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Abstract

In this thesis we examine four interesting classes of formal languages. The two
of them, namely the regular and context-free ones, are well-known classes that
have been widely studied in the literature [21, 22, 23, 24, 25]. The other two,
namely conjunctive and Boolean languages, are more recent ones and appear
to possess many interesting properties [1, 3, 15]. Conjunctive and Boolean
languages can be produced by conjunctive and Boolean grammars respectively
which are natural extensions of context-free grammars introduced by A. Okhotin
in [1] and [15]. The basic idea behind of these new formalisms is to allow
intersection, in conjunctive grammars, and intersection and negation, in Boolean
grammars, in the right-hand side of rules. It is immediately obvious that the
classes of conjunctive and Boolean languages are proper supersets of the class
of context-free languages.

In this thesis we also examine three models of abstract machines closely re-
lated to the above classes of formal languages. These machines are: automata,
pushdown automata and synchronized alternating pushdown automata. Each
one of them corresponds in terms of expressive power to one of the previous
classes of languages. More specifically, automata correspond to regular lan-
guages, pushdown-automata to context-free languages and synchronized alter-
nating pushdown automata to conjunctive languages. At present, there is no
known machine model that corresponds to Boolean languages.

Nowadays, there exist certain well-understood techniques for demonstrating
that a language is not regular or context-free. Unfortunately this does not hold
for conjunctive and Boolean languages. After ten years of study, no technique
is presently known for showing that a language is not conjunctive or Boolean.
Possibly this is the most important open problem in the area.

Most of the ideas presented in this thesis are based on existing articles, books
and lecture notes. We were mostly influenced by Okhotin’s lectures [27]. Our
contributions can be outlined as follows:

• Lemmas 2.3.1 and 3.2.1 in which we present a language that can be pro-
duced by a one non terminal conjunctive grammar but not by a one non
terminal context-free grammar.

• Propositions 2.3.1 and 3.2.1 which give us a more general criterion that
can be used to show that certain languages can not be produced by one
non terminal context-free and one non terminal conjunctive grammars.
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• Subsection 3.3 which describes an approach which we believe that is
promising for establishing that a specific language is not conjunctive.

• Subsection 3.4 in which we propose a slightly different model for synchro-
nized alternating pushdown automata (SAPDA) than the one introduced
in [11]. Moreover, we obtain and present in detail a new proof of the
equivalence of the SAPDA model to conjunctive grammars.

We believe that a further study of conjunctive and Boolean grammars will prove
to be very rewarding, since the area appears to have both a theoretical and a
practical significance.
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Chapter 1

Preliminaries

1.1 Basics Notions

1.1.1 Baby Sets and Functions

We shall begin with the definition of an important concept, the set. Almost,
every mathematical book starts with sets, we will also do the same. For the
needs of this thesis, it is sufficient to use the definition which says that a set
is a collection of things. We denote a set by a letter or with a collection of
elements inside the symbols ‘{’ and ‘}’. We denote membership by the symbol
‘∈’. We write ‘t ∈ A’ to denote that t is a member (or an element) of A, we
write ‘t /∈ A’ to denote that t is not a member of A. For example, there is a set
whose members are exactly the numbers 2, 3, 5 and 7, and we write this set as:

{2, 3, 5, 7}

Then t ∈ {2, 3, 5, 7} means that t = 2 or t = 3 or t = 5 or t = 7. We say that
two sets are equal if they have exactly the same elements. Some times we want
to specify the set whose elements have a specific property, let us call it P, so we
write {x | x has the property P} (we denote by {x ∈ A | x has the property
P} the set {x | x ∈ A and x has the property P}). The set with no elements is
called empty set and denoted by ∅.
Now, we will give four operations on sets. The union of the sets A and B is the
set A ∪ B of all elements that are members of A or B (or both). Similarly, the
intersection of A and B is the set A ∩ B of all elements that are members of
both A and B. The difference A of B is the set A−B ( or A/B) of all elements
that are members of A but not of B. The Cartesian product (or product set) of
the sets A and B is the set A × B of all pairs (x, y), where x ∈ A and y ∈ B.
The Cartesian product can be generalized to the n-ary Cartesian product over
n sets A1, . . . , An as A1 × . . .×An = { (x1, . . . , xn) | xi ∈ Ai}. The number of
elements of A denoted by |A|.
Another important relation between sets is the subset, denoted by the symbol
‘⊆’. We write A ⊆ B and we read ‘A is subset of B’, if every element of A is
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also a element of B. The set of all subsets of a set A, is called power set P(A)
of A.1 We denote by N the set of natural numbers ( i.e. { 0, 1, 2, . . .}).

We end this paragraph with some important concepts in mathematics, rela-
tions and functions.

Definition 1.1.1. A relation is any subset of a Cartesian product.

For instance, a subset of A × B, called a “binary relation from A to B”,
is a collection of ordered pairs (a, b) with first components from A and second
components from B. For a binary relation R, we often write aRb to mean that
(a, b) is in R.

Definition 1.1.2. A function is a relation that uniquely associates members of
one set with members of another set. More formally, a function from A to B is
an object f such that every a in A is uniquely associated with an object f(a) in
B.

A function is therefore a many-to-one (or sometimes one-to-one) relation.
The set A of values at which a function is defined is called its domain, while the
set B of values that the function can produce is called its range. We write f :
A→ B to denote that function f has domain the set A and its range is the set
B. We normally denote functions with small latin letters f,g,h etc.
Moreover, if for every two different elements x1 6= x2 of A, f(x1) 6= f(x2) then
we say that f is injective or one-to-one function. We say that a function f is
surjective or onto, if for every element y ∈ B there exists an element x ∈ A such
that f(x) = y. Finally, we say that a function is bijective if it is injective and
surjective.

Definition 1.1.3. Let f : A→ B be a function. The inverse image of a subset
D of B is the subset of the domain A defined by f−1(D) = {x ∈ A | f(x) ∈ D}.

Notice that if f is a bijection there exists a unique inverse function f−1 :
B → A of f , where for each x, y such that f(x) = y we have f−1(y) = x.

1.1.2 Alphabets, Words and Languages

Now, we will give some basic definitions regarding formal languages.

Definition 1.1.4. A finite, non empty set Σ = {a1, . . . , am} is called alphabet.
Normally, we denote an alphabet by a capital greek letter Σ, Γ, etc.

Definition 1.1.5. A word (or a string) over an alphabet Σ = {a1, . . . , am}
is a finite sequence ai1 . . . ail of symbols from Σ, where l ≥ 0 and i1, . . . , il ∈
{1, . . . ,m}. The number l is called the length of the string and it is denoted by
|ai1 . . . ail |. The empty string, when l = 0, is denoted by ε.

1In the literature the power set of A is often denoted by 2A. Normally, BA is the set of
functions from A to B. The power set denoted some times by 2A because for every subset
of A we have a unique function from A to {0, 1} and from such a function we have a unique
subset of A.
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The set of all strings over an alphabet Σ, is denoted by Σ∗, where w ∈ Σ∗

iff there is m ∈ N such that w ∈ Σm.2 The letters w, u, v, x, y, z and sometimes
some others, are used to denote strings. The string x is a substring of a string
y, if there exist strings u, v such that y = uxv, notice that u, or v or both could
also be the empty string ε.

Definition 1.1.6. For an alphabet Σ, every subset of Σ∗ is called a language
over Σ. The set of all languages is thus the set of all subsets of Σ∗, denoted by
P(Σ∗).

The letters L,K,M ,N and sometimes some others are used to denote lan-
guages. We define an additional operation over languages, the complement. The
complement of a language L denoted by L is the language Σ∗ − L. The con-
catenation of two words, u and v, is the word uv, and the concatenation of two
languages L1, L2 is the language L1L2 = {uv | u ∈ L1 and v ∈ L2}. Given
a language L (or an alphabet Σ), we write Lε (or Σε) to denote the language
L ∪ {ε} (or the set Σ ∪ {ε}). We also define the powers of a word w to be for
every n ≥ 0, wn = w . . . w︸ ︷︷ ︸

n

, where w0 = ε, for every w ∈ Σ∗. Moreover, we

define the (Kleene) star ‘ ∗ ’ of a language L to be:

L∗ =
⋃
n∈N

Ln

Note that according to this definition we have that ∅∗ = ε. Additionally we
define L+ = LL∗.

