
Superlinear Performance
In Real-Time Parallel Computation�

Selim G. Akl

School of Computing

Queen's University

Kingston, Ontario K7L 3N6

Canada

Email: akl@cs.queensu.ca

Phone: (613) 533 6062

Fax: (613) 533 6513

October 2, 2006

Abstract

Can a parallel computer with n processors solve a computational problem more than n times faster

than a sequential computer? Can it solve it more than n times better? New computational paradigms

o�er an a�rmative answer to the above questions through concrete examples in which the improvement in

speed or quality is superlinear in the number of processors used by the parallel computer. Furthermore, the

improvement is consistent and provable. All examples are characterized by the presence of one or several

real-time input streams. In one of the examples, an exponential improvement in speed is achieved despite the

fact that the processors of the parallel computer are signi�cantly slower than their sequential counterpart.

In another example, the improvement in quality is unbounded. A metaphor from everyday life motivates

each computational paradigm in which a superlinear improvement in performance is exhibited.

Key words and phrases: Parallelism, superlinear speedup, superlinear quality-up, real-time

computation, optimization, cryptography, numerical analysis.

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1

1 INTRODUCTION

Suppose that you are given two computers, call them S and P . Computer S is sequential and therefore has

one processor. Computer P is parallel and is equipped with n processors, where n is an integer larger than

1. For a certain computational problem O that may be solved on either S or P , consider the following two

questions:

Question 1: Can computer P solve O more than n times faster than is possible on computer S?

Question 2: Can computer P solve O more than n times better than is possible on computer S?

Evidently, Question 1 has to do with the speed of computation; for example if S solves a problem in

100 seconds, can P solve the same problem with 50 processors in less than 2 seconds? On the other hand,

Question 2 is concerned with the quality of the computed solution; for example, if S compresses a �le by a

factor of 5% (with no loss of information), can a 4-processor P compress the same �le by more than 20%

(again with no loss of information)?

The purpose of this paper is to address these two questions. We present a number of examples (some

known [2, 4, 13, 14, 15], some recently proposed [1], and some new) that allow these two questions to be

answered in the a�rmative. In each case, the improvement in speed or quality is superlinear in the number

of processors used by the parallel computer. Furthermore, the improvement is consistent and provable. By

this it is meant that the superlinear reduction in speed or the superlinear increase in quality occurs in every

instance of the computational problem under consideration. In addition, this improvement is independent

of any discrepancies between the sequential and parallel computers used, as we assume explicitly that the

two computers use the same basic processor, have the same amount of total memory, and run the same

algorithm. A unifying thread in the treatment is that all examples are characterized by the presence of one

or several real-time input streams.

It must be said that, in some sense, the results described here may be viewed as controversial. Indeed, it is

conventional wisdom in the parallel computation literature to answer Question 1 in the negative. Question 2,

on the other hand, is hardly ever posed: When it comes to the quality of a solution, no improvement (let alone

one that causes the solution to be more than n times better) should be possible through parallel computation.

The root of these beliefs is the well-known and well-understood principle of simulation. According to this

important concept (dating back to the work of Alan Turing [16]), a single-processor computer S can execute

exactly the same computations performed by an n-processor computer P . The idea is to program S to

imitate the actions of each processor of P sequentially. As a result, when solving problem O, computer S

obtains the same solution computed by computer P . Furthermore, the time required by S to arrive at the

solution is no more than n times the running time of P . Speci�cally, suppose that the n processors of P

operate synchronously, with each processor executing t steps (in other words, if each step lasts one time unit,

then the computation performed by P requires t time units). Let sij denote the jth step executed by the

ith processor of P , 1 � i � n, 1 � j � t. In order to simulate this computation, S proceeds as follows: For

each j, j = 1; 2; : : : ; t, computer S executes sij for all i, 1 � i � n. Thus, the computation performed by S

consists of n� t steps, requiring nt time units.

Recently, a number of computational paradigms have emerged where the very notion of simulation no

longer makes sense. Within these paradigms, a parallel computer P is in fact capable of executing a com-

putation more than n times faster than a sequential computer S. Also, in some circumstances, P obtains

a solution that is more than n times better than that obtained by S. What is taking place in these cases

is a manifestation of a phenomenon referred to as synergy; we say that the parallel computer, thanks to its

2

many processors, is exhibiting synergistic behavior. The purpose of this paper is to present instances of such

computations. The exposition is deliberately informal with the purpose of conveying the main ideas to the

non-expert in the most accessible way possible.

The remainder of this paper is organized as follows. Section 2 gives some de�nitions required to make

the subsequent material more precise. The notion of speedup is presented in Section 3, together with

computational problems for which parallel computation exhibits superlinear speedup. A new measure of the

performance of a parallel computer is introduced in Section 4, namely, the quality-up, and examples of a

superlinear improvement in the quality of the solution achieved through parallel computation are described.

In order to develop some intuition, all computational paradigms studied in Sections 3 and 4 are motivated

by metaphors from everyday life. Section 5 o�ers some conclusions and suggestions for future research.

2 BACKGROUND

This section provides some background on computational models, superlinear improvement in performance,

and real-time computation. Thus, although our results hold for most reasonable models of computation

(sequential and parallel), for de�niteness we specify in Section 2.1 the models of computation intended for

S and P . Also, we note that our objective here is not merely to show that a parallel computer provides

a solution more than n times faster or more than n times better than a sequential one. Instead, we prove

that in some circumstances the improvement is a superlinear function of the number of processors used by

the parallel computer; therefore, we de�ne the notion of superlinear improvement in Section 2.2. Finally,

in Section 2.3, the real-time mode of computation is introduced; this is particularly important as all the

computations described in this paper are performed in real time.

2.1 Computational Models

We de�ne two models of computation, one sequential and one parallel, to represent S and P , respectively. In

what follows the standard de�nition of time unit is adopted, that is, the unit traditionally used to measure

the running time of an algorithm [2]: A time unit is the length of time required by a processor to read a

constant number of �xed-size data from memory, perform a �xed-number of constant-time operations (such

as adding two numbers, comparing two numbers, and so on), and write a constant number of �xed-size data

to memory. It is important to keep in mind that the length of a time unit is not an absolute quantity.

Instead, the duration of a time unit is de�ned in terms of the speed of the processors available (namely, the

single processor on the sequential computer and each processor on the parallel machine).

2.1.1 Sequential Model

This is the conventional model of computation used in the design and analysis of sequential (or serial)

algorithms. It consists of a single processor P1 made up of circuitry for executing arithmetic and logical

operations and a number of registers that serve as memory for storing programs and data. For our purposes,

the processor is also equipped with an input unit and an output unit that allow it to receive data from, and

send data to, the outside world, respectively. A stylized representation of the model is shown in Fig. 2.1.1.

During each time unit of a computation the processor can:

1. Receive a constant number of �xed-size data as input

2. Perform a �xed number of constant-time operations on its input

3

 P
 1

INPUT

OUTPUT

Figure 1: Sequential model of computation.

