time complexity classes by
“rt−.” Then, some possible complexity classes are
rt–PROC(f) (parallel f(n)-processor real-time algo-
rithms). The relations between these classes can be inves-
tigated. For example, an interesting question might be: is
the hierarchy rt–PROC(f) infinite? In other words, given
any number k of processors, is there a well-behaved timed
ω-language that can be accepted by a k-processor real-time
algorithm but cannot be accepted by a (k − 1)-processor
one? If the answer is negative, then a practitioner looking
at implementing some system might give less consideration
to a parallel implementation and focus first on some other
options, such as obtaining a timely approximate solution
instead of an exact solution that is available too late. On
the contrary, should the answer be positive, considering a
parallel implementation might become a high priority for
the practitioner.

Finally, we note some differences and similarities
between timed ω-languages (i.e., real-time algorithms) and
classical formal languages (i.e., classical algorithms). On
the one hand, it is immediate that formal languages are
particular cases of timed ω-languages. Indeed, save for the
time sequence, any word is a timed ω-word. If one relies
on the semantics of the time sequence, one can add the
time sequence 00 · · · 0 to a classical word and obtain the
corresponding timed ω-word. However, none of the timed
ω-words obtained in this manner is well behaved. We thus
have a crisp delimitation between real-time and classical
algorithms, while keeping the formalisms as unified as
possible.

4. Real-Time Models

Our thesis is that the theory of timed languages covers all
the practically meaningful aspects of real-time computa-
tions, while doing so in a formal, unified manner. In order
to support this thesis, we take some meaningful examples
and construct timed ω-languages that model them. First,
we model two general concepts that are central to real-time
systems, namely, computing with deadlines, and real-time
input arrival. The appearance of either of these concepts
in the specification of some problem gives the real-time
characteristic to that problem [5]. Thus, being able to con-
struct a suitable model for these concepts is crucial to the
usefulness of the theory of timed ω-languages. Once models
for these concepts are in place, one can use them in order
to analyse practical real-time applications. Indeed, we shall
further consider two applications and use the results from
this section in order to build formal models for them.

Given some problem, we denote the input (output)
alphabet by Σ (Ω). We denote by n and m the sizes of
the input ι and of the output o. When a timed ω-word
is denoted by (σ, τ), we consider that σ = σ1σ2 · · · and
τ = τ1τ2 · · · . We consider without loss of generality that
Σ, Ω, and N are disjoint.

4.1 Computing with Deadlines

One of the most often encountered real-time features is the
presence of deadlines. The deadlines are typically classified
into firm deadlines, when a computation that exceeds the
deadline is useless, and soft deadlines, where the usefulness
of the computation decreases as time elapses [6].

Let Π be a problem whose instances can be classified
into three classes: (1) no deadline is imposed; (2) a firm
deadline is imposed at time td; (3) a soft deadline is imposed
at time td and the usefulness function is u: [td, ω) →
[max, 0] after this deadline. We build for each instance a
timed ω-word (σ, τ) over Σ ∪ Ω ∪ (N ∩ [max, 0]) ∪ {w, d},
w, d 	∈ Σ∪Ω as follows. (1) σ1 · · ·σm = o, σm+1 · · ·σm+n =
ι, σi = w for i > m + n, τi = 0 for 1 ≤ i ≤ m + n, and
τi = i − m − n for i > m + n. (2) σ1 ∈ N ∩ [max, 0),
σ2 · · ·σm+1 = o, σm+2 · · ·σm+n+1 = ι, τi = 0 for 1 ≤ i ≤
m+n+1; if τi < td and i > m+n+1, then τi = i−m−n−1
and σi = w. Let i0 be the index such that τi = td. Then,
for all i ≥ i0, τi = i0 + �(i − i0)/2�, and σi = d if i − i0
is even and 0 otherwise. (3) Same as case (2), except that
σi = �u(τi)� whenever i − i0 is odd.

Let the language formed by all the ω-words that con-
form to the above description be L. Basically, a timed
ω-word in L has the following properties: at time 0, a
possible output and a possible input for Π are available.
Then, up to the deadline d, the symbols that arrive are
w. After that, each time unit brings to the input a pair
of symbols, the first component being d (signaling that
the deadline passed) and the second one being the mea-
sure of usefulness the computation still has (which is 0
forever when the deadline is firm). When a deadline is
imposed over the computation (cases (2) and (3)), a mini-
mum acceptable usefulness estimate is also present at the

4

beginning of the computation. Let L(Π) be the language of
successful instances of Π, L(Π) ⊆ L, in the sense that an
ω-word x from L is in L(Π) iff some algorithm that solves
Π, when processing the input from x, outputs the output
from x either within the imposed deadline (if any), or at
a time when the usefulness of the process is not below the
acceptable limit from x.