1.2 Finite Automata

In this section we study simple machines without memory. These theoretical
machines are called finite automata. We study which languages can be produced
by them and the limitations of those machines. Formally we have the definition:

Definition 1.2.1. A deterministic finite automaton (DFA) is a quintuple
A = (Q,Σ, δ, q0, T ), where

• Q is a finite non empty set of states.

• Σ is an input alphabet.

• δ : Q× Σ→ Q is the transition function.

• q0 ∈ Q is the initial state.

• T ⊆ Q is the set of final states , also called acceptance states.

The transition function is extended to δ∗ : Q× Σ∗ → Q as follows:
2For every alphabet Σ, we denote Σ0 = {ε}.
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Figure 1.1: State diagram of an automaton.

δ∗(q, ε) = q
δ∗(q, aw) = δ∗(δ(q, a), w), where a ∈ Σ and w ∈ Σ∗

The language recognized by a DFA A is defined as follows:

L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ T}

In order to understand better how an automaton works, we can present it
with a state diagram. The states of an automaton are represented with nodes,
and the transition function is denoted by named directed edges. Finally, the
initial state is denoted by an arrow and when a state is a final one, we denote
it by a cycle around it. We give an example in Figure 1.1. We start in the state
q0 and we stay in that state as long as we read 0’s, we change state to q when
we read a ‘ 1 ’. This automaton produces every word over {0, 1}, which ends
with ‘ 1 ’.

Definition 1.2.2. A non deterministic finite automaton (NFA) is a quintuple
B = (Q,Σ,∆, q0, T ), where Q,Σ, q0 and T are as above, while ∆ ⊆ Q× Σ×Q
is a relation instead of a function3.

The language recognized by a NFA is defined as follows:

L(B) = {w ∈ Σ∗ | w = a1 . . . an, where each ai ∈ Σ, there are r0, . . . , rn ∈ Q
where r0 = q0, (ri−1, ai, ri) ∈ ∆ and rn ∈ T}.

It’s obvious that a DFA can be regarded as a special case of an NFA. But in the
following lemma we will see that they are equivalent in computational power.

3We can consider ∆ as a function, ∆ : Q× Σ→P(Q).
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Lemma 1.2.1. Let B = (Q,Σ,∆, q0, T ) be a NFA. Then the DFA
A = (P(Q),Σ, δ, {q0}, T ′) with δ : P(Q) × Σ → P(Q) and δ(C, a) = D iff
(C, a,D) ⊆ ∆ and finally T ′ = {C ∈ P(Q) | C ∩ T 6= ∅}, generates the same
language as B.

Proof. Upon reading a string w, A computes the set of states reached in all
possible computations of B on w.

Definition 1.2.3. A non deterministic finite automata with ε-transitions (ε-
NFA) is a quintuple C = (Q,Σ,∆, q0, T ), where Q,Σ, q0 and T are as above,
while ∆ ⊆ (Q,Σ ∪ {ε}, Q) is the transition relation.

An ε-NFA C recognizes the following language:

L(C) = {w ∈ Σ∗ | w = u1 . . . un of each ui ∈ Σ ∪ {ε}, there are
r0, . . . , rn ∈ Q where r0 = q0, (ri−1, ui, ri) ∈ ∆ and rn ∈ T}

Lemma 1.2.2. Let C = (Q,Σ,∆, q0, T ) be an ε-NFA. For every state q ∈ Q,
let Closure(q) ⊆ Q be the set of states reachable from q by zero or more ε-
transitions. Then the NFA B = (Q,∆′, q0, T ′) with ∆ = { (p, a, q) | p, q ∈
Q, a ∈ Σ, there are p1, p2 ∈ Q, p1 ∈ Closure(p), q ∈ Closure(p2) and (p1, a, p2) ∈
∆} with T ′ = { q ∈ Q | Closure(q)∩T 6= ∅} generates the same language as C.

Proof. The transition relation ∆ simulates a sequence of ε-transitions followed
by a transition by an input symbol. The set of acceptance states T represents
acceptance in all states, from which one can reach an acceptance state by a
sequence of ε-transitions.

From the previous lemmas we have shown that the computational models of
DFA, NFA and ε−NFA are equivalent in computational power. So, it makes it
easy for us to use any of these models, depending of what it’s convenient to us
in each case.

1.3 Regular Languages

Regular languages are expressions over constant languages ∅, {ε} and {a} ,
for all a ∈ Σ, connected using union, concatenation and star. We will see in
this paragraph that the class of regular languages is equivalent to the class of
languages recognized by automata. For further study of automata theory and
regular languages see [21, 22, 24, 25, 26]. Formally, regular expressions can be
defined as follows:

Definition 1.3.1. We define regular expressions by induction, where

• ∅ and {ε} are regular expressions

• {a} is a regular expression for every a ∈ Σ

• if α and β are regular expressions, then α ∪ β, αβ and α∗ are regular
expressions too.
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Figure 1.2: Automata for the simplest regular expressions

In order to simplify things, we write a instead of {a}. Also, the star has the
highest priority, followed by concatenation and the union has lowest priority.
For example we write (a ∪ bc∗)d instead of ({a} ∪ ({b}({c}∗))){d}.

Lemma 1.3.1. For every regular expression there exists an ε-NFA recognizing
the same language.

Proof. We prove the lemma with induction on the size of the expression. For
every regular expression, an equivalent ε-NFA with a unique acceptance state
is constructed. Figure 1.2 gives ε-NFAs for the three base cases of regular
expressions, as well as the three cases of the induction step, where α and β are
smaller regular expressions for which ε-NFAs exist by the induction hypothesis.

Before we continue we have to define what is language equations. A language
equation is like a numerical equation but the value of the variable is a language.
Also, instead of numbers we have known languages and the accepted opera-
tions are union, complement, intersection and difference instead of addition,
multiplication, abstraction, ect.

Lemma 1.3.2. For every ε-NFA there exists an equivalent regular expression.

Proof. The basic idea here is that we can see each state of the ε-NFA as a
variable of a language equation. For every state q we create the variable Ξq.
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Now, we have the system of language equations, for all p ∈ Q

Ξp =
⋃
q∈Q

δ(p,a)=q

aΞq

and for terminal stages p we have the equations

Ξp = (
⋃
q∈Q

δ(p,a)=q

aΞq) ∪ {ε}

We notice that the least solution4 to the language equation

X = LX ∪M

is the language L∗M , in [25] is has a more analytical explanation. From the
last equation we can solve the above system of equations and we can also notice
that any solution is a regular expression.

From the lemmas above we have the following theorem.

Theorem 1.3.1. A language is recognized by a DFA if and only if it is generated
by a regular expression.

The set of languages representable by these equivalent formalisms is known
as the family of regular languages, and any such language is called a regular
language.

1.4 Closure Properties and Pumping Lemma for
Regular Languages

Let L be a family of languages, let f : P(Σ∗)× . . .×P(Σ∗)→P(Σ∗) be an
n-argument function on languages. Then L is said to be closed under f if for
all L1, . . . , Ln ∈ L , we have f(L1, . . . , Ln) ∈ L .

Theorem 1.4.1. The family of regular languages are closed under the operation
of union, complement, intersection, concatenation and star.

Proof. Closer under union, concatenation and star is immediate by the definition
of regular expressions. In order to prove that the family of regular languages
is closed under complement we use Theorem 1.3.1. Assume we have a DFA
A = (Q,Σ,∆, q0, T ) which recognizes the regular language L. Then the DFA
A′ = (Q,Σ,∆, q0, Q − T ) recognizes L. For closure under intersection, we use
de Morgan’s law K ∩ L = K ∪ L and the closure of regular languages under
complementation and union.

4When ε /∈ L, is the only solution.
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Now the question that comes naturally is which languages are not regular.
This question is answered with the help of the next theorem.

Theorem 1.4.2 (Pumping Lemma). For every regular language L ⊆ Σ∗ there
exists a constant p ≥ 1, such that for every string w ∈ L with |w| ≥ p there
exists a factorization w = xyz, where y is non empty and |xy| ≤ p, such that
xyiz ∈ L for all i ∈ N.

