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In cryptography, key distribution is the process whereby two parties reach an
agreement on the value of a secret key. Several protocols exist in the quantum
cryptography literature for the distribution of quantum keys. These proto-
cols achieve a higher confidence in the key’s secrecy than classical methods.
To date, quantum key distribution algorithms have used two communication

Technical Report No. 2007-531
Authenticated Quantum Key Distribution
without Classical Communication®

Naya Nagy and Selim G. Akl
School of Computing

Queen’s University
Kingston, Ontario K7L 3N6
Canada

Email: {nagy,akl}@cs.queensu.ca

Abstract

The aim of quantum key distribution protocols is to establish a
secret key among two parties with high security confidence. Such al-
gorithms generally require a quantum channel and an authenticated
classical channel. This paper presents a totally new perception of com-
munication in such protocols. The quantum communication alone sat-
isfies all needs of array communication between the two parties. Even
80, the quantum communication channel does not need to be protected
or authenticated whatsoever. As such, our algorithm is a purely quan-
tum key distribution algorithm. The only certain identification of the
two parties is through public keys.

Keywords: quantum key distribution, authentication, entangle-
ment

Introduction

*This research was supported by the Natural Sciences and Engineering Research Coun-

cil of Canada.



media: a quantum channel, with quantum bits, and a classical channel, car-
rying classical information. The classical channel needs to be authenticated.

The algorithm presented here improves the quantum key distribution in
two ways. First, there is no classical communication channel. Communica-
tion between the two parties is done solely via one insecure quantum channel.
Secondly, authentication is done by the quantum algorithm itself, using two
public keys. This is essentially different from previous algorithms, where
authentication was done exclusively by classical means or by a trusted au-
thority. It was believed that authentication is impossible by quantum means
only [9]. This paper proves the opposite.

The rest of the paper is organized as follows: Section 2 reviews the no-
tion of public keys, as used in classical cryptographic algorithms and then
describes the particularities of the public keys required by our quantum au-
thentication scheme. Section 3 defines entanglement and describes the par-
ticular entanglement based on phase incompatibility used by our algorithm.
Section 4 describes the algorithm with authentication and security checking.
Section 5 explores eavesdropping and masquerading scenarios and evaluates
the security of the algorithm. Section 6 concludes the paper and offers some
future directions for investigation.

2 Public Keys: Classical versus Quantum

There is no doubt that public key cryptosystems dominate cryptographic
applications today. Their aim is to allow exchanging secret messages reli-
ably and secretly. Public key cryptosysems offer commercially satisfactory
security levels. Formally, the problem to be solved cryptographically can
be formulated as two entities, Alice and Bob, that want to exchange secret
messages on a classical insecure channel. A malevolent third party, Eve, may
take advantage of the insecurity of the channel and listen to the message
or tamper with its content. The security of the public key cryptosystem
relies on the difficulty of inverting particular algebraic functions, also called
“one-way” functions.

2.1 Protected Public Keys

Secure communication is achieved using two types of keys: a public key and
a private key. If Bob wants to send a secret message to Alice, he uses the
public key of Alice to encrypt the message. Alice then reads the message
after using her private key for decryption. There are a few very important
characteristics of the two keys implied in this communication. Alice’s private
key is secret, and not shared with anybody else. In particular, Bob does not



need to know Alice’s private key. This is a major advantage, as the private
key is never seen on any communication channel and therefore, its secrecy is
ensured. By contrast, Alice’s public key is available to anybody. Bob needs
to know it, and also the eavesdropper, Eve, has access to it. In order for
the protocol to work, the public key is guaranteed to be protected. This
means, there is a consensus about the public key value. Both Bob and Alice
are sure that they use the correct, same public key. Eve cannot masquerade
as Alice and change the value of Alice’s public key, making Bob use a false
public key to encrypt his message. This feature is crucial for a public key
cryptosystem to work. The public key cryptosystems need the public key to
be protected, and accept it as given that such a protection of the public key
is practically possible. Current public key algorithms, such as the RSA [8],
need to continuously increase the length of the protected public key in order
to maintain acceptable security levels.