INPUT

OUTPUT

P P P1 2 3 . . . P Pnn-1

Figure 2: Parallel model of computation.

3. Produce a constant number of �xed-size data as output.

2.1.2 Parallel Model

Our chosen parallel model is the linear array of processors [2]. In this model, n processors, denoted by

P1, P2, : : : , Pn, where n � 2, are connected to one another by (two-way) communication links to form a

one-dimensional array. Each processor is of the type described in Section 2.1.1. Here P1 is connected only

to P2, and Pn is connected only to Pn�1, while Pi, for 2 � i � n� 1, is connected to both Pi�1 and Pi+1. A

pair of processors connected by a link can communicate directly with one another. A stylized representation

of the model is shown in Fig. 2.1.2.

During each time unit of a computation the processor can:

1. Receive as input a constant number of �xed-size data from the outside world or from another processor

to which it is directly connected

2. Perform a �xed number of constant-time operations on its input

3. Produce as output a constant number of �xed-size data to the outside world or to another processor

to which it is directly connected.

The linear array of processors is considered to be the simplest and most fundamental of all models of

parallel computation in which the processors have some means of communicating among themselves. It can

similarly be argued that it is the weakest of all such computers. Nonetheless this model, with its rudimentary

communication paths, is perfectly suitable when solving the real-time computational problems of this paper.

4

This is demonstrated in Sections 3 and 4, where it is shown that the linear array of processors a�ords parallel

algorithms that are either signi�cantly faster or signi�cantly better than their sequential counterparts. In

this regard, it is also important to recall that the weaker the computational model used in an algorithmic

analysis, the stronger the result obtained. This is true because any algorithm designed for a certain model can

be executed (through simulation or otherwise) on a more powerful model without any loss in performance.

It follows therefore that the results of this paper, which are derived for the weakest of all models of parallel

computation (namely, the linear array), hold in general (that is, for all parallel models).

In closing this section on computational models we note that there exists an assumption underlying most

theoretical results in parallel computation that leads some readers (who are unfamiliar with the �eld, and

hence unaware of the implicit assumption) to ask: Why can't we use a faster sequential computer and achieve

the same results obtained with the parallel one? In most cases, one can easily respond to this question by

showing how simple it is to defeat the `faster' sequential machine. For example, in a real-time environment (as

in the present paper), it su�ces to make the data-arrival rate faster than the new and improved sequential

machine can handle! However, in order to avoid any such (perhaps confusing) arguments, we make the

standard assumption explicitly at the outset (at the risk of stating the obvious): The analyses in this paper

assume that all models of computation use the fastest processors possible (within the bounds established by

theoretical physics). Speci�cally, no sequential computer exists that is faster than the one of Section 2.1.1,

and similarly no parallel computer exists whose processors are faster than those of Section 2.1.2. Furthermore,

no processor on the parallel computer of Section 2.1.2 is faster than the processor of the sequential computer

of Section 2.1.1. This is the fundamental assumption in parallel computation. It is also customary to suppose

that the sequential and parallel computers use identical processors. We adopt this convention throughout

the paper, with a single exception: In Section 3.2.3 we assume that the processors of the parallel computer

are in fact slower than their sequential counterpart.

2.2 Superlinear Performance

We need to be speci�c about what we mean by \more than n" in Questions 1 and 2 of Section 1. For

example, the quantities 2n, n + 5, and 3n + 6 are, strictly speaking, larger than n. Thus, a computation

that is performed by the parallel computer 2n times faster than is possible on the sequential computer would

provide a positive answer to Question 1. Similarly, a solution to a problem obtained by P that is n+5 times

better than that obtained by S would provide a positive answer to Question 2. In fact, in many practical

settings such an improvement in performance would be regarded as a considerable achievement. However,

we wish to go further. While the functions 2n, n+ 5, and 3n+ 6 are linear in n, the examples presented in

this paper exhibit superlinear performance.

De�nition 2.1 A function f of a positive integer n is said to be superlinear in n if for any positive real c

there exists a positive integer n0 such that for all n > n0, it holds that f(n) > cn.

According to this de�nition, the functions nx and xn, where x > 1, are both superlinear in n.

2.3 Real-Time Computation

The prevalent mode of computation, to which everyone who uses computers is accustomed, is one in which

all the data required by an algorithm are available when the computer starts working on the problem to be

solved. A di�erent mode which is certain to play an increasingly important role in the future is real-time

computation. Here, not all inputs are given at the outset. Rather, the algorithm receives its data (one or

5

several at a time) during the computation, and must incorporate the newly arrived inputs in the solution

obtained so far. Often, the data-arrival rate is constant; speci�cally, N data are received every T time units,

where both N and T are �xed in advance.

A fundamental property of real-time computation is that certain operations must be performed by spec-

i�ed deadlines. Thus, one or more of the following conditions may be imposed:

1. Each received input (or set of inputs) must be processed within a certain time after its arrival.

2. Each output (or set of outputs) must be returned within a certain time after the arrival of the corre-

sponding input (or set of inputs).

In some applications these deadlines may be crucial, particularly when human lives are at stake. We assume

in this paper that all deadlines are tight, that is, they are measured in terms of a few time units (as de�ned

in Section 2.1), and that they are �rm, meaning that missing a deadline causes the computation to fail. It is

helpful to note here that, when no time constraints are imposed, computations for which inputs arrive while

the algorithm is in progress are referred to in the literature as on-line, incremental , dynamic, and updating .

We also wish to emphasize that our de�nition, while striving to be as general as possible, is particularly

suitable for our purposes in this paper. Many other more or less specialized de�nitions exist; see, for example,

the various interpretations of the notion of real time provided in [6, 12, 18].

We assume in what follows that the inputs received in real time are deposited in a bu�er from where they

are picked up for processing. The size of this bu�er is �xed and independent of the model of computation

used.

3 SUPERLINEAR SPEEDUP

Speeding up the sequential solutions to computational problems is the principal motivation behind parallel

processing. In order to determine the goodness of a parallel algorithm that solves a certain problem, a

measure known as speedup is used. Speedup is de�ned as the ratio of the time T1 required (in the worst

case) by the best sequential algorithm for solving the problem at hand, to the time Tn required (also in the

worst case) by the n-processor parallel algorithm being evaluated, where n > 1. Denoting the speedup by

speedup(1; n), we have:

speedup(1; n) =
T1

Tn
:

It is widely believed that the speedup achieved by a parallel algorithm using n processors over a sequential

algorithm is at most equal to n. This belief is usually called the `speedup theorem' and is stated as:

speedup(1; n) � n:

One can view the above inequality as `bad news', since it puts an upper bound on the amount of speedup

possible with n processors. Most traditional computations (such as sorting, searching, operating on matrices,

and so on) when executed in parallel using n processors exhibit a speedup of at most n (or some linear function

of n), thus obeying (the spirit if not the letter of) the `speedup theorem'.