We are now ready to present an acceptor for L(Π).
For simplicity, we consider that this acceptor is composed
of two “processes,” Pw and Pm. Pw is an algorithm that
solves Π, which works on the input of Π contained in
the current input ω-word, and stores the solution in some
designated memory space upon termination. If there is
more than one solution for the current instance, then Pw

nondeterministically chooses that solution that matches
the proposed solution contained in the ω-word, if such a
solution exists. Meantime, Pm monitors the input. If at the
moment Pw terminates the current symbol is w then Pm

compares the solution computed by Pw with the proposed
solution and imposes on the whole acceptor some “final”
state sf (which is the only state that writes f to the
output tape) if they are identical, or some other designated
state sr (for “reject”) otherwise. On the other hand, if
at the moment Pw terminates the current symbol is d,
then the deadline passed. Then Pm compares the current
usefulness measure with the minimum acceptable one. If
the usefulness is not acceptable, Pm imposes the state sr
on the whole acceptor. Otherwise, Pm compares the result
computed by Pw with the proposed solution and imposes
either the state sf or sr, accordingly. Once in one of the
states sf or sr, the acceptor keeps cycling in the same state.
In state sf , the acceptor writes f on the output tape. The
output tape is not modified in any other state. It is clear
that the language accepted by the above acceptor is exactly
L(Π). It is also clear that L(Π) is well behaved. Thus we
complete the modelling of computations with deadlines in
terms of ω-languages.

4.2 Real-Time Input Arrival

We assumed in the previous section that all the input data
are available at the beginning of computation. However,
the case when data arrive while the computation is in
progress is easily modelled by modifying the timestamps
that correspond with each item of input data. One of
the computational paradigms that feature real-time input
arrival is the data-accumulating paradigm, which has been
extensively studied in [7, 8]. The shape of input in this
paradigm is very flexible, and any practically important
form of real-time input arrival can be modelled by a par-
ticular class of problems within this paradigm. Therefore,
in what follows we use the data-accumulating paradigm
to illustrate the concept of real-time input arrival. Further
models of this concept are also presented in Section 5.

A data-accumulating algorithm (d-algorithm) works
on an input considered as a virtually endless stream. The
computation terminates when all the currently arrived
data have been processed before another datum arrives. In
addition, the arrival rate of the input data is given by some

function f(n, t) (the data arrival law), where n denotes the
amount of data that is available beforehand, and t denotes
the time. The family of arrival laws most commonly used
as examples is f(n, t) = n + knγtβ , where k, γ, and β
are positive constants. Any successful computation of a
d-algorithm terminates in finite time.

Given a problem Π pertaining to this paradigm, we can
build the corresponding timed ω-language L(Π) similarly
to Section 4.1: Given some (infinite) input word ι for Π
(together with some f(n, t) and some n), and a possible
output o of an algorithm solving Π with input ι, a timed
ω-word (σ, τ) that may pertain to L(Π) is constructed as
follows: σ1 · · ·σm = o, σm+1 · · ·σm+n = ι1 · · · ιn, τi = 0
for 1 ≤ i ≤ m + n. Note that, as both the arrival law and
the initial amount of data are known, one can establish
the time of arrival for each input symbol ιj , j > n. Let us
denote this arrival time by tj . Also, let i0 = m + n + 1.
Then the continuation of the timed ω-word is as follows:
for all i ≥ 0, σi0+2i = c (where c is a special symbol), and
σi0+2i+1 = ιi0+i; moreover, τi0+2i+1 = ti0+i and τi0+2i =
τi0+2i+1 − 1.

Now, an acceptor for L(Π) has a structure that is
identical2 to the one used in Section 4.1: it consists in the
two processes Pw and Pm. Pw works exactly like the Pw

from Section 4.1, except that it emits some special signal to
Pm each time it finishes the processing of one item of input
data. Note that, as any d-algorithm is an online algorithm
[8], it follows that once such a signal is emitted the p-th
time, Pw has a (partial) solution immediately available for
the input word ι1 · · · ιp.

Then suppose that Pm received p signals from Pw,
and it also received the input symbol σi0+2(p−1−i0), but
it did not yet receive the input symbol σi0+2(p−i0). This
is the only case when Pm attempts to interfere with the
computation of Pw. In this case, Pm compares the current
solution computed by Pw with the solution proposed in the
input ω-word; if they are identical, the input is accepted,
and otherwise the input is rejected (in the sense that either
state sf or sr is imposed upon the acceptor, accordingly). It
is clear that L(Π) is well behaved and contains exactly all
the successful instances of Π; therefore we have succeeded
in modelling d-algorithms using timed ω-languages.

5. Applications

In Sections 4.1 and 4.2 we modelled the two main ingredi-
ents that, when present, impose the real-time qualifier on
the problem. This supports our thesis that the theory of
timed languages covers all the practically relevant aspects
of real-time computations. In order also to emphasize the
expressiveness of the formalism, we provide, in what fol-
lows, timed ω-languages that model problems from two
highly practical areas: real-time databases (where we iden-
tify a real-time variant of the recognition problem) and

2 In particular, if there is more than one solution for the current
instance, then Pw nondeterministically chooses that solution
that matches the proposed solution contained in the ω-word,
if such a solution exists.