Our quantum key distribution protocol also relies on the protectedness
of public keys. The public keys used in our algorithm are regular binary
numbers, but differ in meaning from the conventional public key, such as the
RSA key. We will call the public keys used in our quantum algorithm quan-
tum generated public keys. Alice has a protected quantum generated public
key and Bob has another protected quantum generated public key. In fact
these two public keys are the only protected information exchange between
Alice and Bob. Exactly as in the case of classical public key cryptosystems,
our algorithm requires that such public keys can be published protectedly,
with the guarantee that the keys’ values are and remain protected from mas-
querading. As will be seen from the algorithm itself, besides having public
keys, Alice and Bob share only an insecure quantum channel.

2.2 Quantum Key Distribution Algorithms

The security of the classical public key RSA cryptosystem relies on the theo-
retically unproven assumption that factoring large numbers is intractable on
classical computers. As described in [7], quantum computers can break some
of the best public key cryptosystems.

Quantum cryptography aims to design mechanisms for secret communi-
cation with higher security than protocols based on the public key approach.
Privacy of a message and its credibility is well satisfied in a private key
cryptosystem setting. Alice and Bob share one and the same secret key, k.
Bob uses the secret key for encryption and Alice consequently decrypts the
message with the same key. As long as k; is unknown to anybody else, the
secrecy of the communication is satisfied. There exist various encryption /
decryption functions using ks, such that the encrypted message reveals no
information whatsoever about the content of the message, provided the key



k, is unavailable.

Quantum key distribution protocols establish secret keys via insecure
quantum and/or classical channels. Existing quantum key distribution al-
gorithms generally use two communication channels between Alice and Bob:
a quantum channel which transmits qubits and a classical channel for classical
binary information. The classical channel is used to communicate measure-
ment strategy, or the basis for measurement, and to check for eavesdropping.

Quantum key distribution protocols may derive their efficiency from dif-
ferent quantum properties. The first protocol developed by Charles Bennett
and Gilles Brassard, known as the BB84 protocol [2], relies on measuring
qubits in two different orthonormal bases. The same idea applies to any two
nonorthogonal bases [1]. In [5] the quantum key distribution algorithm is
derived from the quantum Fourier transform. Based on the property of en-
tanglement, Artur Ekert [4] gave a quantum key distribution solution using
entangled qubits to be shared by Alice and Bob. A simpler version with
qubits entangled in the same way, namely in the Bell states, is described in
(3]

Note that all quantum key distribution algorithms mentioned above re-
quire that the classical channel be authenticated. Authentication is supposed
to be done by classical means. The authenticated classical channel prevents
Eve from masquerading as someone else and tamper with the communication.
It was claimed by Lomonaco [9] that authentication is not possible in quan-
tum computation, that for any secure quantum communication a classical
authentication scheme needs to be used.

As will be clear from the algorithm described in this paper, authentica-
tion of a quantum communication protocol is not only possible by quantum
means only, but in fact a classical channel is superfluous. The general authen-
tication scheme has been developed in [6]. In this previous paper classical
communication was still needed, though the classical channel was not au-
thenticated. In the present improved version of the protocol, the classical
channel is removed completely. The robustness of the algorithm comes also
from the simplicity of the communication support available. Alice and Bob
share an insecure quantum channel and two quantum generated public keys.
They have an authentication step at the end of the protocol, with the help
of the quantum generated public keys. Note that authentication in our al-
gorithm is done at the end of the protocol and is derived from the quantum
algorithm itself.

Shi et. al [10] also describe a quantum key distribution algorithm that
does not use a classical channel. Authentication is done by a trusted author-
ity, that provides the entangled qubits to Alice and Bob. In our paper, such
a trusted authority is not needed. The entangled qubits may come from an



insecure source.