Another largely accepted concept in parallel computation is the so-called `slowdown theorem' (also known

as Brent's principle). Let a computation be performed with n processors in time Tn and with q processors,

2 � q < n, using the same algorithm, in time Tq, where Tn < Tq. The slowdown experienced is de�ned as:

slowdown(q; n) =
Tq

Tn
:

6

The `slowdown theorem' states that slowdown is at most the ratio of n to q; thus:

slowdown(q; n) � d
n

q
e:

The above inequality is in some sense `good news', as it puts an upper bound on how much slower a

computation runs when only q instead of n processors are available. Most traditional computations satisfy

the `slowdown theorem'.

Recently, however, a number of unconventional, yet realistic, paradigms have been advanced which con-

tradict one or both of the `speedup theorem' and the `slowdown theorem'. Speci�cally, these computations

have at least one of the following properties:

1. speedup(1; n) is superlinear in n; thus, for example, the speedup is on the order of nx, or even xn, for

some x > 1.

2. slowdown(q; n) is superlinear in dn=qe; thus, for example, the slowdown is on the order of (dn=qe)
x
, or

even xdn=qe, for some x > 1.

This suggests that for some computations it is possible to obtain a speedup that is asymptotically larger

than the number of processors used (in other words, the previous bad news are now replaced with good

news). Furthermore, if the necessary number of processors is not available then a slowdown is incurred that

is asymptotically larger than the processor ratio (in other words, the previous good news are now replaced

with bad news). In a nutshell, these results imply that certain computations are inherently parallel .

In this section we present three examples of computations in which a superlinear improvement in speed

is achieved through parallel computation. All computations occur in real time. In each example, the n-

processor solution is more than n times faster than the one-processor solution because the latter performs

more computations (or, alternatively, remains idle for long periods). In one of the examples, superlinear

speedup is achieved despite the fact that the processors of the parallel computer are signi�cantly slower than

their sequential counterpart. As well, in each of the examples, a q-processor solution is more than dn=qe

times slower than an n-processor solution.

It is important to emphasize that in each example the superlinear speedup is consistent and provable, as

stated in Section 1. These characteristics distinguish the results presented here from those in [5, 10, 11], for

example, where a superlinear speedup occurs only occasionally, or is achieved either because the sequential

algorithm used is ine�cient, or because the size of the memory on the sequential computer is restricted. It

should be noted here that in previous claims of superlinear speedup, the latter occurred in an unpredictable

fashion. Typically, speedup was sublinear, linear or superlinear depending on the particular instance being

solved. Indeed in some cases, the parallel algorithm required more time, that is, was slower, to solve certain

instances of the problem than the sequential algorithm.

3.1 Snow Storms And Data Accumulation

In this section we describe a computational problem in which the sequential solution is more than n times

slower than an n-processor parallel solution because it must process more data. The problem is aptly

illustrated by the following metaphor originally described in [13, 14, 15].

3.1.1 The Snow Shoveling Metaphor

It is winter and the snow has fallen all night. In the morning, as it continues to snow, a group of �ve people

wish to get their car out of the garage. Together, they clear their driveway more than �ve times faster than

7

their neighbor. This is because the latter works alone, hence longer, and therefore allows more snow to

accumulate. Before being able to drive away, the single shoveler ends up removing more snow than the �ve

neighbors do, despite the fact that the two driveways are exactly the same size.

3.1.2 The Data Accumulating Paradigm

The �ve shovelers are able to drive away before more snow piles up in their driveway. The single shoveler,

by contrast, may have to keep at it until the snow stops falling before getting such an opportunity. A

computational problem, equivalent to the snow shoveling metaphor is now presented. Let k be a small

constant positive integer greater than 1 (for example, k = 4). In a certain application, n new data are

received every k time units and require to be processed. Each received datum must undergo a constant-

time operation (such as multiplying it by a constant, for example), after which its processing is considered

complete. If all data currently in store have been processed, then the computation terminates, regardless

of whether more data arrive later. On the other hand, if the processing of previously received data is not

completed before a new set arrives, then it is imperative that this new set also be processed. Therefore, the

deadline for early termination is k� 1 time units after the arrival of an input set. However, in order to allow

for termination to be possible at all, there is an upper bound of 2n on the total number of sets of n data to

be received during a given computation.

Sequential Solution. When the �rst batch of n data is received, the single processor on computer S

needs one time unit to read each datum, process it, and then produce it as output. This takes n time units.

Meanwhile, bn=kc additional data sets would have arrived, and are now in some bu�er waiting in queue to

be read, processed, and produced as output by S. The latter does not catch up with the incoming data

until they cease to arrive. Therefore, S must process 2n � n values, a computation requiring 2n � n time

units. This is optimal (in the sense that no faster sequential solution is possible), in view of the obvious

lower bound on the amount of time required to read the input.

Parallel Solution. At the beginning of the computation, each of the n processors of P receives one

datum from the �rst data set, processes it, and produces it as output, all in one time unit. Since by the end

of the �rst time unit (that is, at the beginning of the second time unit), all currently available data have

been processed, and no new data have been received that demand attention, the parallel computation can be

considered terminated. The fact that new data arrive at the beginning of the third time unit (when k = 2),

or later (when k > 2), is of no concern to the parallel computer.

Speedup. By the above analysis, T1 = 2n� n and Tn = 1. Therefore, speedup(1; n) = 2n � n, which is

signi�cantly larger than the maximum speedup of n predicted by the speedup theorem.

It is interesting to note that the same example also leads to a contradiction of the slowdown theorem

for P . Suppose that, instead of n, the parallel computer had only q processors, where 2 � q < n, and let

(n=q) > k. The �rst set of data is processed in dn=qe time units, with each of the q processors handling at

most dn=qe data. Meanwhile, b(d(n=q)e)=kc new data sets would have been received. This way, P does not

catch up with the input until it ceases to arrive. Therefore, 2n�n data must be processed, and this requires

Tq = d(2n � n)=qe time units. As a result, slowdown(q; n) = d(2n � n)=qe, which is asymptotically larger

than the dn=qe slowdown predicted by the slowdown theorem.

8

3.2 Running In Circles And The Elusive Input

For the computational problem in this section, the solution computed by S is more than n times slower than

that computed by P because, when presented with a choice of data sets, the sequential machine makes the

incorrect selection in the worst case. Consider the following metaphor [2].

3.2.1 The Pursuit And Evasion On A Ring Metaphor

An entity A is in pursuit of another entity B on the circumference of a circle, such that A and B move at

the same speed; clearly, A never seizes B. Now, suppose that two entities X and Y are in pursuit of entity

B on the circumference of a circle. In this case, X and Y , traveling in opposite directions, always seize B.

3.2.2 The Proper Data Set Selection Paradigm

In the metaphor just described, entity A can be thought of as a single processor having to contend with

two streams of data, namely, the clockwise and counterclockwise motion of entity B. The computational

paradigm presented in this section generalizes this idea to multiple streams. In this paradigm, there are n

sources that provide data to solve a given computational problem. With all sources operating simultaneously,

each source provides a stream of n data, one datum per time unit. The n data contained in any one of the n

streams are su�cient to solve the problem at hand in at least 2n time units (either on S or on P). However,

the set of n data formed by taking the ith datum of each stream (for any 1 � i � n) allows the problem to

be solved in at most n time units (either on S or on P).