Proof. Let A = (Q,Σ, δ, q0, T ) recognizing the language L and p = |Q|. Let
w = w1w2 . . . wn be a word in L of length n, where n ≥ p. Let q0q1 . . . qn be
the sequence of states that A enters while processing w, so qi+1 = δ(qi, wi+1)
for 0 ≤ i ≤ n − 1. This sequence has length n + 1, which is at least p + 1. By
the pigeonhole principle, at least one state of A repeats itself in the sequence
q0q1 . . . qn. We call the first of these qj and the second ql. Because ql occurs
among the first p + 1 places in the sequence, we have l ≤ p + 1. Now let
x = w1 . . . wj , y = wj+1 . . . wl and z = wl+1 . . . wn.
As x takes A from q0 to qj , y takes A from qj to qj and z takes A from qj to
qn, which is a final state, A must accept xyiz for i ≥ 0. We know that j 6= l, so
|y| > 0 and l ≤ p+ 1, so |xy| ≤ p.

Now, we can see some examples of non-regular languages.

Example 1.4.1. The language L = {anbn|n ∈ N} is not regular. From the
previous theorem there exists a number p ≥ 1, such that for every string w ∈ L
with |w| ≥ p there exists a factorization w = xyz, where y is non empty and
|xy| ≤ p, such that xyiz ∈ L for all i ≥ 0. But apbp ∈ L, so exists m, 0 < m ≤ p,
y = am, and ap−mbp ∈ L. This is a contradiction, because p−m 6= p.

Example 1.4.2. The language L = {a4n |n ∈ N} is not regular. Again, from
the previous theorem for every w ∈ L there exist x, y, z ∈ a∗, with y 6= ε, which
w = xyz, such that x = am1 , y = am2 and z = am3 , then for all k ∈ N, we have
that am1+km2+m3 ∈ L, for every k ∈ N, there is a sequence xk ≥ 0, such that
4xk = m1 + km2 +m3.
Let p = m1 + m3 and q = m2, so we have for every k ∈ N, that p + kq = 4xk .
This implies that for every k ∈ N, we have xk+1 > xk, so xk+1 ≥ xk + 1, then
4xk+1 ≥ 4xk+1 ⇒ 3× 4xk ≤ 4xk+1 − 4xk = p+ (k+ 1)q− p− kq so we have that
for every k ∈ N, it would be 3 × 4xk ≤ q which is a contradiction, because we
have for every k ∈ N, that xk+1 > xk.
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Chapter 2

Context-Free Grammars

2.1 Basic Notions

In this paragraph we will give the well studied concept of context-free grammars.
For further study of context-free grammars see [21, 22, 23, 24, 25, 26].

Definition 2.1.1. A context-free grammar is a quadruple G = (Σ, N, P, S) ,
in which:

• Σ and N are disjoint finite non-empty sets of terminal and non-terminal
symbols, respectively

• P is a finite set of grammar rules, each of the form
A→ u, with A ∈ N and u ∈ (Σ ∪N)∗

• S ∈ N is a non-terminal designated as the start symbol

Multiple rules for a single non-terminal are often written using the notation

A→ α1 | . . . |αm

in which the vertical line is, in essence, disjunction.

One approach to defining the semantics of context-free grammars is rewriting
of strings over (Σ ∪N)∗.

Definition 2.1.2. Let G = (Σ, N, P, S) be a context-free grammar. Define a
relation ‘⇒’ of one-step derivability on (Σ ∪N)∗ as follows:

s1As2 ⇒ s1αs2, for all A→ α ∈ P and s1, s2 ∈ (Σ ∪N)∗

Let ⇒∗ be the reflexive and transitive closure of ⇒. For every string α ∈
(Σ ∪N)∗, we define the set of strings over Σ derivable from α:

LG(α) = {w ∈ Σ∗ | α⇒∗ w}

14



The language generated by the grammar is the set of strings derivable from S:

L(G) = LG(S) = {w ∈ Σ∗ | S ⇒∗ w}

A language L is context-free if there exists a context-free grammar G, where
L = L(G).

Another equivalent definition of the semantics of context-free grammars is
given by language equations:

Definition 2.1.3. Let G = (Σ, N, P, S) be a context-free grammar, let N =
{A1, . . . , An} and consider the associated system of n equations, in which the
unknowns {A1, . . . , An} assume values of languages over Σ:

Ai =
⋃

Ai→s1...sl∈P
(s1 . . . sl), where 1 ≤ i ≤ n

and where each symbol st = Aj ∈ N in the right-hand side of the equation
represents a variable, while each symbol st = a ∈ Σ represents a constant lan-
guage {a}. Let (L1, . . . , Ln) be the least solution of the previous system, that
is, a component wise intersection of all the solutions of the system. Then the
language generated by each non-terminal Ai is defined as LG(Ai) = Li.

The correctness of this definition requires a proof: it should be shown that
any system of language equations associated to a context-free grammar has a
solution, and that the component wise intersection of all solutions is a solution
as well. These properties of language equations we are going to establish right
now.
Let Σ be an alphabet, let n ≥ 1. Define a partial order v on the set (P(Σ∗))n

of vectors of n languages as (K1, . . . ,Kn) v (L1, . . . , Ln) if and only if Ki ⊆ Li.
The least element is ⊥= (∅, . . . , ∅).
Let Xi = φi(X1, . . . , Xn) (1 ≤ i ≤ n) be a system of language equations, where
φi : (P(Σ∗))n → P(Σ∗) are any functions on languages. Let φ = (φ1, . . . , φn)
be a vector function representing the right-hand side of the system. Assume
that φ has the following two properties:

• φ is monotone, in the sense that for any two vectors K and L, the inequal-
ity K v L implies φ(K) v φ(L).

• φ is
⋃

-continuous, in the sense that for every sequence of vectors of lan-
guages {L(i)}∞i=1 it holds that

∞⋃
i=1

φ(L(i)) = φ
( ∞⋃
i=1

L(i)
)
.

We have the following lemmas.

Lemma 2.1.1. If φ is monotone and
⋃

-continuous, then the least solution of
a system X = φ(X) is the vector

⋃∞
k=0 φ

k(⊥)
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Lemma 2.1.2. If each φi is a composition of variables and any constant lan-
guages using union and concatenation, then φ is monotone and

⋃
-continuous.

The above lemma, also holds if φi contains intersections and Kleene stars.
The following theorem shows that the previous definitions of context-free gram-
mars are equivalent.

Theorem 2.1.1. Let G = (Σ, N, P, S) be a context-free grammar and let X =
φ(X) be the associated system of language equations. Then, for every Ai ∈ N
and w ∈ Σ∗, Ai ⇒∗ w if and only if w ∈ [

⋃
k≥0 φ

k(⊥)]i, where [Γ]i denotes the
i-th component of the vector Γ.

Proof. (Outline) To show the “only if” part, we perform induction on the length
of the derivation of w. For every w derivable in l steps from Ai it is shown that
w ∈ [φk(⊥)]i for some k(l).
To show the “if” part, we perform induction on the number of steps in the
iteration. For every w ∈ [φk(⊥)]i it is shown that w is derivable in l steps from
Ai for some l(k).

Let us see some examples of context-free languages.

Example 2.1.1. The language { anbn | n ≥ 0} is generated by the grammar
S → aSb | ε.
Example 2.1.2. The language of balanced parentheses is generated by the gram-
mar S → SS | (S) | ε.
Example 2.1.3. The language of even-length palindromes {wwR | w ∈ {a, b}∗}
is generated by the grammar S → aSa|bSb|ε.
Example 2.1.4. Let Σ = {a, b}. The language {ww | w ∈ {a, b}∗} is generated
by the grammar

S → AB |BA |A |B
A → XAX | a
B → XBX | b
X → a | b

Theorem 2.1.2. The intersection of a regular language R with a context-free
language L is context-free language.

Proof. Since R is regular, there exists an automaton A = (Q,Σ, δ, q0, T ) which
recognizes it. Also, since L is context-free, there exists a context-free grammar
G = (Σ, N, P, S), such that L = L(G). Our goal is to creat a context-free
grammar G′ which generates L ∩ R. The set of non-terminals of this grammar
will be (Q × N × Q) ∪ {S}, where S is a new non-terminal. The rules of the
grammar G′ will be of the form1:

1We can assume that the rules of a grammar are of the form A → BC, A → a or A → ε,
where A,B,C are non-terminals and a a terminal. We can assume that because we can replace
every rule A→ C with the rules A→ EC and E → ε, where E is a new non-terminal. Every
rule A → ubu′, where u, u′ ∈ (Σ ∪ N)∗ and b ∈ Σ, with the rules A → uBu′ and B → b,
where B is a new non-terminal. Every rule A→ u, where u ∈ N∗ and |u| > 2, with the rules
A→ BC and C → u′, when u = Bu′.
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(q, A, q′) → (q,B, q1)(q1, C, q′) where A→ BC ∈ P and q, q1, q
′ ∈ Q

(q, A, q′) → a where A→ a ∈ P , q, q′ ∈ Q and δ(q, a) = q′

(q, A, q) → ε where A→ ε ∈ P and q ∈ Q

Now, with induction we can show that (q, A, q′) ⇒∗G′ w iff A ⇒∗G w and
δ∗(q, w) = q′. We end the proof by adding the rules of the initial symbol S
of the grammar G′. These rules will be of the form:

S −→ (q0, S, qt), where qt ∈ T

Now, we will see a special case of context-free grammars, which are called
right regular grammar.