5

ad hoc networks (where we offer a formal model for the
routing problem).

5.1 Real-Time Database Systems

We start by briefly reviewing the main concepts of the
relational and real-time database systems theory in order to
summarize the notations and concepts that are used later,
directing the interested reader to [9, 10] for a more detailed
presentation. Then we use our formalism for modelling
the recognition problem for real-time database systems
(RTDBS for short).

Relational databases. Fix two countably infinite sets
att (of attributes) and dom (the underlying domain, dis-
joint from att). A relation is given by its name and its
ordered set of attributes (its sort). Given a relation R, the
arity of R is arity(R) = |sort(R)|. A relation schema is a
relation name R. A database schema is a nonempty finite
set R of relation names. Let R be a relation of arity n.
A tuple over R is an expression R(a1, a2, . . . , an), where
ai ∈ att, 1 ≤ i ≤ n. A relation instance over R is a finite
set of tuples over R. A (database) instance I over some
database schema R is the union of relation instances over
R. The sets of instances over a database schema R (rela-
tion schema R) are denoted by inst(R) (inst(R)). The
interrogation of a database is accomplished by queries. A
query q is a partial mapping from inst(R) to inst(S), for
fixed database schema R and relation schema S.

The (data) complexity of queries is defined based on
the recognition problem associated with the query [9].
For a query q, the recognition problem is the language
{enc(I)$enc(u)|u ∈ q(I)}, where enc denotes a suitable
encoding over queries and tuples, and $ is a special symbol.
The (data) complexity of q is the (conventional) complexity
of its recognition problem. For each conventional (time,
space, processors) complexity class C, one can define a
corresponding complexity class of queries QC.

Real-time databases. An active database supports
the automatic triggering of updates (rules) in response
to (internal or external) events. The typical form of a
rule is “on event if condition then action.” An action
may in turn generate other events and hence trigger other
rules. A fundamental issue in active databases addresses
the choice of an execution model (i.e., a semantics for
rule application), with an important dimension of variation
given by the moment the rules are fired: immediate firing
(a rule is fired as soon as its event and condition become
true), deferred firing (rule invocation is delayed until the
final state in the absence of any rule is reached), and
concurrent firing (a separate process is spawned for the rule
action and is executed concurrently). In the most general
model, each rule has an associated firing mode.

RTDBSs add temporal and timeliness dimensions to
active databases. Indeed, a real-time database interacts
with the physical world, and the database is thus active. In
addition, data in a real-time database are time sensitive,
and the transactions must be timely, that is, they must
complete within their time constraints (deadlines). We
briefly present in the following the data model used in [10].

The objects from the database are grouped into
three categories. Image objects are those objects that
contain information obtained directly from the external
environment. Associated with an image object is the most
recent sampling time. A derived object is computed from
a set of image objects and possibly other objects. The
timestamp associated with a derived object is the oldest
valid time of the data objects used to derive it. Finally,
an invariant object is a value that is constant with
time. Then, a real-time database instance is defined as
B = (I1, I2, . . . , In, D, V), where In is the most recent set
of image objects and I1, I2, . . . , In−1 are archival variants
of this set. D is the set of derived objects, and V is the
set of invariant ones. It is assumed that the difference
between the valid time and the transaction time is small.
Time is considered discrete and linear. The valid time asso-
ciated with each temporal object in the database instance
is called the lifespan of the object. The lifespan of a data
object is defined as a finite union of intervals that form a
Boolean algebra. A lifespan can also be associated with a
set of objects, in a natural manner. Based on these notions,
a variant of relational algebra can be defined as a query
language for real-time databases [10].

Additional issues in RTDBSs include the pattern of
queries (periodic, sporadic, aperiodic), the nature of dead-
lines (hard, firm, soft), and the way the updating rules
are fired. Although the first two issues have received both
theoretical and practical attention in the literature, to
our knowledge there is no special theoretical treatment
of the last issue, except for the one that is a spawn of
active database theory. Immediate firing in the case of
image objects is implied in [10], and therefore in the above
paragraphs.

Some aperiodic query q is a partial function from B to
inst(S), where S is some relation. A periodic query returns
an answer each time it is issued; therefore such a query is
a function from B to (inst(S))ω.

5.1.1 RTDBSs as Timed Languages

It seems natural to try to model RTDBSs using timed
languages. We describe such a modelling in what follows.
We consider that there is a suitable encoding function enc
that encodes objects and sets of objects, without giving
much attention to how such a function is constructed, as
such functions were widely used. Let $ be a symbol that is
not in the codomain of enc.

We ignore queries for the moment. Recall that a real-
time database instance is a tuple B = (I1, I2, . . . , In, D, V).
Assume for now that the database contains exactly one
image object ok, and that the value of ok is read
from the external world each tk time units. Let D (V)
be some set of derived (invariant) objects, with m =
|enc(V)| and p = |enc(D)|, and ok(t) be the value of
ok that is read at time t from the external world.
Consider then the timed ω-word dbk = (σ, τ), having
the following form: let3 q = |enc(ok)|; then for any

3 We assume for clarity of presentation that the length of the
encoding of ok is constant over time. The extension to a
variable length is straightforward.