A deadline constraint makes this a real-time computation: Each datum received from a stream must be

processed as soon as it is received. Otherwise, the n data received simultaneously (one datum per stream)

become obsolete as they are replaced by n new values in the �xed-size bu�er.

Sequential Solution. Because S can monitor only one stream, it selects one of the n streams arbitrarily

and uses the n data supplied by that stream to compute a solution to the problem at hand. Therefore, the

running time of S is T1 = n+ 2n time units, which is optimal when solving this problem.

Parallel Solution. On P each of the n processors monitors one of the n streams. Once the �rst set of

values (one per stream) has been received, a solution is computed. The computation by P therefore requires

Tn = n+ 1 time units.

Speedup. The speedup provided by P over S is speedup(1; n) = (n+2n)=(n+1), which is superlinear

in n, and evidently the speedup theorem fails in this case as well.

What happens if P has only q processors, where 2 � q < n? The q processors are unable to monitor all

n input streams simultaneously. One stream is selected and its data used to compute the solution to the

problem at hand. Therefore, the running time required by P is Tq = n + 2n time units. By comparison

with the n-processor solution, slowdown(q; n) = (n + 2n)=(n + 1). This slowdown is superlinear in dn=qe,

regardless of the value of q, and the slowdown theorem does not hold.

3.2.3 A Metaphor Revisited

Let us reconsider the pursuit evasion on a ring metaphor, in the case where there are two entities X and

Y in pursuit of entity B. Suppose here that each of X and Y moves at 1=k the speed of both the single

pursuer A and the entity B, where k is a positive integer larger than 1. Again here, X and Y (despite their

sluggishness) always seize B.

9

For the equivalent computational paradigm, let us suppose that each of the n processors of P is n times

slower computationally than the single processor of S. This, as mentioned at the end of Section 2.1, is

contrary to the convention adopted in the literature and throughout this paper, whereby the processors of

P and S are identical. Speci�cally, we assume here that a processor of the parallel computer still takes

one time unit to receive a constant number of �xed-size data as input, and produce a constant number of

�xed-size data as output; however, it now requires n time units to execute the same (arithmetic and logical)

operations performed by S in one time unit. In the worst case, therefore, the number of time units now

needed by P to solve the computational problem of Section 3.2.2 is on the order of n2, whereas S, as before,

spends on the order of 2n time units on the same problem. The parallel computer continues to achieve a

speedup superlinear in n, despite the unreasonable assumption made about its processors in favor of the

sequential computer.

3.3 Furniture Moving And One-Way Functions

Our third and last example of superlinear speedup deals with the situation where the sequential solution is

more than n times slower than the parallel one because it performs unnecessary computations, or must wait

for data.

3.3.1 The Furniture-Moving Metaphor

A large piece of furniture needs to be moved from one place to another. One mover working alone is unable

to lift, push, or drag the item and, in order to move it, must take it apart, transport each of the parts

individually, and then put them back together at the indicated spot. The job requires one hour. On the

other hand, four movers working together can simply lift the piece of furniture and put it in its new location

in 15 seconds. This is 240 times faster than the single mover [2].

3.3.2 The One-Way Functions Paradigm

Moving the piece of furniture was easy if one did not need to take it apart. We now describe an equivalent

computational paradigm.

A function f is said to be one-way if the function itself takes little time to compute, but (to the best of

our knowledge) its inverse f�1 is computationally prohibitive. For example, let x1; x2; : : : ; xn be a sequence

of integers. It is easy to compute the sum of a given subset of these integers; however, starting from the

sum, no e�cient algorithm is known to determine the subset of integers that make it up.

Suppose that in order to solve a certain problem, it is required to compute g(x1; x2; : : : ; xn), where g is

some function of n variables. For example, g(x1; x2; : : : ; xn) = x2
1
+ x2

2
+ � � �+ x2n, might be such a function.

The computation of g requires n time units. The inputs x1; x2; : : : ; xn needed to compute g are received as

n pairs of the form hxi; f(x1; x2; : : : ; xn)i, for i = 1; 2; : : : ; n.

The function f possesses the following property: Computing f from x1; x2; : : : ; xn is done in n time units;

on the other hand, extracting xi from f(x1; x2; : : : ; xn) takes 2
n time units.

Because the function g is to be computed in real time, there is a deadline constraint: If a pair is not

processed within one time unit of its arrival, it becomes obsolete (it is overwritten by other data in the

�xed-size bu�er in which it was stored).

Sequential Solution. The n pairs arrive simultaneously and are stored in a bu�er waiting in queue

to be processed. The pair hx1; f(x1; x2; : : : ; xn)i is the �rst to be read by S. At this point, the other n� 1

pairs are no longer available. In order to retrieve x2; x3; : : : ; xn, the sequential processor needs to invert f .

10

This requires (n� 1)� 2n time units. It then computes g(x1; x2; : : : ; xn) = x2
1
+x2

2
+ � � �+x2n. Consequently,

T1 = 1 + (n � 1) � 2n + (n � 1) time units. Clearly, this is optimal for S considering the time required to

obtain the data.

Parallel Solution. Once the n pairs are received, they are processed by the parallel computer immedi-

ately. Processor Pi reads the pair hxi; f(x1; x2; : : : ; xn)i and computes x2i , for i = 1; 2; : : : ; n. In particular,

P1 sets a variable g0 equal to x2
1
and sends it to P2. The processors of P now compute g(x1; x2; : : : ; xn) in

n � 1 time units: Pi receives g
0 from Pi�1 and sends g0 = g0 + x2i to Pi+1, for 2 � i � n � 1, and to the

output if i = n (at which point g0 = x2
1
+ x2

2
+ � � �+ x2n). Therefore, Tn = n.

Speedup. The speedup provided by P over S, namely, speedup(1; n) = ((n � 1) � 2n + n)=n, is

superlinear in n and thus contradicts the speedup theorem. What if only q processors are available on P ,

where 2 � q < n? In this case, only q of the n variables (for example, x1; x2; : : : ; xq) are read directly from

the input bu�er (one by each processor). Meanwhile, the remaining n � q variables vanish and must be

extracted from f(x1; x2; : : : ; xn). It follows that Tq = 1+ d(n� q)=qe� 2n+ d(n� q)=qe+(q� 1). Therefore,

slowdown(q; n) = Tq=Tn is superlinear in dn=qe and, once again, the slowdown theorem is violated.

3.3.3 Variation On A Paradigm

As in Section 3.3.2, it is required to compute g(x1; x2; : : : ; xn) = x2
1
+ x2

2
+ � � � + x2n. Here, however, the

input consists of n independent and parallel streams. Each stream is a cyclic permutation of x1; x2; : : : ; xn.

Within a stream each value is separated from the next by 2n time units. Each time n values are received

simultaneously (one in each stream) they are all distinct and hence form a complete set x1; x2; : : : ; xn. A

value not processed within one time unit of its arrival becomes obsolete (perhaps replaced by other data in

the �xed-size bu�er).