Definition 2.1.4. A context-free grammar G = (Σ, N, P, S), is called it right
regular if all the rules in P are of the form:

A → aB
A → a
A → ε

where a ∈ Σ and A,B ∈ N .

Theorem 2.1.3. A language is regular if and only if it is generated by a right
regular grammar.

Proof. If a language L is regular, then there is an automaton A = (Q,Σ, δ, q0, T )
which recognizes L. For all the transitions δ(q, a) = q′, we add the rule Aq →
aAq′ . We also add the rule Aq → ε, if q ∈ T . It is easy to show that δ∗(q0, w) ∈
T ⇔ Aq0 ⇒∗ w.
On the other direction, if the language L is generated by a right regular grammar
G = (Σ, N, δ, S), then we create the NFA where Q = N ∪{F}, for a symbol F /∈
N . For every rule of the form A→ aB, we take the transition δ(A, a) = B. For
every rule of the form A→ a, where a ∈ Σε, we take the transition δ(A, a) = F .
Finally, T = {F} and S is the initial state. Then it is easy to show that the
grammar and the NFA are equivalence.

Corollary 2.1.1. If L is a regular language, then L is context-free.

Often we represent a rule

A→ t1 . . . tn, where A ∈ N and ti ∈ Σ ∪N ∪ {ε}

by a tree called parse tree, as it’s showed in Figure 2.1(α). In this tree, every
node which has children is named with a non-terminal. Every leaf can be a node
whose name is a terminal or a non-terminal. A parse tree conveys the meaning
of a string according to the grammar. It can also be seen as a snapshot of a
derivation of the grammar. For a grammar G and w ∈ L(G), we say that a
parse tree yields w if the root of the tree is the grammar’s initial symbol and
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Figure 2.1: Parse trees

the concatenation leaves yields the word w. We give en example of two parse
trees for the grammar S → aB, B → cb | ε in Figure 2.1(β). A context-free
grammar G is called unambiguous if every string w ∈ L(G) has a unique parse
tree. It’s easy to see the following proposition.

Proposition 2.1.1. A word w ∈ L(G) if and only if there is a parse tree with
yield w.

Example 2.1.5. The following context-free grammar generates the language
{ akblcm | k = l or l = m}:

S → AB |DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar is ambiguous because every string of the form anbncn can be
obtained both using the rule S → AB and using the rule S → DC.

2.2 Pumping Lemma for Context-Free Gram-
mars

In this section we answer the natural question of which are the limitations of
context-free languages. It is the corresponding lemma for the regular languages,
as we have seen in Theorem 1.4.2. Also, we give some examples of non context-
free languages. We can answer these questions with the following theorem.
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Theorem 2.2.1 (Pumping lemma for context-free languages). For every context-
free language L ⊆ Σ∗ there exists a constant p ≥ 1, such that for every string
w ∈ L with |w| ≥ p there exists a factorization w = xuyvz, where |uv| > 0 and
|uyv| ≤ p, such that xuiyviz ∈ L for every i ∈ N.

Proof. Let G = (Σ, N, P, S) be a context-free grammar generating L. Let m =
max(A→α∈P )|α| and define p = m|N | + 1. Consider any string w ∈ L of length
at least p and consider its parse tree. Let an internal node s in the tree be
called non-trivial if the partition of its subtree induced by its sons non trivially
divides the terminal leaves (that is, it is not the case that one of the sons has
all terminal leaves and the others have none).
Then the parse tree should contain a path with at least |N | + 1 non trivial
nodes, some non-terminal A must repeat twice in this path and the section of
the tree between these two instances of A can be repeated 0 or more times,
thus obtainning parse trees of xuiyviz. This section of the tree represents a
derivation of uAv from A.

Example 2.2.1. The language L = {anbncn|n ≥ 0} is not context-free.

Proof. Suppose that it is context-free and let p ≥ 1 be the constant given by
the pumping lemma. Consider w = apbpcp. Then there exists a factorization
w = xuyvz. There are several cases:

• Either u or v is not in a∗ ∪ b∗ ∪ c∗, that is, the string spans over the
boundary between as, bs and cs. Then xu2yv2z /∈ a∗b∗c∗ and cannot be
in L.

• If u, v ∈ a∗, then xyz = ap−|uv|bpcp /∈ L. The cases of u, v ∈ b∗ and
u, v ∈ c∗ are similar.

• If u ∈ a∗ and v ∈ b∗, then xu0yv0z = ap−|u|bp−|v|cp /∈ L. The cases of
u ∈ a∗, v ∈ c∗ and u ∈ b∗, v ∈ c∗ are similar.

In each case a contradiction is obtainned.

In the rest of the paragraph we will study the closure properties of context-
free languages.

Proposition 2.2.1. The context-free languages are closed under union, con-
catenation and star.

Proof. If Gi = (Σ, Ni, Pi, Si) with i ∈ {1, 2} and N1 ∩ N2 = ∅ are context-free
grammars. Then the grammars (Σ, N1∪N2∪{S}, P1∪P2∪{S → S1, S → S2}, S)
and (Σ, N1 ∪N2 ∪ {S}, P1 ∪ P2 ∪ {S → S1S2}, S) generate L(G1) ∪ L(G2) and
L(G1)L(G2), respectively, while the grammar (Σ, N1∪{S}, P1∪{S → S1S, S →
ε}, S) generates L(G1)∗. The correctness of all constructions is easily proved
using language equations.

Proposition 2.2.2. The context-free languages are not closed under intersec-
tion and complementation.
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Proof. Consider the following two grammars, which generate the languages
{ aiblcl | i, l ≥ 0} and { ambmcj | j,m ≥ 0}, respectively:

S1 → aS1 |A
A → bAc | ε

S2 → S2c |B
B → aBb | ε

Suppose context-free languages are closed under intersection. Then the language
{ aiblcl | i, l ≥ 0} ∩ { ambmcj | j,m ≥ 0} = { anbncn | n ≥ 0} should be
context-free as well, which contradicts Example 2.2.1.
Consider the following grammar generating the language { akblcm | k 6= l or
l 6= m}

S → AE |DC
A → aA | ε
B → bB | ε
C → cC | ε
D → aDb | aA | bB
E → bEc | bB | cC

The language

L = {akblcm|k 6= l or l 6= m} ∪ a∗b∗c∗ = {anbncn|n ≥ 0}

is context-free as well, as a union of two context-free languages. Then, if context-
free languages were closed under complementation, L should be context-free as
well, which is known to be untrue.

Though the intersection of two context-free languages is not necessarily
context-free, it is context-free in case one of these languages is regular as we
have seen in Theorem 2.1.2.
One more very simple closure result. Let Σ and Γ be alphabets. A mapping
h : Σ∗ → Γ∗ is called a homomorphism if h(uv) = h(u)h(v) for all u, v ∈ Σ∗.
This definition, in particular, implies that h(ε) = ε, and that a homomorphism
is completely defined by the images of all symbols from Σ.

Proposition 2.2.3. Let Σ and Γ be alphabets, let h : Σ∗ → Γ∗ be a homomor-
phism and let G = (Σ, N, P, S) be any context-free grammar. Define h(A) = A
for all A ∈ N . Then the grammar G′ = (Γ, N, P ′, S) with P ′ = {A→ h(α)|A→
α ∈ P} generates the language h(L(G)).

2.3 Special Cases

In this section we study the power of context-free languages when we have
bounded resources. The resources of a context-free language are the number of
symbols or terminals. Let us see some examples of this.
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Lemma 2.3.1. The context-free language a∗ ∪ b∗ can not be produced by a
context-free grammars with only one symbol.