6

i ≥ 0, σα+i(q+1)+1 · · ·σα+(i+1)(q+1) = enc(ok(ti))$, where
α = m + p + 2, and τj = iti for α + i(q + 1) + 1 ≤
j ≤ α + (i + 1)(q + 1). Let db0 = (σ′, τ ′), such that
σ′
1 · · ·σ′

m = enc(V), σ′(m + 1) = σ′(m + p + 2) = $,
and σ′

m+2 · · ·σ′
m+p+1 = enc(D); in addition, τ ′

i = 0,
1 ≤ i ≤ m+ p+ 2.

In other words, the sets of both invariant and derived
objects are specified at time 0, as modelled by the word
db0. Then each tk time units a new value for ok is provided.
This is modelled by dbk. It is clear that the database
instance is completely specified by the word db0dbk, as this
word models the invariant and derived objects (by db0), as
well as all the updates for the sole image object (by dbk).

We consider now the general case of a real-time
database. That is, let the database instance contain r image
objects ok, 1 ≤ k ≤ r. If we consider a word dbk corre-
sponding to each object ok, 1 ≤ k ≤ r, then it is clear that
the database is described by the word dbB = db0db1 · · · dbr.

We now have a model for real-time databases, on which
is trivially a well-behaved timed ω-language. Now all that
we have to do is to consider the queries. Again, we assume
without further details that there is a function encq for
encoding queries and their answers, whose codomain is
disjunct from the codomain of enc.

Let us focus on aperiodic queries first. Each such query
q may have a firm or soft deadline. However, it seems
natural to also consider queries without any deadline, as
they might be present even in a real-time environment.
Therefore, the encoding of a query should include (a) the
time t at which the query is issued, (b) the (encoding
of) the query itself encq(q), (c) a tuple s that might be
included in the answer to the query, and (d) the deadline
td of the query, if any.

Note that a similar problem is the presence of dead-
lines, considered in Section 4.1, except that the first item
is not modelled (the computation always starts at time 0).
Therefore, our construction is similar to the construction
of the language that models computations with deadlines.
We have thus a query for which (a) there is no deadline,
(b) a firm deadline is present, or (c) a soft deadline is
present. The deadline (if any) is imposed at some relative
time td (i.e., the moment in time at which the deadline
occur is t + td), and the usefulness function is denoted
by u (u: [td,∞) → N ∩ [max, 0]). For each query q and
each candidate tuple s we build an ω-word aq[q,s,t] = (σ, τ)
as follows, where m = |encq(s)$|, n = |encq(q)$|, and
$, wq, dq are not contained in the codomain of encq: (1)
σ1 · · ·σm = encq(s)$, σm+1 · · ·σm+n = encq(q)$, σi = wq

for i > m+n, τi = t for 1 ≤ i ≤ m+n, and τi = t+i−m−n
for i > m+n. (2) σ1 ∈N∩ [max, 0), σ2 · · ·σm+1 = encq(s)$,
σm+2 · · ·σm+n+1 = encq(q)$, τi = t for 1 ≤ i ≤ m+ n+ 1;
if τi < td and i > m+n+1, then τi = t+ i−m−n−1 and
σi = wq. Let i0 be the index such that τi = t + td. Then,
for all i ≥ i0, τi = t+ i0+ �(i− i0)/2�, and σi = dq if i− i0
is even and σi = 0 otherwise. (3) This case is the same as
case (2), except that for i ≥ i0 σi = �u(τi)� if i− i0 is odd.

Now, let q be a periodic query, issued for the first
time at time t and reissued each tp time units. Each
time q is issued, we have to consider a tuple whose
inclusion into the result of q is to be tested. Let si

be such a tuple for the ith invocation of q, and let
s = (s1, s2, s3, . . .). Such a query is modelled by the word
pq[q,s,t,tp] = aq[q,s1,t]aq[q,s2,t+tp]aq[q,s3,t+2tp] · · · . It is clear
that, for a word pq[q,s,t,tp] = (σ, τ) and for any finite pos-
itive integer k, there exists a finite integer k′ such that
τk′ ≥ k. Thus, pq[q,s,t,tp] is well behaved.

We have therefore modelled the main ingredients of a
RTDBS. All we have to do is to put the pieces together.

Definition 4. Let B be some real-time database
instance. Given some aperiodic query q from B to inst(S)
(where S is some relation schema), issued at time t,
the recognition problem for q on B is the (well-behaved)
timed ω-language Laq = {dbBaq[q,s,t]|s ∈ q(B)}. Analo-
gously, given a periodic query q from B to (inst(S))ω,
issued at time t and with period tp, the recognition prob-
lem for q on B is the (well-behaved) timed ω-language
Lpq = {dbBpq[q,s,t,tp]|s ∈ q(B)}.