Because each value received is replaced after one time unit of its arrival, S cannot read more than one

value from among the n supplied by the n streams simultaneously at any given time. In order to gather

x1; x2; : : : ; xn, the sequential computer therefore `locks' onto one stream and thus waits (n � 1) � 2n time

units before receiving the nth value in the set. Initially, a variable g0 is 0; when an input value is received,

it is squared and added to g0, until x2
1
+ x2

2
+ � � � + x2n is obtained. The sequential computation requires

T1 = 1 + (n � 1) � 2n time units, which is optimal for S. By contrast, on P , the n processors receive

x1; x2; : : : ; xn simultaneously (one value per stream per processor). Computation of g(x1; x2; : : : ; xn) then

proceeds immediately (there is no need to wait). The running time is Tn = n time units. Consequently, for

this variant, the speedup is also superlinear in n, the number of processors used by the parallel computer.

4 QUALITY-UP

The primary purpose of parallel computation is the fast execution of computational tasks that are too slow

to perform sequentially. As a consequence, interest in parallel computation to date has naturally focused

on the speedup provided by parallel algorithms over their sequential counterparts. There exists, however,

a second equally important motivation for using parallel computers. A parallel computer can in some

circumstances obtain a solution to a problem that is better than that obtained by a sequential computer.

In this section we show that within the real-time mode of computation, some classes of problems have the

property that a solution to a problem in the class, when computed in parallel, is far superior in quality than

the best one obtained on a sequential computer. What constitutes a better solution depends on the problem

11

under consideration. Thus, for example, `better' means `closer to optimal' for optimization problems, `more

accurate' for numerical problems, and `more secure' for cryptographic problems.

The improvement in the quality of a solution to some computational problem, achieved through paral-

lelism, is measured by a ratio known as the quality-up [1]. Let V1 be the value of the solution to the problem

obtained (sequentially) on S. Similarly, let Vn be the value of the solution to the same problem obtained (in

parallel) on P using n processors. Then

quality-up(1; n) = Vn
V1

.

By the simulation principle, a sequential computer should be able to compute the same solution as the

one obtained in parallel. Consequently, one should not expect quality-up(1; n) to exceed 1 (never mind be

superlinear in n). Therefore, to be able to demonstrate that a parallel computer can obtain a better solution

to a computational problem than one derived sequentially would alone be an interesting (and even surprising)

observation in its own right. Yet it is shown in what follows that the improvement in quality can be arbitrarily

high (and certainly superlinear in the number of processors used by the parallel computer). Moreover, as

with the speedup, the superlinear quality-up is provable and consistent. Because the notion of a `better'

solution is so closely related to the particular computational problem of interest, we present three speci�c

examples, one from each of the areas mentioned above, namely, optimization, numerical computation, and

cryptography. The last example illustrates the case where the improvement in quality grows without bound.

It is important to note that, in each case, V1 and Vn are de�ned appropriately so that, if indeed there is an

improvement in quality due to parallel computation, the ratio Vn=V1 is greater than 1. When the purpose is

to maximize a quantity (such as, for example, the pro�t in an optimization problem, or the level of security

in a cryptographic application), the choice of V1 and Vn is straightforward. By contrast, particular care

must be paid to the de�nition of V1 and Vn in problems where it is required to minimize a quantity, such

as, for example, the cost of the solution in an optimization problem, or the amount of error in a numerical

computation. The latter situation is illustrated in Section 4.2 where the value of a numerical solution is

measured by the inverse of the error it contains.

4.1 Fast Decisions And Discrete Maximization

The family of optimization problems, as used in this paper, is de�ned as follows. Each problem in the family

takes as input a �nite set of data. It is required to select a subset of this set, consisting of m elements (where

m is a positive integer, which may or may not be given). The selected subset must satisfy certain conditions,

known as the constraints , that are germane to the problem being solved. Among all subsets satisfying the

constraints, we are to �nd the one maximizing (or minimizing) a given function of m arguments, called the

objective function. Often, when the exact maximum (or minimum) is di�cult to obtain, an approximation of

the optimal value is computed. This form of optimization is commonly referred to as discrete or combinatorial

optimization.

Evidently, we are interested here in solving optimization problems in a real-time setting. Our purpose

is to demonstrate the ability of a parallel algorithm to do better than the best sequential algorithm when

maximizing an objective function in real time. In this context, a better solution is one that is closer to

maximum.

4.1.1 The Prize Behind A Door Metaphor

In a certain game there are 10 doors, each of which hiding 10 boxed prizes. It takes about one minute to

open a box. A contestant has 10 minutes to choose 10 prizes, one from behind each door. Evidently, there

12

is no time to compare the prizes behind any given door before making a selection. Of course it would be

nice (if the rules allowed it) to enlist the help of 9 friends (one per door), thereby guaranteeing that the best

(that is, the most valuable, or most appealing, or most appropriate, and so on) 10 prizes are chosen.

4.1.2 The Combinatorial Optimization Paradigm

In the present application, there are n input streams, where n > 1. Each time unit, one datum is received

from each input stream. The data are numbers in the interval 1 to nw, for some w > 1. The data within

each stream are viewed as blocks of length n. For each stream, it is required to choose the largest datum in

each received block (or an approximation thereof).

This being a real-time computation, there is inevitably a deadline condition: A selection must be made

for each block when the last datum of that block has been received, at the latest.

Because this is an optimization problem, there is a pro�t associated with each computed solution. A

solution that is guaranteed to be exact is worth nw units of pro�t. On the other hand, a solution that is

a guess (in other words, a solution that may be arbitrarily far from the true maximum) is worth 1 unit of

pro�t.

Sequential Solution. A sequential computer cannot monitor all streams simultaneously in real time

(it has only one processor!). Similarly, while bu�ering may be possible, S cannot wait for a complete block

to arrive from each stream, then choose the largest value in each of these n blocks, due to the deadline

constraint. Therefore, the only thing a sequential computer can do is to select one value arbitrarily from

the block currently being received in each stream. For example, it may scan the streams consecutively,

devoting one time unit to each stream, whereby it picks the �rst value from the �rst stream, the second

value from the second stream, and so on. Once the nth value of the nth stream has been selected, a phase

of the computation would have been completed and the next phase, identical to the previous one, begins.

Note here that no other strategy for obtaining the sequential solution is provably superior to the arbitrary

selection of n values.

Parallel Solution. An n-processor computer monitors all streams simultaneously in real time. Each

processor is in charge of one stream: it reads successive values received, keeping track of the largest one in

the current block.

Quality-up. Owing to the fact that each sequential solution is a guess, it is worth 1 unit of pro�t,

whereas each parallel solution, being exact, is worth nw units of pro�t. This means that quality-up(1; n) = nw,

that is, the improvement in quality is a polynomial in n. Given that w > 1, this improvement is a superlinear

function of the number of processors used by P .