Proof. We assume that there exists a context-free grammarG = ({a, b}, {S}, P, S)
which produces a∗ ∪ b∗. Let m be the maximum number of symbols and ter-
minals that we have in the right part of all rules in P . Then we have that
am+1 ∈ L, so S ⇒∗ am+1. We also have the number of computation steps are
greater than one, because of how we choose m. Then it is true that we have
u, v ∈ {a, b, S}∗, with |uv| > 0, such that S ⇒∗ uSv ⇒∗ am+1. But we reach
to contradiction, because since we also have that b ∈ L(S), then we should also
have that akbal ∈ L(S), for some k, l where k + l < m+ 1.

In the previous example we saw a language which can not be produced by
any context-free grammar with only one non-terminal. It comes naturally the
question, do we have a proposition which implies such negatives results. The
answer is the next proposition, which we will also use in the next chapter.

Proposition 2.3.1. Let G = (Σ, N, P, S) be a context-free grammar. We define
the set U = {u ∈ Σ∗ | A→ u ∈ P , with A ∈ N}. Then for all w ∈ L(G), there
exists an element of U which is a substring of w.

The validation of the previous proposition is very easy, we let it to the reader
(with induction on the number of steps of the computation). As an easy result of
the previous proposition we have that the language a+b+c+ can not be produced
by a context-free grammar with only one variable.
Another well known result for context-free languages, over unary alphabets, is
the following proposition.

Proposition 2.3.2. Every context-free language over a unary alphabet is regu-
lar.

Proof. Consider an infinite context-free language L over a unary alphabet, {a}
(the proof is immediate if L is finite). Let n be the pumping lemma constant
for L. From the pumping lemma, we have that for every w ∈ L, with |w| ≥ n,
there exists a factorization of w, w = xuyvz, with |uv| > 0 and |uyv| ≤ n such
that for every i ≥ 0, xuiyviz ∈ L. Since L is over an unary alphabet, then there
exist numbers p, p1, p2, q1, q2 ∈ N such that x = ap1 , y = ap, z = ap2 , u = aq1

and v = aq2 . So, from the pumping lemma we have a(p+p1+p2)+i(q1+q2) ∈ L for
every i ∈ N, which is also a regular expression.
We have seen so far, that for every word greater than n we have a set of the
form {ap+iq | i ≥ 0} for some specific p, q. This set is a subset of L and we also
have that q is smaller than n, but we don’t have a bound for p. We have to
notice that if p = kq + u, for some positive integers k, u, it holds

{ap+iq | i ≥ 0} = {au+iq | i ≥ k}

From the first step of this proof we have that L consists of perhaps some words
of length less that n plus a union of sets of the form {ap+iq | i ≥ 0}. From the
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last remark, it is easy to see that the union of the previous sets is finite, since
we have finite pairs of (p, q) with p ≤ q ≤ n. If we want to be more clear, we
also have to notice that {ap+iq | i ≥ l} ⊆ {ap+iq | i ≥ k}, for k ≤ l. This finite
union is regular expression, so L is regular.

2.4 Pushdown Automata

In this section we introduce another computational model, called pushdown au-
tomata (PDA). This is a generalization of automata which we already know.
These new automata are like finite automata but they have an extra compo-
nent, called stack. The stack provides additional memory and it gives more
“computational power” than an ordinary automaton. We will also see, that the
class of languages accepted by pushdown automata is equivalent to the class of
context-free languages. Here, we give the definition of pushdown automata as
in [21, 24]. In [22] a different but equivalent definition for PDAs is given.

2.4.1 Definition

Definition 2.4.1. A pushdown automaton (PDA) is a six-tuple M = (Q,Σ,Γ, δ, q0, F )
where Q,Σ,Γ and F are all finite sets, and

• Q is a set of states

• Σ is the input alphabet

• Γ is the stack alphabet

• δ : Q× Σε × Γε →P(Q× Γε) is the transition function2

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accept states, or final states.

As we can see, the definition of a pushdown automaton is similar to that
of a finite automaton, except for the stack, which we can find in the transition
function. The alphabet of the pushdown automaton is Σ and the stack’s alpha-
bet is Γ.
In order to understand how the pushdown automaton works, we have to un-
derstand its transition function. The domain of the function is Q × Σε × Γε.
Thus the current state, next input symbol read, and top symbol of the stack
determine the next move of a pushdown automaton. Either symbol may be
ε, causing the machine to move without reading a symbol from the input or
without reading a symbol from the stack. We also see from the definition of
transition function that we allow non determinism in this model.
A pushdown automaton M = (Q,Σ,Γ, δ, q0, F ) computes as follows. It accepts
an input w when: w = w1w2 . . . wm, where each wi ∈ Σε and sequences of

2Recall that Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}
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states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ exist such that to sat-
isfy the following three conditions. The string si represent the sequence of stack
contents that M has on the accepting branch of the computation.

1. r0 = q0 and s0 = ε. This condition signifies that M starts out properly in
the start state and with an empty stack.

2. For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at and
si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗. This condition states that M
moves properly according to the state, stack and next input symbol.

3. rm ∈ F . This condition states that an acceptance state occurs at the
input end.

More formally we can define the configuration of a PDA. A configuration is
a snapshot of a computation of the PDA. A configuration is a triple (q, w, u),
where q ∈ Q is a state, w ∈ Σ∗ is the remaining input to be read and u ∈ Γ∗ is
the stack content. We denote that a configuration (q, w, u) goes in one step to
the configuration (q′, w′, u′) by (q, w, u) . (q′, w′, u′). So, we could say that
an accepting computation on input w in terms of configuration, is the one
which starts with (q0, w, ε), every computation step is of the form (p, aw′, bu′) .
(q, w′, cu′) if (q, c) ∈ δ(p, a, b), where a ∈ Σε, b, c ∈ Γε, w′ ∈ Σ∗ and u′ ∈ Γ∗ and
ends with a configuration (p, ε, u′′) where p is an acceptance state. Now, lets
see some examples to help us understand PDAs better.

Example 2.4.1. In this example, we will give the formal description of the
PDA that recognizes the language { 0n1n | n ≥ 0}. Let M1 be (Q,Σ,Γ, δ, q0, F ),
where
Q = {q0, q1, q2, q3}
Σ = {0, 1}
Γ = {0,#}
F = {q0, q3}, and
δ is given by the following table:

Input: 0 1 ε
Stack: 0 # ε 0 # ε 0 # ε
q0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {(q1,#)}
q1 ∅ ∅ {(q1, 0)} {(q2, ε)} ∅ ∅ ∅ ∅ ∅
q2 ∅ ∅ ∅ {(q2, ε)} ∅ ∅ ∅ {(q3, ε)} ∅
q3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

We can also use a state diagram to describe a PDA. The state diagram of a
PDA is similar with a finite state automaton diagram, the only difference being
in the representation of the transition function. Instead of naming the directed
edge only with the input symbol, we name it with the form of “a, b → c”. We
write it, to signify that when the machine is reading an a from the input it may
replace the symbol b on the top of the stack with a c. Any of them can be the
symbol ε. If a is ε, the machine may make this transition without reading any
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q0 q3

q1

q2

1, 0    ε

0, ε    0

1, 0    ε

ε, #    ε

ε, ε    #

Figure 2.2: State diagram for PDA M1 that recognizes { 0n1n | n ≥ 0}

symbol from the input. If b is ε, the machine may make this transition without
reading or replacing any symbol from the stack. If c is ε, the machine does not
write any symbol on the stack when going along this transition. We can see an
example of the above in the state diagram of the Example 2.4.1, in Figure 2.2.
The formal definition of a PDA contains no explicit mechanism to allow the
PDA to test for an empty stack. In the previous example we saw a ‘trick’,
which allows us to do that test. Initially, we place a special symbol ‘#’ on the
stack, then if we ever see that # again, we know that the stack is empty. Subse-
quently, when we refer to testing for an empty stack in an informal description
of a PDA, we implement the procedure which we just described and saw in the
previous example. Additionally, we have another mechanism to test if we have
reached the end of the input word. This mechanism is able to achieve this effect
by not letting any transition from the acceptance states. Then, it accepts only
if we have reached at the end of the input word at the same time that we have
reach an acceptance state.
Now, we are going to see one more example, in which we need to use nondeter-
minism.

Example 2.4.2. In this example, we will see the PDA that recognizes the
language {wwR | w ∈ {0, 1}∗}3. Let M2 = (Q,Σ,Γ, δ, q0, F ), where Q =
{q0, q1, q2, q3}, Σ = {0, 1}, Γ = {0, 1,#} and F = {q0, q3}.