5.2 Ad Hoc Networks

We now direct our attention to another real-time problem,
the routing problem in ad hoc networks. We show how to
model this problem using the theory of timed ω-languages.
In the process, we also identify an interesting variant of
real-time algorithms, which we believe to be useful in
modelling parallel distributed real-time systems.

An ad hoc network is a collection of wireless mobile
nodes that dynamically forms a temporary network
without using any existing infrastructure or centralized
administration [11]. In such a network, the set of those
nodes that can be directly reached by some host changes
with time. Because of this volatility of the set of directly
reachable nodes, each node should act not only as a host,
but as a router as well, forwarding packets to other hosts
in the network.

Although the concept of ad hoc networks is relatively
new, many routing algorithms have been developed (see,
e.g., [11] and the references therein). A comparative per-
formance evaluation was proposed for the first time in [11],
where several routing algorithms are compared based on
discrete event simulation. To our knowledge, no analytical
model have been proposed to date. On the other hand, an
ad hoc network is obviously a real-time system, similar to
the paradigm of correcting algorithms [12]. Therefore, one
can model ad hoc networks using timed ω-languages. This
is what we attempt in the following.

We assume that a message emitted by some node at
some time t is received by another node that is in the trans-
mission range of the sender at time t+1. We thus establish
a granularity of the time domain. This granularity seems
appropriate, as transmitting a message is an elementary
operation. We say that range(n1, n2, t) = true iff node n2

is in the transmission range of node n1 at time t.

5.2.1 The Routing Problem

The main component of a model for ad hoc networks is
the mobile host (or the node). It is consistent to assume

7

that each node in a network is uniquely identified (e.g.,
by its IP address). For convenience, we label such a node
by an integer between 1 and n, where n is the number of
nodes in the given network. We assume that there exists
an encoding function e of the properties of any node i
(the label i of the node, the position of i, other properties
that will be explained below) over some alphabet Σ, with
@, $ 	∈ Σ. Denote by Π the set of all possible properties.
Then, we say that x is the encoding of some property
π of node i iff x = enc(i, π), where enc: N × Π → Σ,
enc(i, π) = $e(i)$ if π = i and enc(i, π) = $e(i)@e(π)$
otherwise. In other words, we have a standard encoding,
except that each property of some node i (except i itself)
is prefixed by an encoding of i.

Each node i is characterized by its position, which
changes with time. Denote by pi(t) the (encoding of the)
position of node i at time t. In addition, each node has a
set of characteristics that are invariant with time (e.g., the
transmission range). The structure of this set is, however,
immaterial, and we consider that these characteristics are
encoded by some string qi for each node i.

We are now ready to consider a timed ω-word that
models some mobile host. A node i is modelled by the word
hi = (σ, τ), where σ = (qi)(

∏ω
t=0 pi(t)), and τ = τ1τ2 · · · ,

with τj = 0 for 1 ≤ j ≤ |qipi(0)|, and, for any k > 1,

τj = k, 1 + |qi| +
∏k−1

l=0 |pi(l)| ≤ j ≤ |qi| +
∏k

l=0 |pi(l)|. In
other words, the first part of hi contains the invariant set
of characteristics, together with the initial position of the
object that is modelled. The time values associated with
this subword are all 0. Then, the successive positions of the
node are specified, labelled with their corresponding time
values. It is clear that all the necessary information about
node i is contained in the word hi.

Now that we have a model for the set of nodes, all
we have to do is to connect them together. We have,
that is, to model message exchanges between nodes. Con-
sider a message u issued at some time t. Such a message
should contain the source node s and the destination
node d. In addition, a message may contain its type
(e.g., message or acknowledgment), the data that are to
be transmitted, and so on. All this content (referred to
as the body of the message) is, however, immaterial,
and we denote it by bu as a whole. Considering that
the encoding function e introduced above encodes mes-
sages over Σ as well, let the encoding of a message be
$e(t)@e(s)@e(d)@e(bm)$, |$e(t)@e(s)@e(d)@e(bu)$| = k.
The timed ω-word that models u is mu = (σ, τ),
where σ1 · · ·σk = $e(t)@e(s)@e(d)@e(bu)$ and τj = t for
1 ≤ j ≤ k. Note that mu is not a well-behaved timed
ω-word. However, for any node i, himu is well behaved.
In addition, for a message to exist, there must be at least
one node in the network (the sender). That is, a model of
a message would always be concatenated to the model of
at least one node. The above construction is thus sufficient
for our purposes.

One also needs to consider the model for the receiving
event. Assume that some message u (generated at time
tu, by source s) is received by its intended destination
d at time t′u. We model such an event by the timed
word ru = (σ, τ), where σ1 · · ·σk′ = $e(t)@e(s)@e(d)$ and

τj = t′u for 1 ≤ j ≤ k′, with k′ = |$e(t)@e(s)@e(d)$|.
Again, ru is not well behaved, but the above argument
still holds (no acknowledgment exists in a network with no
hosts).