4.2 Zeroing In On The Answer And Minimizing The Error

A further class of computational problems is now identi�ed in which parallelism provides solutions that are

better than ones obtained sequentially. Speci�cally, we study the class of numerical computations . In this

context, a solution is `better' if it is `more accurate', and our analysis focuses on the reduction in the size of

the error, achieved through parallelism. It is appropriate to begin, therefore, by de�ning the notion of error .

Typically, a numerical algorithm only computes an approximation of the true answer to a problem, and this

answer therefore contains a certain amount of error. Let the exact answer to a problem be Aexact and the

approximate answer obtained numerically be Aapprox. Then, the numerical error in Aapprox is de�ned as

Aexact �Aapprox.

13

When analyzing a numerical algorithm it is customary to derive an estimate of the error. Usually, this

estimate is in the form of an upper bound on the absolute value of the numerical error. Quite often, this

bound takes the form

jAexact �Aapproxj �
K
h(r)

,

where K is a constant that depends on the problem at hand, r is a parameter of the algorithm (such as, for

example, the number of iterations performed), and h(r) is an increasing function of r.

4.2.1 Searching For The Needle In A Haystack Metaphor

You live in a big city and need to make an important but urgent purchase. There are dozens of dealers and

several times as many models of the item of interest. By calling on the members of your family to assist

you, your search is narrowed to a handful of options.

4.2.2 The Numerical Computation Paradigm

Suppose that f(x) is a continuous function, such as ex�cosx, for example. Further, let a and b be two values

of the variable x such that f(a) � f(b) < 0. A zero of f , that is, a value xexact for which f(xexact) = 0, is

guaranteed to exist in the interval [a; b]. An iterative numerical algorithm computes an approximation xapprox

to xexact as follows. Let a1 = a and b1 = b. Now the interval [a1; b1] is bisected , that is, its middle point

m1 = (a1 + b1)=2 is computed. If f(a1)� f(m1) < 0, then xexact must lie in the interval [a2; b2] = [a1;m1];

otherwise, it lies in the interval [a2; b2] = [m1; b1]. The process is now repeated on the interval [a2; b2].

This continues until an acceptable approximation xapprox of xexact is obtained, that is, until for some r � 1,

jbr � arj < �, where � is a small positive number chosen such that the desired accuracy is obtained. When

the latter condition is satis�ed, xapprox = (ar + br)=2. Because

jxexact � xapproxj �
jbr � arj

2 �
jbr�1 � ar�1j

22
� � � � �

jb1 � a1j
2r

,

the error bound is

jxexact � xapproxj �
jb� aj
2r

.

The algorithm would have performed r iterations to obtain xapprox.

Now consider the following computational environment:

1. A computer system receives a stream of inputs in real time.

2. The numerical problem to be solved here is to �nd a zero xapprox for a continuous function f(x) that

falls between x = a and x = b. At the beginning of each time unit, a new 3-tuple hf; a; bi is received

by the computer system.

3. It is required that hf; a; bi be processed as soon as it is received and that xapprox be produced as output

as soon as it is computed. Furthermore, one output must be produced at the end of each time unit

(with possibly an initial delay before the �rst output is produced).

4. The operations of reading hf; a; bi, performing one iteration of the algorithm, and producing xapprox as

output once it has been computed, can be performed within one time unit, as de�ned in Section 2.1.

14

Sequential Solution. Here, there is a single processor whose task is to read each incoming 3-tuple,

to compute xapprox, and to produce the latter as output. Recall that the computational environment we

assumed dictates that a new input 3-tuple be received at the beginning of each time unit, and that such an

input be processed immediately upon arrival. Therefore, S must have �nished processing a 3-tuple before

the next one arrives. It follows that, within the one time unit available, the algorithm can perform no more

than one iteration on each input hf; a; bi. The approximate solution computed by S is xapprox = m1. This

being the only option available, it is by default the best solution possible sequentially.

Parallel Solution. When solving the problem on the n-processor computer, it is evident that processor

P1 must be designated to receive the successive input 3-tuples, while it is the responsibility of Pn to produce

xapprox as output. The fact that each 3-tuple needs to be processed as soon as it is received implies that the

processor must be �nished processing a 3-tuple before the next one arrives. Since a new 3-tuple is received

every time unit, processor P1 can perform only one iteration on each 3-tuple it receives. Unlike the sequential

solution, however, the present algorithm can perform additional iterations. This is done as follows. Once P1

has executed its single iteration on hf; a1; b1i, it sends hf; a2; b2i to P2, and turns its attention to the next

3-tuple arriving as input. Now P2 can execute an additional iteration before sending hf; a3; b3i to P3. This

continues until xapprox = (an + bn)=2 is produced as output by Pn. Meanwhile, n � 1 other 3-tuple inputs

co-exist in the array (one in each of P1, P2, : : : , Pn�1), at various stages of processing. One time unit after

Pn has produced its �rst xapprox, it produces a second, and so on, so that an output emerges from the array

every time unit. Note that each output xapprox is the result of applying n iterations to the input 3-tuple,

since there are n processors and each executes one iteration.

Quality-up. In what follows we derive a bound on the size of the error in xapprox for the sequential

and parallel solutions. Let the accuracy of the solution be de�ned as the inverse of the maximum error.

Sequentially, one iteration of the bisection algorithm is performed to obtain xapprox, that is, r = 1. The

maximum error is jb� aj=2.

In parallel, each 3-tuple input is subjected to n iterations of the bisection algorithm, where each processor

performs one iteration. Therefore, r = n. The maximum error is jb� aj=2n.

By de�ning quality-up as the ratio of the parallel accuracy to the sequential accuracy, quality-up(1; n) =

2(n�1). This suggests that increasing the number of processors by a factor of n leads to an increase in the

level of accuracy by a factor on the order of 2n. In other words, the improvement in quality is exponential

in n, the number of processors on P .

4.3 Gift-Wrapping And Secrecy

The purpose of contemporary cryptography is the protection of digital data. The latter may be, for example,

personal, commercial, �nancial, or military information. It may be stored in the memory of a device (such

as a bank card or a computer), or it may be traveling on an insecure communications channel (such as a

telephone cable or the electromagnetic waves of a wireless transmission). What is to be protected is the

secrecy of the information, its integrity , its authenticity , and so on.

In order to accomplish these goals, modern cryptography uses a mathematical transformation known as

a cryptosystem. Let M be a meaningful piece of information, called the plaintext . Thus, M may contain, for

example, text, numbers, sounds, or images. An encryption function E transforms M , using a key K, into

another piece of information C, referred to as the ciphertext . This function E typically works in a number

15

n of iterations as follows:

Ci = E(K;Ci�1);

for 1 � i � n, where C0 = M and Cn = C. Usually, M is replaced with C (in memory or on the

communications channel) and the information contained in M is thus protected against various forms of

attack by an opponent (such as eavesdropping, for example). When the plaintext is to be recovered by a

legitimate party, a decryption function D, using a cryptographic key K 0, operates on C (in a manner similar

to the way E operated on M) and allows M to be obtained from the ciphertext.