The informal description of the PDA is that it begins by putting the symbols
which are read onto the stack. At each point non deterministically, it guesses
whether the middle of the string has been reached. If its guess is a ‘yes’, it

3Recall that wR means w written in reverse order.
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1, 1    ε

ε, #    ε

ε, ε    #

ε, ε    ε

0, 0    ε

1, ε    1
0, ε    0

Figure 2.3: State diagram for PDA M2 that recognizes {wwR | w ∈ {0, 1}∗}

changes state into popping off the stack for each symbol read, checking to see
that they are the same. If always the same symbol is found and the stack empties
at the same time as the input is finished, it accepts; otherwise it rejects. We
can see the state diagram of this PDA in Figure 2.3.

2.4.2 Equivalence with context-free grammars

In this paragraph we show that context-free grammars and pushdown automata
are equivalent in power. Both of them are capable of describing the class of
context-free languages. We will show how to convert any context-free grammar
into a pushdown automaton that recognizes the same language and vice versa.
Recall that we defined a context-free language to be any language that can be
described with a context-free grammar. Our goal in this paragraph is to show
the following theorem.

Theorem 2.4.1. A language is context-free iff some pushdown automaton rec-
ognizes it.

In order to simplify things, we split the previous theorem into the two fol-
lowing propositions.

Proposition 2.4.1. If a language is context-free, then some pushdown automa-
ton recognizes it.

Proof. Let L be a context-free language, then we know that L has a context-free
grammar G which generates it. We will convert the context-free grammar G
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into a pushdown automaton P .
The PDA P will accept an input w, if and only if the grammar G generates it. It
will follow the grammar’s rules. In order to do that, we will use the PDA’s stack
to store the substitutions made as the grammar G generates a string. These
choices will be made from PDA the P non deterministically.
Lets give some more details. The following is an informal description of P .

1. We start with putting into the stack the symbol # and then G’s start
symbol S. So, we will have into the stack ‘S#’.

2. Repeat the following steps forever.

(a) If the top of the stack is a variable symbol A, non deterministically
select one of the rules for A and replace A by the string on the right-
hand side of the rule.

(b) If the top of the stack is a terminal symbol α, read the next symbol
from the input and compare it to α. If the symbols on stack and in
input are the same, go to the next input symbol and delite the one
of the stack. If they are not the same, reject on this branch of the
nondeterminism.

(c) If the top of the stack is the symbol #, enter the accept state. Doing
so accepts the input if it has all been read.

We see that in the beginning of the simulation of the grammar G from PDA
P , we put into the stack the mark of the stack to know when the stack will
be empty. Then we put into the stack the start symbol of the grammar to
simulate the initial state of the grammar. The directions given in 2 are how the
simulation works. When the top symbol of the stack is a variable, the things
are simple, we just replace that variable by the right-hand side of a rule. That
rule, which has that variable as its head, will be chosen non-deterministically.
In other words, the PDA P will guess the rule which the grammar uses to do
its one step derivation. As we can know only the top symbol of the stack, it
will be difficult to do substitutions with variables which are not in the top. We
solve this problem by comparing at once the terminal symbol which appears on
the top of the stack, with the following symbol of the input. As we can see, the
PDA P will accept its input when we will have into the stack the input word
followed by #, and only then. By the description of P , we see that the only
words which can be created into the stack are the ones that can be produced by
the grammar. Then, the language that P recognizes is the same as the language
that G generates.
Someone may argue about how can we put a long string into a stack in one step
of the machine, instead of just a symbol. This is simple, since we can simulate
this action by introducing additional states to write the string one symbol at
a time. For example, let q and r be states of the PDA and let α ∈ Σε and
s ∈ Γε. Say that we want the PDA to go from q to r when it reads α and
pops s. Furthermore we want it to push the entire string u = u1 . . . uk into
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the stack at the same time. We can implement this action by introducing new
states q1 . . . qk−1 and setting the transition function as follows:

(q1, uk) ∈ δ(q, α, s)
δ(q1, ε, ε) = {(q2, uk−1)}
δ(q2, ε, ε) = {(q3, uk−2)}

...
δ(qk−1, ε, ε) = {(r, u1)}

The PDA P has three basic states, qstart, qloop and qaccept, and other peripheral
ones. We use these states to put into the stack the strings as we described
earlier. The initial state of the machine is qstart, from which the machine goes
to qloop as it places S# into the stack. It stays to that state until the top symbol
of the machine will be # and goes to qaccept. Then the machine accepts only
when the input word agrees with the stack word.

Now we prove the other direction of Theorem 2.4.1. We just showed how to
convert a context-free grammar into a PDA. We will show now, how to convert
a PDA into a context-free grammar. This task is a bit more difficult.

Proposition 2.4.2. If a pushdown automaton recognizes a language, then it is
context-free.

Proof. In this proof we need to make a context-free grammar G, which will
generate the same language with a given pushdown automaton P . This means,
that we want to show that for a word w which the pushdown automaton P
accepts, to those it can be produced by the grammar G.
In order to do that, we will prove something more general. We make a grammar
G, which for every two states p, q has a variable Apq. This variable will generate
all the strings that can take P from state p with an empty stack to state q with
an empty stack. We have to notice that Apq can also generate strings that take
P from p to q, regardless of the stack contents at p, leaving the stack at q in
the same condition as it was at p.We need to simplify our task by modifying P .
We need P to satisfy the three following conditions:

• It has a single accept state, ‘qaccept’.

• It empties its stack before accepting.

• Every transition either pushes a symbol into the stack or pops one off the
stack, but it doesn’t do both at the same time.

Since we have a non deterministic machine, we can easily satisfy the first two
conditions. In the first one, we can put a new state qaccept which will be the only
terminal state. We change the transition function and from the old terminal
states we go to the new one without reading something from the input or from
the stack. In the second one, we do the ‘trick’ to test if the stack is empty as
we have already seen. We modify the transition function just before to accept
and it goes to a state that empties the stack. Then, it goes to the accept state.

27



We satisfy the third condition by replacing each transition that simultaneously
pops and pushes with a two transition sequence that goes through a new state.
We also replace each transition that neither pops nor pushes with a transition
sequence that pushes then pops an arbitrary stack symbol. So, we can assume
that the pushdown automaton P is of the form (Q,Σ,Γ, δ, q0, {qaccept}). For all
strings that take P from p to q, starting and ending with an empty stack, P ’s
first move is to push a symbol into the stack. P ’s last move is to pop a symbol
off the stack, because in every move of P either it pushes or it pops and it ends
up with an empty stack. We have two possibilities during that computation.
Either the stack isn’t empty for the whole computation, or it empties at a point.
In the first case, the symbol that was pushed into the stack at the beginning is
the symbol that was popped at the end. We simulate that possibility with the
rule Apq → aArsb, where a is the input read at the first move, b is the input
read at the last move, r is the next state that P goes after p when it reads the
input with an empty stack and s is the previous state before q. In the other
case, the stack empties at a point. Let r be the state which P is when it empties
its stack. We simulate this possibility with the rule Apq → AprArq.
The set of G’s variables is {Apq | (p, q) is a pair of P ’s states }. The start
symbol of G is Aq0,qaccept . We make G’s as follows:

• For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε, if (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t), we take the rule Apq → aArsb.

• For every p, q, r ∈ Q, we take the rule Apq → AprArq.

• For every p ∈ Q, we take the rule App → ε.

The only thing that we still have to do, is to explain why our construction works.
We do that by proving the following two sentences, ‘If Apq generates x, then x
can bring P from p with an empty stack to q with an empty stack’ and ‘If x
can bring P from p with an empty stack to q with an empty stack, then Apq
generates x’. We prove both sentences with induction on the number of steps
in the derivation of x from Apq and on the number of steps in the computation
of P that goes from p to q with an empty stack on input x. For the first one we
have that, if the derivation has one step, then we have to use a rule which on the
right-hand side contains no variables. The only rules in G where no variables
occur on the right-hand side are App → ε. Input ε takes P from p with an
empty stack to p with an empty stack. If the derivation is of length k + 1, for
k ≥ 1, we assume that the sentence holds for derivations of length at most k.
Suppose that Apq

k+1=⇒ x. The first step of this derivation is either Apq ⇒ aArsb
or Apq ⇒ AprArq. In the first case, we consider the factorization of x, x = ayb.