An ad hoc network with n nodes and without
any message is modelled by the timed ω-word an =
h1h2 · · ·hn. Then, a network of n nodes and some mes-
sages u1, u2, . . . , uk, k ≥ 1 are modelled by the word
wn,k = h1h2 · · ·hnmu1mu2 · · ·muk

, and the model that
includes the event of receiving ui, 1 ≤ i ≤ k is
wrn,k = h1h2 · · ·hnmu1ru1mu2ru2 · · ·muk

ruk
. Given some

countably infinite series of messages u1u2 · · · , the model
of the network in which these messages are transmitted is
wrn,ω = h1h2 · · ·hnmu1ru1mu2ru2 · · · . Note that wn,ω is a
well-behaved timed ω-word under the reasonable assump-
tion that any node can generate only a bounded number
of messages per time unit. In the following we may refer to
the encoding mu of a message u simply by “the message
mu,” the exact meaning being given by the context. For a
fixed n, denote by Nn the set of all words of the form wn,k,
k ∈ N ∪ {ω}.

We are now ready to state the routing problem in ad
hoc networks as a timed ω-language. Consider a network
with n nodes, and a message u generated at time t, with
body b, that is to be routed from its source s to the
destination d. Then, a route of u is a word in the timed
ω-language Rn,u ⊆ Nn where, for some finite positive inte-
ger f , there exists a set of messages u1, u2, . . . , uf , and
possibly a set of messages rt1, rt2, . . . , rtg, with g a posi-
tive, finite integer, such that any w ∈ Rn,u has the form
w = h1h2 · · ·hnmu1ru1 · · ·muf

ruf
mrt1rrt1 · · ·mrtf rrtf .

For each message ui, 1 ≤ i ≤ f , denote by ti, t′i, si,
di, and bi the generation time, receiving time, source,
destination, and body of ui, respectively. Then, (a)
b1 = b2 = · · · = bf = b, s1 = s, df = d, t1 = t; (b)
for any i, 1 ≤ i ≤ f − 1, di = si+1, t′i = ti+1, and
range(si, di, ti) = true; and (c) t′f is finite.

In other words, the routing process generates f inter-
mediate, one-hop messages (u1, . . . , uf). The time at which
one of these messages arrives at the intended destination of
u is finite (otherwise, the routing process is unsuccessful).
In addition, there might exist a finite number of additional
messages (rt1, . . . , rtg), that are exchanges between nodes
in the routing process (e.g., when the routing tables at each
node are built/updated). In the following, we refer to some
language Rn,u as an (instance of a) routing problem, and
some particular word w ∈ Rn,u will be called an instance
of Rn,u, or just routing instance when Rn,u is understood
from the context. Note that the actual routing (performed
by some routing algorithm) of message u in some n-node
network is modelled by a word in the corresponding routing
problem.

Clearly, the languageRn,u models all the relevant char-
acteristics of a routing problem. Two routing algorithms
may be compared by comparing their corresponding words
from Rn,u, and more than one measure of performance may
be considered. The measures given in [11] are the routing
overhead (the total number of messages transmitted), path
optimality (the difference between the number of hops a
message took to reach its destination versus the length of

8

the shortest possible path), and the message delivery ratio
(the number of messages generated versus the number of
packets received). These measures have a clear correspon-
dent in our model. Indeed, for some w ∈ Rn,u, the routing
overhead is given by f + g, the total number of generated
messages; the number of hops is t′f − t1; and the delivery
ratio is |ρ|− |{w ∈ ρ|t′f − t1 ≤ T}|, where ρ =

⋃
u Rn,u, and

T is some finite threshold.4

5.2.2 On Routing Algorithms

To now, we have modelled the routing problem. Such an
approach offers a basis for comparing routing algorithms,
once the results of these algorithms are modelled as words
from Rn,u. On the other hand, nothing is said about the
routing algorithm itself. The immediate variant for such a
model takes the form of a real-time algorithm that accepts
the language Rn,u. However, further restrictions to such an
acceptor must be imposed: the real-world router consists in
n independent algorithms that have limited means of com-
munication. That is, two such nodes can communicate only
by messages exchanged between them. Put in another way,
a node is unaware of the properties of another node unless
it receives a message from (or about) that node. Based on
this intuition, we can propose a model for an n-node ad
hoc network. For specificity, we model a routing instance
w = h1h2 · · ·hnmu1ru1 · · ·muf

ruf
mrt1rrt1 · · ·mrtf rrtf .

Such a model has n component timed ω-words Hi,
1 ≤ i ≤ n, one for each node. Each Hi consists in a
“local” component Li and a “remote” component Ri, with
Li = himuj1

muj2
· · ·mujx

mrtk1
mrtk2

· · ·mrtky
, where 0 ≤

x ≤ f , 0 ≤ y ≤ g, 1 ≤ jl ≤ f for any l, 1 ≤ l ≤
x, and 1 ≤ kl ≤ g for any l, 1 ≤ l ≤ y. Moreover,
the source of each message ujl or rtkl

is i. That is, the
local component consists only in those messages that are
sent by the corresponding node, together with the space
coordinates of that node.