Modern cryptography is founded on the principle that it should be computationally hard to obtain the

plaintext from the ciphertext without knowledge of the decryption key. For most cryptosystems a necessary

and often su�cient condition for achieving this goal is to use keys that are large in size. Of course, a large

key size makes it impractical for an opponent to launch an exhaustive attack based on key enumeration. Of

more importance to our purpose in this paper, however, is the fact that a large key contributes to making

the function E computationally hard to invert. One reason for this is that a large key allows for a large

number n of iterations of E when computing C from M . In the remainder of this section we assume that a

cryptosystem implemented using a long key is more secure than the same cryptosystem implemented using

a shorter key.

We present a problem from real-time cryptography for which a parallel solution is consistently better

than a sequential solution. In this section, `better' is interpreted as meaning `more secure'. Speci�cally, the

problem to be solved is one in which blocks of data are received by a computer system from the outside world

at regular intervals and must be encrypted. No input block can be stored unencrypted, and thus must be

processed as soon as it arrives. The encrypted blocks are to be produced as output, also at regular intervals.

If the computer system operates sequentially, it can apply only one iteration of an encryption function on

each block within the time available. By contrast, if n processors are used, n iterations of the encryption

function are possible. This results in a signi�cantly higher degree of security. In fact, we show that the

improvement provided by the parallel implementation over the sequential one is unbounded.

4.3.1 The Gift-Wrapping Metaphor

A person has a number of last-minute holiday gifts that need to be wrapped and mailed. One layer of paper

wrapping o�ers no guarantee of protection against damage and exposure while a gift is in transit. On the

other hand, adding more layers per package is time-consuming, and the post o�ce is about to close. As it

turns out, several people working together are able to wrap each gift securely and mail all the packages on

time.

4.3.2 The Cryptography Paradigm

The problem to be solved is de�ned as follows:

1. A computer system receives a stream of plaintext data in real time, one block M at the beginning of

each time unit.

2. No block received can be stored in plaintext form. Therefore, an input block must be processed as

soon as it arrives to produce an encrypted output block. The latter is then immediately stored in some

memory or transmitted over an insecure channel.

16

3. An encrypted block is to be produced as output at the end of each time unit (with possibly an initial

delay before the �rst output is produced).

4. The operations of reading a block, performing one iteration of the encryption function E, and �nally

storing (or transmitting) the resulting block, together require one time unit.

5. For a given positive integer n greater than 1, performing n iterations (or more) of the encryption

function E renders the system unconditionally secure. In other words, without knowledge of the

encryption/decryption keys, n iterations of the encryption function E are unbreakable with current

mathematical knowledge and present (and foreseeable) computers. Speci�cally, given Cn, an opponent

cannot feasibly recover M .

On the other hand, for any x < n, a system that performs x iterations of the encryption function E is

e�ectively breakable without knowledge of any cryptographic key used. Speci�cally, an opponent can

with reasonable computational e�ort recover M from Cx.

By way of illustration, suppose that the computations performed by an opponent who tries to break the

system require 10x(1+bx=nc) time units, where x is the number of iterations of the encryption function

E in the current implementation. Let n = 5 and assume that one time unit lasts one second. For x < 5,

it takes less than three hours to obtain M from Cx. When the number of iterations is 5, however,

three-hundred years are not enough to break the system.

Sequential Solution. Suppose that the computer system receiving the real-time input is S, that

is, there is a single processor in charge of reading each successive block, encrypting it, and �nally storing

(or transmitting) it. Because a block needs to be processed as soon as it is received, the computer must

be �nished processing a block by the time the following block arrives. Also, since one time unit separates

consecutive blocks, only one iteration of the encryption function E can be performed on a block before

the latter is stored or transmitted, and this is the best that can be done sequentially under the conditions

imposed. Regarding running time, if the plaintext consists of w blocks, the sequential computer requires w

time units to encrypt all blocks.

Parallel Solution. We now consider the case in which the computer system receiving the real-

time input is P . Naturally, when a linear array of n processors is used to implement real-time encryption,

processor P1 is in charge of reading each successive input block, while processor Pn is responsible for storing

(or transmitting) the corresponding (encrypted) output block. As observed in the sequential implementation,

because a new input block needs to be processed as soon as it is received, the computer must have �nished

processing a block when the next block arrives. Therefore, again as in the sequential implementation,

since a new input block is received every time unit, processor P1 can perform only one iteration of the

encryption function E on each block it receives. However, unlike the sequential implementation, the parallel

implementation allows further iterations to be performed. Thus, when P1 has executed one encryption

iteration on some block M , it sends the resulting encrypted block C1 to P2, and turns its attention to the

next incoming plaintext block. Now P2 can execute a second encryption iteration on C1, before sending the

resulting block C2 to P3. This continues until Cn emerges from Pn. Meanwhile, n� 1 other blocks reside in

the array (one in each of the other processors) at various stages of encryption. One time unit after Pn has

produced its �rst encrypted block, it produces a second, and so on, so that an encrypted block is stored or

transmitted every time unit. If there are w blocks in all, Pn transmits or stores the �nal encrypted block

n + (w � 1) time units after the �rst plaintext block arrives at P1. Each input plaintext block therefore

17

undergoes n encryption iterations. Note that, in the absence of real-time deadlines, the same computation

would require wn time units sequentially.

Quality-up. By our initial assumptions, the sequential implementation provides a level of encryption

that is e�ectively breakable, while the parallel implementation provides a level of encryption that is un-

breakable for all practical purposes. It is therefore possible to say that the parallel solution to the real-time

encryption problem is in�nitely better than the sequential one.

For a quantitative analysis, we introduce the following parameter. Let the security value U be a quantity

that expresses the level of security o�ered by a cryptosystem. For an unconditionally secure cryptosystem,

U = 1. At the other extreme, U = 0 when a cryptosystem is guaranteed to be breakable.

Suppose that two implementations of a cryptosystem have security values U1 and U2, respectively, where

U2 > U1. The improvement in security provided by the second implementation is given as U2=U1.

In the context of our discussion, we de�ne U as follows. Let x be the number of iterations of the encryption

function E performed by a certain implementation of a given cryptosystem. Then, for this implementation,

U = bx=nc. The sequential implementation executes one iteration of E, and consequently its security value

Us is 0. For the parallel implementation, the number of iterations is n, resulting in a security value Up of 1.

Hence, the improvement in security provided by P over S is quality-up(1; n) = Up=Us. In other words, when

the number of processors is n, this improvement is without bound.

5 CONCLUSION

We have demonstrated that within the real-time mode of computation a parallel computer can provide a

signi�cant improvement over the performance of a sequential computer. This improvement, in either the

quality of a solution or the speed with which it is obtained, can be superlinear in the number of processors

used by the parallel computer. At the heart of this result is the fact that, when computing with deadlines,

the principle of simulation does not make sense. Indeed, the idea that the computations performed in parallel

can somehow be replicated sequentially to achieve the same results (with respect to speed and quality) is

without meaning in this context. Similar results appear in [7, 8, 9, 17].

The various computational paradigms described in this paper can be modi�ed in several di�erent ways.