So,we have that Ars
k=⇒ y, but from the induction hypothesis we have that P

can go from r with empty stack to s with empty stack. Because Apq → aApqb
is a rule of G, (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t), for some stack symbol t.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push t into the stack. Then reading string y can bring it to s and leave t on
the stack. Then after reading b it can go to state q and pop t off the stack. In
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the second case, we consider the factorization of x, x = yz, where Apr generates
y and Arq generates z. Because both Apr

∗⇒ y and Arq
∗⇒ z are most of k steps,

we have from induction hypothesis that y can bring P from p to r and z can
bring from r to q with an empty stack. Which is what we want to show.
For the second sentence, we have that if the computation has 0 steps, it starts
and ends at the same state, say p. In 0 steps, P only has time to read the empty
string, so x = ε. By construction, G has the rule App → ε. We assume that
the sentence holds for computations of length at most k, where k ≥ 0.We will
prove it for computations of length k+1. We suppose that P has a computation
wherein x brings p to q with an empty stack in k + 1 steps. Either the stack is
empty only at the beginning and end of this computation, or it becomes empty
somewhere too.
In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move, let t be that symbol. We let a
be the input read in the first move, b be the input input read in the last move, r
be the state after the first move, and s be the state before the last move. Then,
(r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t), so the rule Apq → aArsb is in G. We
have the factorization of x, x = ayb. Input y can bring P from r to s without
touching the symbol t that is on the stack and P can go from r with empty stack
to s with empty stack on input y. We have removed the first and last steps of
the k + 1 steps of the original computation on x, so the computation on y has
(k + 1)− 2 = k − 1 steps. From the induction hypothesis we have Ars

∗⇒ y, so
we have Apq

∗⇒ x.
In the second case, we let r be the state where the stack becomes empty other
than at the beginning or the end of the computation on x. Then the portions of
the computation from p to r and from r to q each contains at most k steps. We
assume that y is the input read during the first portion and z is the input read
during the second portion. We have from induction hypothesis that Apr

∗⇒ y

and Arq
∗⇒ z. Because the rule Apq → AprArq is in G, we have Apq

∗⇒ x, which
completes our proof.

We have just proved that pushdown automata recognize the class of context-
free languages. This proof gives us a different explanation of Corollary 2.1.1.
Because every regular language is recognized by a finite automaton and every
finite automaton is a pushdown automaton that simply ignores its stack.
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Chapter 3

Conjunctive Grammars

Conjunctive grammars are a natural extension of context-free grammars. The
main difference between the two formalisms is that conjunctive grammars allow
conjunctions on the right-hand side of the rules. This class of grammars, defined
by A. Okhotin in [1], is more recent and appears to possess many interesting
properties. For further study of conjunctive grammars see [1, 2, 3, 4, 5, 6, 7, 10,
11, 12].

3.1 Definitions

Definition 3.1.1. A conjunctive grammar is a quadruple G = (Σ, N, P, S), in
which:

• Σ and N are disjoint finite non empty sets of terminal and non-terminal
symbols respectively

• P is a finite set of grammar rules, each of the form

A→ α1& . . .&αn

where A ∈ N , n ≥ 1 and α1, . . . , αn ∈ (Σ ∪N)∗

• S ∈ N is a non-terminal designated as the start symbol.

The semantics of conjunctive grammars is defined using derivations, more
or less in the same way as in the context-free case. The only difference is in
the objects being transformed: while context-free derivations operate on strings
over Σ ∪ N , which are terms over concatenation, derivations in conjunctive
grammars use terms over concatenation and conjunction. Let us denote such
terms as strings over an extended alphabet Σ∪N ∪{(,&, )}, assuming that none
of the three special symbols is in Σ∪N . The set of valid string representations
is defined inductively as follows:

1. ε is a term
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2. Every symbol from Σ ∪N is a term

3. If u and v are terms, then uv is a term

4. If u1, . . . , un (n ≥ 1) are terms, then (u1& . . .&un) is a term.

Definition 3.1.2. Given a grammar G, define the relation G=⇒ of immediate
derivability on the set of terms:

1. A non-terminal can be rewritten by the body of some rule enclosed in
parentheses, that is, if s1As2 with A ∈ N is a term, then, for every rule
A→ α1& . . .&αn ∈ P ,

s1As2
G=⇒ s1(α1& . . .&αn)s2

2. A conjunction of several identical terms enclosed in parentheses can be
replaced by one such term without the parentheses, that is, if u is a term,
then

s1(u& . . .&u︸ ︷︷ ︸
n

)s2
G=⇒ s1us2

With
G

=⇒n we denote the result of n steps of G=⇒. Let
G

=⇒∗ be the reflexive
and transitive closure of G=⇒. From now on, we will write =⇒ instead of G=⇒

and =⇒∗ instead of
G

=⇒∗, when G is obvious from the context. The language
generated by a term A is the set of all strings over Σ derivable from its start
symbol in a finite number of steps:

LG(A) = {w | w ∈ Σ∗, A =⇒∗ w}

The language generated by a grammar is the language generated by the star
symbol S of the grammar:

L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒∗ w}

Let us now consider a representation of conjunctive grammars by language
equations:

Definition 3.1.3. For every conjunctive grammar G = (Σ, N, P, S), the asso-
ciated system of language equations is a system of equations in variables N, in
which each variable assumes a value of a language over Σ, and which contains
the following equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi , A ∈ N
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Each instance of a symbol α ∈ Σ in such a system defines a constant lan-
guage {a}, while each empty string denotes a constant language {ε}. A solution
of such a system is a vector of languages (. . . , LC , . . .)C∈N , such that the sub-
stitution of LC for C, for all C ∈ N , turns each equation of Definition 3.1.3 into
an equality.
It is known that every such system has a non-empty set of solutions, and among
them the least solution consists of exactly the languages generated by the non-
terminals of the original conjunctive grammar: (. . . , LG(C), . . .)C∈N .
Now, we will give some examples of conjunctive grammars. First, we will con-
struct a conjunctive grammar for the most common example of a non context-
free language.

Example 3.1.1. The following conjunctive grammar generates the language
{ anbncn | n ≥ 0}:

S −→ AB&DC
A −→ aA | ε
B −→ bBc | ε
C −→ cC | ε
D −→ aDb | ε

The grammar is based upon the representation of this language as an in-
tersection of two context-free languages: { anbncn | n ≥ 0} = { aibjck | j =
k} ∩ { aibjck | i = j} According to this grammar, the string abc can be derived
in the following way:

S =⇒ (AB&DC) =⇒ ((aA)B&DC) =⇒ ((aA)(bBc)&DC) =⇒
((aA)(bBc)&(aDb)C) =⇒ ((aA)(bBc)&(aDb)(cC)) =⇒4

((a())(b()c)&(a()b)(c())) =⇒4 ((a)(bc)&(ab)(c)) =⇒2 (abc&abc) =⇒ abc

In essence, here two context-free derivations are done in parallel, and the same
string has to be derived from AB and from DC in order to do the last step
of the derivation. Another common example of a non context-free language,
{wcw | w ∈ {a, b}∗}, forms a more interesting case, because, as demonstrated
in [8, 9], it is not expressible as a finite intersection of context-free languages.
Let us give a conjunctive grammar for this language and explain how it works.