Given Li, for each j 	= i, 1 ≤ j ≤ n, denote by Mi,j the
set {rujl

|1 ≤ l ≤ x, dujl
= j} ∪ {rrtjl |1 ≤ l ≤ y, drtjl = j}.

That is, the set Mi,j contains the receiving events for all
the messages that are sent from node i to node j. Then
Ri = υ1 · · · υk, where υ1, . . . , υk are exactly all the elements
in the set ∪n

l=1Ml,i.
Finally, Hi = LiRi. In other words, the component

Hi contains only those messages that are sent by the
corresponding node and those messages that are received
by the node. Besides this information, no knowledge about
the external world exists.

6. Distributed Models

We presented, in Section 5.2.2, a distributed model for the
routing algorithm. However, such a model can be extended
for any distributed real-time algorithm.

The parallelism is introduced in the theory of timed
languages by the structure of their acceptors. Indeed, an

4 In practice, an infinite delivery time usually means that the
delivery time exceeds some finite threshold T .

implementation for such an acceptor can be considered
for any underlying model of computation. However, if
we use this approach, no information about the explicit
distributed character of the computation is present in the
language itself. As our goal is to present a consistent theory
of real-time computations, it is desirable to have such
information right within the language.

A similar construction was studied in the context of
conventional languages, namely, the parallel communi-
cating grammar systems (PCGS) introduced in [13] and
further studied in, for example, [14, 15]. A PCGS consists
in a number of grammars, with their own workspace, that
communicate to each other by means of special symbols.
Except for this communication, the grammars work inde-
pendently. The case of parallel grammar systems closely
resembles a real-world ad hoc network.5 Based on this
intuition, we can propose a model for parallel real-time
computations:

Consider a parallel algorithm with n processing ele-
ments. In general, one can assume that the implementation
is composed of a set of n processes that execute inde-
pendently and communicate with each other by messages.
Consider now some process k isolated from the external
world. It has to perform some real-time task; therefore, its
execution can be modelled by some timed ω-word. Call this
word ck. In addition to this computation, the process may
send messages to other processes. Let all these messages
be modelled by some timed ω-word lk. Furthermore, the
messages that are received by process k can be modelled
by a timed ω-word rk. Then, the behaviour of process k is
modelled by the timed ω-word cklkrk, 1 ≤ k ≤ n.

If some real-time algorithm consists in p such pro-
cesses, then its behaviour is modelled by the tuple
(c1l1r1, . . . , cplprp). We believe that once the theory for
timed ω-languages is in place, the study of the distributed
model presented above is worthwhile.

7. Towards a Complexity Theory

We believe that the notions of timed languages and real-
time algorithms as introduced in Section 3 are important
tools in developing a complexity theory for real-time sys-
tems, which simply does not exit at this time. In this work
we presented a general definition of this class of languages
and suggested that this definition is powerful enough to
model all the practically important aspects of real-time
computations. We supported our thesis with meaningful
examples.

Besides validating the thesis, the examples offered
some interesting insights into the theory of real-time sys-
tems. Specifically, we constructed a recognition problem
for queries in a RTDBS. Although query complexity issues
in traditional database systems have been studied [9],
the real-time domain has to our knowledge received no
attention. The analysis of complexity of queries in this

5 It should be noted, however, that although grammar systems
are generative devices, the discussion here instead focuses on
accepting devices. Therefore, PCGSs will be taken exclusively
as an intuitive support.

9

domain could be based on the newly developed recognition
problem, which is yet another argument in favour of the
mentioned complexity theory.

We also presented a model for the routing prob-
lem in ad hoc networks. Not only did we formalize this
problem, opening the road for a complexity analysis of
it, but we also identified a variant of our model, suit-
able for modelling distributed real-time computations. As
there is growing practical interest in distributed computa-
tions, such a model could be of interest. In particular, it
offers an alternative to the real-time producer/consumer
paradigm [3], one that is not restricted to periodic message
generation. Incidentally, note that current developments
in the area of wireless communications are tremendous,
and this stresses the importance of theoretical analy-
sis of routing algorithms in ad hoc networks, as such
an analysis is not affected by fast-changing technological
characteristics.

We believe that this article offers the basis (as well as
the the motivation) for the development of a complexity
theory for real-time systems. In general, such a theory
takes into account the measurable resources used by an
algorithm, the most important of these being time and
space. In the real-time environment, however, time com-
plexity makes little sense, because in most applications
the time properties are established beforehand. But as
supercomputing is now a reality, a complexity hierarchy
for real-time computations with respect to the number of
available processors is a very interesting direction, with
promising prospects. (Recall here that it has already been
established that a parallel approach can make the dif-
ference between success and failure [7, 8, 12, 16] or can
enhance significantly the quality of solutions [17, 18] in
real-time environments.)