For example, to cite only three alternatives, the data-arrival rate may not be constant, certain outputs may

be used as inputs in subsequent computations, or the same computation may span several time intervals. The

latter variant is particularly interesting as it suggests new measures for the quality of a solution. Suppose

that data arrive in real time as additions or corrections to an instance of a problem [3]. For example, these

data may be new vertices for a given graph along with their associated (weighted) edges, new values for

some entries of the coe�cient matrix of a system of linear equations, and so on. For each newly arrived set

of data, an updated solution must be computed (for example, a new minimum-weight spanning tree of the

weighted graph, or a new solution to the system of linear equations). Assume now that this takes place over

a long period of time, that is, over several time intervals, with each interval bringing a new data set for the

present problem. If we were to use the approach presented in this paper when comparing sequential and

parallel solutions, then we would perform the comparison at a certain point in time, typically after the �rst

interval. However, more appropriate criteria may be used here. As time passes, the sequential, and perhaps

the parallel, solutions may drift further and further away from the optimal. In order to compare them, one

can use:

1. The accumulated error in the sequential solution versus the accumulated error in the parallel solution

18

after a certain number t of time intervals, where t > 0. Speci�cally, if the sequential and parallel errors

during the ith interval are �s(i) and �p(i), respectively, then after t intervals, the accumulated sequential

and parallel errors are �(�s; t) and �(�p; t), respectively, where � is a function of the error and the

number of intervals. For example, it may be the case that �(�s; t) =
Pt

i �s(i) and �(�p; t) =
Pt

i �p(i),

or �(�s; t) =
Qt

i �s(i) and �(�p; t) =
Qt

i �p(i), and so on. The ratio �(�s; t)=�(�p; t) may then be used

to compare the two solutions. (Note that, for computational convenience, �(�p; t) is de�ned to be 1 if

the parallel solution is error-free after t intervals.)

2. The cumulative error Es(t) in the sequential solution versus the cumulative error Ep(t) in the parallel

solution after t time intervals. Using the notation just introduced, Es(t) and Ep(t) could be de�ned as
Pt

i=1
�(�s; i) and

Pt
i=1

�(�p; i), respectively. For example, let �s(i) = es and �p(i) = ep, for all i, where

es and ep are nonnegative constants, and suppose that �(�s; t) =
Pt

i �s(i) and �(�p; t) =
Pt

i �p(i). In

this case, �(�s; t) = tes, �(�p; t) = tep, Es(t) = t(t + 1)es=2, and Ep(t) = t(t+ 1)ep=2. The sequential

and parallel solutions are compared using the ratio Es(t)=Ep(t). (Again, if the parallel solution contains

no error, Ep(t) = 1.)

The second criterion, namely, the cumulative error, is especially relevant if a penalty is incurred at the end

of each interval, this penalty being a function of the accumulated error in the solution. Assume, for example,

that the sequential and parallel penalties at the end of interval t are �(�s; t) and �(�p; t), respectively. This

means that the cumulative penalties will be equal to the cumulative errors. Also, let the number of processors

on the parallel computer be n, with t = n, es = 2, and ep = 0. Then, when �(�s; t) = tes and �(�p; t) = tep,

the ratio of the cumulative sequential penalty to the cumulative parallel penalty, after n intervals, that is

Es(n)=Ep(n), is quadratic in the number of processors. Similarly, when �(�s; t) = ets and �(�p; t) = etp, this

ratio is exponential in n.

We conclude with two open problems:

1. In every one of the examples of Section 4 (in which a parallel computer with n processors provides a

better solution than one obtained sequentially), the ratio of the sequential running time to the parallel

running time is at best linear in n. It is therefore tempting to ask: Can a superlinear speedup and a

superlinear improvement in quality be achieved simultaneously?

2. This paper focused on real-time computation. An obvious question is: Do other modes of computation

exist in which it is possible for a parallel computer with n processors to obtain a faster and/or better

solution than the one derived sequentially, such that the improvement is superlinear in n?

6 ACKNOWLEDMENTS

I am grateful to Stefan Bruda, Marius Nagy, and Naya Nagy for reading this manuscript and o�ering valuable

comments.

References

[1] S.G. Akl, Parallel real-time computation: Sometimes quantity means quality, Proceedings of the In-

ternational Symposium on Parallel Architectures, Algorithms and Networks, Dallas, Texas, December

2000, 2{11.

19

[2] S.G. Akl, Parallel Computation: Models and Methods , Prentice-Hall, Upper Saddle River, New Jersey,

1997.

[3] S.G. Akl, S.D. Bruda, Parallel real-time optimization: Beyond speedup, Parallel Processing Letters, 9,

1999, 499{509.

[4] S.G. Akl and L. Fava Lindon, Paradigms for superunitary behavior in parallel computations, Journal

of Parallel Algorithms and Applications, 11, 1997, 129{153.

[5] R.S. Barr and B.L. Hickman, Parallel simplex for large pure network problems: Computational testing

and sources of speedup, Operations Research, 42, 1994, 65{80.

[6] A. Bestavros and V. Fay-Wolfe, Eds., Real-Time Database and Information Systems , Kluwer Academic

Publishers, Boston, 1997.

[7] S.D. Bruda, and S.G. Akl, A case study in real-time parallel computation: Correcting algorithms,

Journal of Parallel and Distributed Computing, to appear.

[8] S.D. Bruda, and S.G. Akl, Real-Time Computation: A Formal De�nition and its Applications, Proceed-

ings of the Workshop on Advances in Parallel and Distributed Computational Models, San Francisco,

California, April 2001.

[9] S.D. Bruda, and S.G. Akl, The characterization of data-accumulating algorithms, Theory of Computing

Systems, 33, 2000, 85{96.

[10] D.P. Helmbold and C.E. McDowell, Modeling speedup(n) greater than n, IEEE Transactions on Parallel

and Distributed Systems, 1, 1990, 250{256.

[11] R. Janssen, A note on superlinear speedup, Parallel Computing, 4, 1987, 211{213.

[12] H.W. Lawson, Parallel Processing in Industrial Real-Time Applications , Prentice Hall, Englewood Cli�s,

New Jersey, 1992.

[13] F. Luccio and L. Pagli, The p-shovelers problem (computing with time-varying data), Proceedings of the

Fourth Symposium on Parallel and Distributed Computing , Arlington, Texas, December 1992, 188{193.

[14] F. Luccio and L. Pagli, Computing with time-varying data: Sequential complexity and parallel speed-up,

Theory of Computing Systems , 31, 1998, 5{26.

[15] F. Luccio, L. Pagli, and G. Pucci, Three non conventional paradigms of parallel computation, Lecture

Notes in Computer Science, 678, 1992, 166{175.

[16] H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood

Cli�s, New Jersey, 1981.

[17] M. Nagy and S.G. Akl, Real-time minimum vertex cover for two-terminal series-parallel graphs, Tech-

nical Report No. 2000-441, Department of Computing and Information Science, Queen's University,

Kingston, Ontario, October 2000.

[18] M. Thorin, Real-Time Transaction Processing , Macmillan, London, 1992.

20