3 Entangled Qubits

The key distribution algorithm we present in the following sections relies on
entangled qubits. Alice and Bob, each possess one of a pair of entangled
qubits. If one party, say Alice, measures her qubit, Bob’s qubit will collapse
to the state compatible with Alice’s measurement.

The algorithms mentioned in section 2 [4, 3, 10], all rely on Bell entangled
qubits. The qubit pair is in one of the four Bell states:
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Suppose Alice and Bob share a pair of entangled qubits described by the
first Bell state:

1
V2

Alice has the first qubit and Bob has the second. If Alice measures
her qubit and sees a 0, then Bob’s qubit has collapsed to |0) as well. Bob
will measure a 0 with certainty, that is, with probability 1. Again, if Alice
measures a 1, Bob will measure a 1 as well, with probability 1. The same
scenario happens if Bob is the first to measure his qubit.

Note that any measurement on one qubit of this entanglement collapses
the other qubit to a classical state. This property is specific to all four Bell
states and is then exploited by the key distribution algorithms mentioned
above: If Alice measures her qubit, she knows what value Bob will mea-
sure. The entanglement employed by the algorithm proposed in this paper,
however, does not have this property directly.

(100) +[11))

3.1 Entanglement Caused by Phase Incompatibility

Let us look now at an unusual form of entanglement. Consider the following
ensemble of two qubits:

6= 5(~100) + [on) + 10) + 1)

The ensemble has all four components, [00), |01), |10), and [11), in its
expression. And yet, this ensemble is entangled.
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Consider the following proof. Suppose the ensemble ¢ is not entangled.
This means ¢ can be written as a scalar product of two independent qubits:

6 = 5(0al0) + A1) (a2/0) + 511

Matching the coefficients from each base vector, we have the following
conditions:

1. cjas =—1

2. a1 =1

3. apf1 =1

4. pif2 =1

The multiplication of conditions 1 and 4 yields: ajas6182 = —1. On

the other hand, from conditions 2 and 3, we have: ajas0318; = 1. This is a
contradiction. The product ajasf3; 82 cannot have two values, both +1 and
—1. It follows that ¢ cannot be decomposed and thus the two qubits are
entangled.

The entanglement of the ensemble is caused by the signs in front of the
four base vector components. Thus, it is not that some vector is missing in
the expression of the ensemble, rather it is the phases of the base vectors
that keep the two qubits entangled.

3.2 Measurement

Let us investigate what happens to the ensemble ¢, when the entanglement
is disrupted through measurement.

If the first qubit ¢; is measured and yields ¢; = |0) = 0 then the second
qubit collapses to ¢z = %(—\0) + |1)). This is not a classical state, but a
simple Hadamard gate transforms ¢, into a classical state. The Hadamard
gate is defined by the matrix

1 -1 1
H=s 7]

Applying the Hadamard gate to an arbitrary qubit, we have H(a|0) +
Bl = a%%—ﬂ%. For our collapsed ¢z, we have H(q3) = H(%(—\OH—
|1))) = —|1). This is a classical 1.

The converse happens when qubit ¢; yields 1 through measurement. In
this case ¢y collapses to g = %(|O) + [1)). Applying the Hadamard gate
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transforms ¢y to H(go) = H(%UO) +|1))) = |0) = 0. Again this is a classical
state 0.

It follows that by using the Hadamard gate, there is a clear correlation
between the measured values of the first and second qubit. In particular,
they always have opposite values.

A similar scenario can be developed, when the second qubit ¢, is measured
first. In this case, the first qubit ¢;, transformed by a Hadamard gate, yields
the opposite value of ¢y.

4 The Algorithm

The goal of the key distribution algorithm described below is to establish a
secret key, known only to Alice and Bob. Subsequently, when Alice and Bob
exchange messages, they will use this key to encrypt / decrypt their messages.
One session is required to establish a binary secret key, called secret, such
that Alice and Bob are in consensus about the value of the secret key. The
secret key secret consists of n bits, secret = bybs...b,. Technically, to perform
the algorithm, Alice and Bob need an array of entangled qubit pairs, and two
protected public keys. Note that Alice and Bob do not communicate on any
classical channel.