We note in closing that similar research was pursued
in [2], where the hierarchy was established with respect
to the number of tapes of real-time Turing machines.
However, on the one hand, a multitape Turing machine
is probably not equivalent to a multiprocessor device, and
on the other hand, as the real-time domain is a highly
practical issue, we think that the use of models closer to
real machines (e.g., the PRAM) is desirable. The theory
of well-behaved timed ω-languages offers a foundation for
this pursuit.

Acknowledgment

This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] H. Yamada, Real-time computation and recursive functions
not real-time computable, IRE Transactions on Electronic
Computers, EC-11, 1962, 753–760.

[2] A.L. Rosenberg, Real-time definable languages, Journal of
the ACM, 14, 1967, 645–662.

[3] K. Jeffay, The real-time producer/consumer paradigm:
A paradigm for the construction of efficient, predictable real-

time systems, Proc. of the 1993 ACM/SIGAPP Symp. on
Applied Computing: States of the Art and Practice, 1993,
796–804.

[4] R. Alur & D.L. Dill, A theory of timed automata, Theoretical
Computer Science, 126, 1994, 183–235.

[5] Comp.realtime: Frequently asked questions (Version 3.4, May
1998), http://www.faqs.org/faqs/realtime-computing/faq/.

[6] M.R. Lehr, Y.-K. Kim, & S.H. Son, Managing contention and
timing constraints in a real–time database system, Proc. of
the 16th IEEE Real-Time Systems Symp., Pisa, Italy, 1995,
332–341.

[7] F. Luccio & L. Pagli, Computing with time-varying data:
Sequential complexity and parallel speed-up, Theory of
Computing Systems, 31, 1998, 5–26.

[8] S.D. Bruda & S.G. Akl, The characterization of data-
accumulating algorithms, Theory of Computing Systems,
33, 2000, 85–96. For a preliminary version see http://
www.cs.queensu.ca/home/bruda/www/data_accum2.

[9] S. Abiteboul, R. Hull, & V. Vianu, Foundations of databases
(Reading, MA: Addison-Wesley, 1995).

[10] S.V. Vrbsky, A data model for approximate query processing
of real-time databases, Data and Knowledge Engineering,
21, 1997, 79–102.

[11] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu, & J. Jetcheva,
A performance comparison of multi-hop wireless ad hoc
network routing protocols, 4th Annual ACM/IEEE Interna-
tional Conf. on Mobile Computing and Networking, Dallas,
TX, 1998, 85–97.

[12] S.D. Bruda & S.G. Akl, A case study in real-time parallel
computation: Correcting algorithms, Journal of Parallel and
Distributed Computing, 61, 2001, 688–708. For a preliminary
version see http://www.cs.queensu.ca/home/bruda/www/
c-algorithms.

[13] G. Păun & L.SQantean, PCGS: The regular case, Ann. Univ.
Buc., Matem. Inform. Series, 38, 1989, 55–63.

[14] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, & G. Păun, Gram-
mar systems: A grammatical approach to distribution and
cooperation (London: Gordon & Breach, 1994).

[15] S.D. Bruda, On the computational complexity of context-
free parallel communicating grammar systems, in G. Păun &
A. Salomaa (Eds.), New trends in formal languages, Springer
Lecture Notes in Computer Science 1218 (Springer-Verlag,
1997).

[16] S.G. Akl & L. Fava Lindon, Paradigms admitting superuni-
tary behaviour in parallel computation, Parallel Algorithms
and Applications, 11, 1997, 129–153.

[17] S.G. Akl & S.D. Bruda, Parallel real-time optimization:
Beyond speedup, Parallel Processing Letters, 9, 1999,
499–509. For a preliminary version see http:// www.cs.
queensu.ca/home/akl/techreports/beyond.ps.

[18] S.G. Akl, Nonlinearity, maximization, and parallel real-
time computation, Proc. of the 12th Conf. on Parallel and
Distributed Computing and Systems, Las Vegas, NV, 2000.

Biographies

Stefan D. Bruda is currently a
Ph.D. student in the Department
of Computing and Information
Science at the Queen’s University,
Kingston, Ontario, Canada. His
research interests include compu-
tational complexity, parallel and
real-time computations, and for-
mal languages. He has co-authored
over 10 journal and conference
papers in these areas.

10

Selim G. Akl is Professor of Com-
puting and Information Science at
the Queen’s University, Kingston,
Ontario, Canada. His research
interests are in parallel computa-
tion. He is the author of Paral-
lel sorting algorithms (Academic
Press, 1985), The design and
analysis of parallel algorithms
(Prentice-Hall, 1989), and Par-
allel computation: Models and

methods (Prentice-Hall, 1997); and the co-author of Par-
allel computational geometry (Prentice-Hall, 1992). He
is an editor of Computational geometry (Elsevier), Par-
allel processing letters (World Scientific Publishing),
and Parallel algorithms and applications (Gordon and
Breach).

11