The array of the entangled qubits has length [, it consists of [ qubit
pairs denoted (¢14,¢18), (¢24,%B), ---» (qia, ). The array is split between
Alice and Bob. Alice receives the first qubit of each entangled qubit pair,
namely ¢i4, 24, ---, @14, and Bob receives the second half of the qubit pairs,
418, q28, ---, ;3. The entanglement of a qubit pair is of the type described
in the previous section, namely, phase incompatibility. The array of qubits
is unprotected. There is no guarantee that the qubits of a pair are indeed
entangled; indeed, Eve may have disrupted the entanglement. Also, Eve may
have masqueraded as either Alice or Bob, modifying the entangled qubits,
such that Alice’s qubit is actually entangled with a qubit in Eve’s possession
rather than Bob’s, and the same holds for Bob. In case Eve has disrupted the
entanglement or has masqueraded, any result of the algorithm is discarded
and the key distribution is attempted all over again, from the beginning.

The size n of the secret key is less than half of the length [ of the initial
qubit array, n < % Indeed, % qubits, that is half of the qubits, are discarded
because the bases in which Alice and Bob measure are inconsistent 50% of
the time. From the remaining half of qubits a further arbitrary number is
sacrificed for security checking. The number of qubits thus sacrificed depends
on the desired degree of security.

Two public keys are needed by the algorithm. Alice has a public key
keys and Bob has a public key keyg. The two public keys keys and keyp



are independent. Alice and Bob use these public keys to exchange classical
binary information and also, very importantly, for authentication. The keys,
as used in this algorithm, have some characteristics that are different from
the classical public keys. The keys are established during the computation.
They are not known prior to the key distribution algorithm and are defined
in value during the computation according to the measured values of some of
the qubits. This means that the keys are available after the key distribution
protocol. Consequently, the keys have to be posted after the algorithm, which
is unlike the classical case, where a public key is known in advance.

Also, the two public keys keys and keyp are valid for one session, that is,
for one application of the key distribution algorithm. If Alice and Bob want
to distribute a second secret key using the same algorithm, they will have to
create new public keys, which are different in value from the public keys of
the previous session.

The key distribution algorithm, like all quantum key distribution algo-
rithms, develops the value of the secret key during the computation. Implic-
itly, the values of the public keys as well are developed during the compu-
tation. There exists no knowledge whatsoever about the values of the keys
(secret and public) prior to running the algorithm.

Both Alice and Bob follow the same steps briefly denoted below:

1. Measure your entangled qubits
2. Compute your own public key and post it
3. Read your partner’s key and check for eavesdropping

4. Construct the value of the secret key

A detailed description of the algorithm follows.
Step 1

Alice works with the array of qubits ¢14, g24, ..., q;a- Binary information
is rendered by the results of measuring. All measurements are performed
in the standard computational basis. Alice has two options for processing
her qubits. She either measures a qubit directly, or she transforms the qubit
by a Hadamard gate and measures afterwards. For each qubit, ¢;4, Alice
decides randomly on one of the two processing options. Notably, there is
no communication with Bob at this stage. To look at a concrete example,
suppose Alice has 10 qubits g1 4, 24, --., g104. Qubits g;4 transformed by the
Hadamard gate are denoted Hq;4; for those measured directly the notation is
unchanged. Suppose that by random choice, Alice has processed her qubits
as follows:

Q1a, Hgoa, Hq3a,Gs4, 954,964, Hara, Hqga,G94, G104,



and suppose again, she has measured the following binary values:
1,1,1,0,0,0,0,1,1,1

In the meantime, Bob processes his qubits ¢, ¢85, ..., ¢10p following the
same policy. He too, has a random choice on each qubit: to measure directly
or to measure after a Hadamard transformation. Suppose again, that by
random choice, Bob has obtained the following array:

Hqip, HqoB, 938, HqsB, 958, 968, 978, Has, Hqyp, q10B,

with the values
0,1,0,1,1,0,1,0,0,1

We have seen in the previous section that two entangled qubits ¢;4¢;5 =
(—[00) + |01) + |10) + |11)), consistently render opposite classical bit mea-
surements, if and only if exactly one qubit is measured directly and the
other is measured after a Hadamard transformation. It is of no consequence
whether the first qubit is Hadamard tranformed or the second. The order of
the qubits is irrelevant, the important issue is that exactly one of the qubits is
passing a Hadamard gate. Thus, there are two “valid” measurement options:

1. gia, Hg;p and
2. Hq;a, ¢iB

These measurement scenarios are valid in the sense that they, and only
they, yield opposite classical bits after measurement. Each of Alice and Bob
knows with certainty the value the other person has measured. Such qubits
are considered valid by Alice and Bob and will be used to form the secret
key and to check for eavesdropping.

Measurements of the form

3. gia, gip and
4. Hgia, Hgip

cannot be used by Alice and Bob. For any value measured by Alice, the
value measured by Bob is still determined probabilistically. Qubits measured
according to these scenarios, will unfortunately have to be discarded. As the
scenarios 1, 2, 3, 4 are equally likely, 50% of the initial qubits will be discarded
because of probabilistically inconsistent measurements.

As mentioned, half of the | qubits are discarded because of incompatible
measurement bases. The size n of the secret key is therefore n < % From the



remaining qubits, depending on the desired security level, some other qubits
are sacrificed for checking.

For the example of the 10 qubits given above, there are five valid qubit-
pairs:

(ChA, HCIlB), (HQ3A, Q3B), (CI4A, HC]4B), (HQ7A: (]7B), (qu, Hqu),

carrying the values

(1,0),(1,0),(0,1),(0,1),(1,0)

Step 2

At this point Alice has no idea what measuring option Bob has employed
on his qubits. She does not know that qubits 1, 3, 4, 7, and 9 are valid. Bob
is in the same situation.

Therefore, Alice will publish her measuring strategy in her public key.
Alice has measured [ = 10 qubits. As such, the first [ bits of Alice’s public
key explain which qubits have been Hadamard transformed and which were
measured directly. If Alice has applied the Hadamard gate on qubit ¢; A then
the i-th qubit of the public key is set to 1, keya(i) = 1. Otherwise, if g4
has been measured directly, then the i-th qubit is 0, keya(i) = 0. For the
example of 10 qubits, the first ten bits of Alice’s public key are

key(1..10) = 0110001100

The second part of Alice’s public key is used for security checking. A
certain fraction f, for example f = 40%, of the original qubits are made
public for Bob to check for eavesdropping. Alice chooses randomly 40% of
her [ qubits. For each chosen qubit, Alice publishes the index of the qubit and
the binary value she has measured. To continue our example, Alice chooses
randomly the indices 1, 2, 9, 10. She will publish index 1 with value 1, index
2 with value 1, index 9 with value 1 and index 10 with value 1. Translated
in binary this is

(0001)1(0010)1(1001)1(1010)1

Alice’s final public key is the concatenation of the measuring (Hadamard /
no Hadamard) information and the qubit checking information:

key, = 0110001100 00011 00101 10011 10101

The length of the public key depends on the length [ of the qubit array
and also on the desired security level given by the fraction f. The following
formula computes the length of the key:
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length(keya) =1+ f(1+ logl)

Here, [, the first term in the sum, refers to the measuring strategy; the
second term, f(1 + logl), represents the part that publishes the qubits for
eavesdropping checking.

Bob creates his public key following exactly the same steps. Bob’s mea-
suring strategy is encoded at the beginning of his public key. For our example,
this means

keyp(1..10) = 1101000110

Suppose Bob sacrifices qubits 1, 5, 7, 8 for checking. In his public key
he will publish (0001)0(0101)1(0111)1(1000)0. Thus, Bob’s final key, the one
that Alice and indeed everybody can see, is:

keyp = 1101000110 0001 0 0101 1 0111 1 1000 O

Both Alice’s and Bob’s keys, keys and keyp are made public and are
available to everybody, including Eve.

Step 3

At this stage, Alice and Bob, in full knowledge and consensus of each
other’s keys, will proceed to check for eavesdropping. Alice is looking at Bob’s
public key keyp and learns the values Bob has measured on the randomly
sacrificed f = 40% of his qubits, here qubits 1, 5, 7, 8. Because of the various
measuring options, only half of the f = 40% qubits will be useful. In our
example, qubits 1 and 7 are measured with correct options, namely exactly
one Hadamard gate applied to an entangled pair. Alice can find out the valid
qubits by XOR~ing the measuring strategy of Bob with her own:

(0110001100) XOR(1101000110) = (1011001010)

which means qubits 1, 3, 4, 7, 9 have been measured well. Alice is left only
to compare the values of qubits 1 and 7 she has measured with the values
posted by Bob. With no malevolent interference, the binary values are oppo-
site. Thus, if these values are opposite, Alice concludes that the protocol was
not influenced by Eve. Otherwise, Alice discards all information and starts
all over again. Bob performs the same checking. He will find the valid qubits
posted by Alice 1 and 9 and will compare Alice’s binary measured values with
his own. Thus Bob makes his own independent decision concerning eaves-
droppping. For reasonably large qubit arrays and a resonably large number
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of qubits checked, Alice and Bob will reach the same conclusion concerning
the validity of the measured binary data. This conclusion effectively implies
the absence of eavesdropping/masquerading (assuming, of course, that the
qubits were initially entangled).

Step 4

At this stage, the possibility of eavesdropping has already been elimi-
nated. The qubits that have not been published by Alice or Bob in their
public keys continue to be unknown to anybody else. These unpublished
qubits form the secret key secret, that is, secret will be formed from Alice’s
recorded values, and Bob’s complementary values. In our ten qubit example,
valid unpublished qubits are qubits 4 and 9. Therefore, the secret key will
be Alice’s qubits 4 and 9:

secret = 01

Bob has to complement his qubits to reach the same value as Alice.

The size (length) n of the secret key depends on the initial length of the
qubit array [, as well as the fraction of discarded qubits f. Alice and Bob
have decided randomly which qubits to publish. In the worst case, the set of
qubits published by Alice is disjoint from the set published by Bob. Thus,
the fraction of unpublished qubits is 1 — 2f. From these unpublished qubits,
only half (50%) are measured correctly. The length of the secret key is given
by the formula

1
=(1-2f)=l
n=(1-2f);
For our example
40 (1
=(1-2—)=10=1
n= (1= 2955)510

The length of the secret key is 1 in the worst case. For our particular
example we could use 2 bits.

5 Security Evaluation or Catching the Evil
Eavesdropper

Let us consider the algorithm described in the previous section, from the
point of view of the eavesdropper Eve. Eve wants to ideally gather knowl-
edge about the value of the secret key without being noticed by either Alice
or Bob. It is well known that an entangled qubit pair reveals no information
whatsoever unless the qubits are measured and the entangled state collapses.
Even so, the algorithm presented in this paper supposes that the entangle-
ment is not protected, only the public keys are protected. This means that

12



the qubits are not guaranteed to be entangled. Eve may masquerade and
distribute qubit arrays of her own choice. It is of no advantage to Eve to
distribute entangled qubits, as she gains no knowledge about the future se-
cret key from unmeasured entangled qubits. The best choice for Eve is to
distribute classical bits, or independent qubits in a known state.

The best Eve can do is to give Alice an array of classical Os:

q14924---qa = 00...0
and to Bob an array of H1:
¢18Q@2B---qi = H1 H1...H1

All other possible arrays Eve could send to Alice and Bob are equivalent
or less advantegeous than the arrays above. In particular, Eve will want to
send any pair (g;4,¢;p) that can be measured correctly : (0, H1), (H0,1),
(1, HO), or (H1,0). Any such pair is equally advantageous. For simplicity we
will discuss the arrays of Os and H1s, respectively. For a pair (0, H1), Alice
and Bob apply randomly one of the four measurement options (see section
4). The first correct measurement option (g;4, H¢;p) consistently yields com-
plementary correct results, namely (0,1). The second correct measurement
option (Hg;a,q;p) yields all four possible classical bit combinations (0, 0),
(0,1), (1,0), and (1,1). Moreover, these combinations are equally likely. In
one-half of the cases, measurements will be (0,0) or (1,1). This cannot hap-
pen, if the qubits are entangled and untouched. This situation reveals the
intervention of Eve. Thus, on any qubit checked for eavesdropping, there is
a i X % = % chance of detecting Eve.

As Alice and Bob respectively check a fraction f of the original array,
the expected number of times Eve is detected, that is, the expected detection
rate, is

1
expected_detection_rate = 3 X fxl

For our example, the expected detection rate is

1 40 1
ted_detection_rate = — X — x 10 = = =50
expected_detection_rate 8X100X 0 2 %

Eve is caught 50% of the time. This expected detection rate is rather low
given the toy example we have considered, but of course it can be increased
arbitrarily by increasing f and/or [.

Suppose we have an array of 1024 qubits and work with the same fraction
f= 140—00. In this case, the length of the final key is

40 |1

= (1-2—-2)21024 ~ 100
n=(1-275)3
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This is a length that can be used in practice.
The number of qubits checked by Alice (and also by Bob) is

1 4
checked_qubits = — X —0 x 1024 = 204.8
2 100

On each qubit, Eve can escape being caught with probability %. Thus

Eve can escape with probability %204'8 = 3.25 x 10726, This probability is

infinitesimal for any practical purposes.

6 Conclusion

The algorithm presented above shows clearly that authentication can be done
by quantum means only. Besides an insecure quantum channel, Alice and
Bob have only protected quantum generated keys to communicate with. The
parallel with the classical authentication scheme is simple. In classical au-
thentication, Alice and Bob have

1. an insecure classical channel and

2. one or two standard protected public keys, posted before any commu-
nication on the channel.

In the quantum authentication scheme presented in this paper, Alice and
Bob equivalently have two items:

1. an insecure quantum communication channel, and
2. two quantum generated protected public keys.

An important difference concerning the two types of public keys, classical
and quantum generated, is that the value of a quantum generated public key
is developed during the computation and posted after any communication
on the quantum channel is performed. Therefore, the quantum generated
public keys depend on the specific communication session. They are not
known prior to the execution of the key distribution algorithm and differ in
value from one session to the next. This mirrors the behavior of the secret
key to be established by the key distribution protocol. In all quantum key
distribution protocols, the secret key is developed during the execution of
the protocol.

If entangled qubits are easily available, the secret key established by the
algorithm can be arbitrarily long. Our algorithm can distribute a “one time
pad” [11] without Alice and Bob having to meet. To use one time pads,
traditionally, Alice and Bob meet in secret and exchange a long list of keys,
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each as long as the message it is supposed to encrypt, and each to be used
exactly once.

The algorithm presented performs quantum key distribution based on en-
tangled qubit pairs. The entanglement type is not of the generally used Bell
states, but an unusual entanglement based on phase incompatibility. The
advantage of this type of entanglement is that Alice and Bob perform differ-
ent measurement steps: one is measuring the qubit directly, and the other
is measuring after applying a Hadamard gate. Therefore, the measurement
is not symmetric. This property, combined with random choice on the mea-
surement steps leaves Eve with no knowledge of how to measure a tampered
qubit in advance. How other protocols and algorithms may benefit from
asymmetric measurement is an open problem.

The principle of checking and authenticating at the end of the protocol
with quantum generated public keys, is not restricted to the algorithm de-
scribed here. The same type of public keys, generated per session, posted
after the execution of the main body of the algorithm, can be successfully
used in authenticating other types of algorithms. This is also a direction
worth investigating.
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