Example 3.1.2. The following conjunctive grammar generates the language
{wcw | w ∈ {a, b}∗}:

S −→ C&D
C −→ aCa | aCb | bCa | bCb | c
D −→ aA&aD | bB&bD | cE
A −→ aAa | aAb | bAa | bAb | cEa
B −→ aBa | aBb | bBa | bBb | cEb
E −→ aE | bE | ε

The non-terminal C generates {xcy | x, y ∈ {a, b}∗ and |x| = |y|} and thus
ensures that the string consists of two equal-length parts separated by a center
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marker. D takes one symbol from the left and uses A or B to compare it to
the corresponding symbol at the right. At the same time, D recursively refers
to itself in order to apply the same rule to the rest of the string. Formally, A
generates {xcvay | x, v, y ∈ {a, b}∗, |x| = |y|}, B generates {xcvby | x, v, y ∈
{a, b}∗, |x| = |y|} and therefore D produces {uczu | u, z ∈ {a, b}∗} (the last
result may be obtainned by a straightforward induction on the length of the
string). Finally, {xcy | x, y ∈ {a, b}∗ and |x| = |y|} ∩ {uczu | u, z ∈ {a, b}∗} =
{wcw | w ∈ {a, b}∗}

Let us construct a derivation of the string abcab and thus formally demon-
strate that it is generated by the given grammar:

S =⇒ (C&D) =⇒ ((aCb)&D) =⇒ ((a(bCa)b)&D) =⇒ ((a(b(c)a)b)&D) =⇒
((a(bca)b)&D) =⇒ ((abcab)&D) =⇒ (abcab&D) =⇒ (abcab&(aA&aD)) =⇒

(abcab&(a(bAb)&aD)) =⇒ (abcab&(a(b(cEa)b)&aD)) =⇒
(abcab&(a(b(c()a)b)&aD)) =⇒ (abcab&(a(b(ca)b)&aD)) =⇒

(abcab&(a(bcab)&aD)) =⇒ (abcab&(abcab&aD)) =⇒
(abcab&(abcab&a(bB&bD))) =⇒ (abcab&(abcab&a(b(cEb)&bD))) =⇒

(abcab&(abcab&a(b(c(aE)b)&bD))) =⇒
(abcab&(abcab&a(b(c(a())b)&bD))) =⇒

(abcab&(abcab&a(b(c(a)b)&bD))) =⇒ (abcab&(abcab&a(b(cab)&bD))) =⇒
(abcab&(abcab&a(bcab&bD))) =⇒ (abcab&(abcab&a(bcab&bD))) =⇒

(abcab&(abcab&a(bcab&b(cE)))) =⇒ (abcab&(abcab&a(bcab&b(c(aE))))) =⇒
(abcab&(abcab&a(bcab&b(c(a(bE)))))) =⇒
(abcab&(abcab&a(bcab&b(c(a(b())))))) =⇒
(abcab&(abcab&a(bcab&b(c(a(b)))))) =⇒

(abcab&(abcab&a(bcab&b(c(ab))))) =⇒ (abcab&(abcab&a(bcab&b(cab)))) =⇒
(abcab&(abcab&a(bcab&bcab))) =⇒ (abcab&(abcab&abcab)) =⇒

(abcab&abcab) =⇒ abcab

It is important to note that the construction essentially uses the center
marker, and therefore this method cannot be applied to construct a conjunc-
tive grammar for the language {ww | w ∈ {a, b}∗}. The question of whether
{ww | w ∈ {a, b}∗} can be specified by a conjunctive grammar remains an open
problem. In subsection 3.3 we will see an attempt to prove that the language
{ww | w ∈ {a, b}∗} can not be produced by any conjunctive grammar.

3.2 Special Cases

In this section we will study the power of conjunctive languages when we have
bounded resources. The resources of a conjunctive language are the number of
symbols or terminals. Similar with the context-free case, we will study both
cases, when we bound the variable symbols and when we bound the terminal
symbols. First, we present an example which demonstrates that if we compare
context-free grammars with one variable, with conjunctive grammars with one
variable, still conjunctive ones are more powerful. We then introduce Proposi-
tion 3.2.1 which can be used to infer negative expressibility results conserning
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univariate conjunctive grammars. To our knowledge, this result (despite its
simplicity) hasn’t been mentioned in the literature. We end this paragraph
with Example 3.2.1 introduced by A. Jeż in [4]. It was the first example of
a non-regular unary language and until then it was believed that conjunctive
grammars over one terminal produce only regular languages.

Lemma 3.2.1. The following conjunctive grammar with only one non-terminal
symbol generates the language a∗ ∪ b∗:

S −→ aaS& aSa
S −→ bbS& bSb
S −→ a
S −→ b
S −→ ε

In Lemma 2.3.1 we saw, that the language a∗ ∪ b∗ can not be produced by a
context-free grammar with only one variable. The above example demonstrates
that conjunctive grammars are more powerful than context-free ones even if we
restict attetion to one non-terminal symbol.
Now, lets give a proposition equivalent with 2.3.1 one. We will use it to show
negative results for conjunctive grammars with only one non-terminal symbol.

Proposition 3.2.1. Let G = (Σ, N, P, S) be a conjunctive grammar. We define
the set U = {u ∈ Σ∗ | A→ u ∈ P , with A ∈ N}. Then for all w ∈ L(G), there
exists an element of U which is a substring of w.

We leave the proof of this proposition to the reader. As a result of the
previous proposition we have that the language { anbncn | n ≥ 1} can not
be produced by any conjunctive grammar with only one non-terminal symbol.
Additionally, we have that neither the language { anbmanbm | m,n ≥ 1} can
be produced by any conjunctive grammar with only one variable. An idea of
how we have these results is that if k is the biggest number of strings that
appear on the right-hand side of all rules, then in the first language the word
akbkck has to have a substring of the set U of Proposition 3.2.1. But, this is
not possible since all strings of U are of the form alblcl, where 3l ≤ k. So
far, the negative results that we have seen from Proposition 3.2.1 are about
non context-free languages. Then, someone may ask about the relation between
conjunctive grammars with only one non-terminal symbol and general context-
free grammars. But, as a result of the previous proposition one can easily see
that the simple regular language ab∗a can not be produced by any conjunctive
grammar with only one non-terminal. The follow lemma, given by A. Alhazov,
shows that we can produce every unary regular language with a conjunctive
grammar with only one non-terminal.

Lemma 3.2.2. Every unary regular language is generated by a one-nonterminal
conjunctive grammar.

Proof. LetK∪(ap)+L be the given language, where p ≥ 1 andK,L ⊆ {ε, a, . . . , ap−1}.
Then the required grammar is
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S −→ ai, where ai ∈ K ∪ apL ∪ a2pL
S −→ apS&a2pS

In other words, the language equation

X = K ∪ apL ∪ a2pL ∪ (apX ∩ a2pX)

has the unique solution K ∪ (ap)+L.

Until now, we have studied the case of bounding the non-terminal symbols.
What happens in the case of bounding the terminal symbols? We have seen
in context-free languages that if we bound them to only one terminal they are
equivalent to regular languages. It was believed that the same holds in the case
of conjunctive grammars. But, in the next example we will see that conjunctive
grammars over one terminal can produce non regular languages.

Example 3.2.1. The following conjunctive grammar with the start symbol A1

generates the language { a4n | n ≥ 0}:

A1 −→ A1A3 &A2A2 | a
A2 −→ A1A1 &A2A6 | aa
A3 −→ A1A2 &A6A6 | aaa
A6 −→ A1A2 &A3A3

Each non-terminal Ai generates the language {ai4n |n ≥ 0}.

This construction is best understood in terms of 4−base positional notation
of the lengths of the strings. Then A1, A2, A3 and A6 generate strings of length
(10 . . . 0)4, (20 . . . 0)4, (30 . . . 0)4 and (120 . . . 0)4, respectively.
The goal of the rule A1 → A1A3&A2A2 is to represent every next power of four
by summing up some multiples of the previous power of four. The concatena-
tion A1A3 contains strings of length 4j + 34l; if j = l, this will be exactly 4j+1,
which is the desired number. However, the concatenation A1A3 also produces
some junk strings of length 4j + 3× 4l with j 6= l, and the base−4 notation of
these strings is of the form (10 . . . 030 . . . 0)4 or (30 . . . 010 . . . 0)4. The second
concatenation A2A2 consists of all strings of length 2× 4j + 2× 4l, and in the
case of j = l this gives the required number 4j+1. The junk strings obtainned in
this concatenation have length with base−4 notation (20 . . . 020 . . . 0)4, and it is
easy to see that the sets of junk strings in these two concatenations are disjoint.
Thus the conjunction A1A3&A2A2 filters out all strings of length other than
the next power of four.
To simplify the reasoning, it is useful to define the positional notation for-
mally. Let Σk = {0, 1, . . . , k − 1} be digits. For every string of digits w =
al−1 . . . a1a0 ∈ Σ∗k, let (w)k = Σl−1

i=0aik
i be the number defined by this string.

For every language L of positional notations of numbers, the set of numbers it
defines is denoted by (L)k = {(w)k|w ∈ L}. Finally, for any two sets of numbers
S, T ⊆ N, define their sum as S + T = {m+ n | m ∈ S, n ∈ T}.
Now the above conjunctive grammar can be represented as the following system
of equations over sets of natural numbers
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X1 = (X1 +X3) ∩ (X2 +X2) ∪ {1}
X2 = (X1 +X1) ∩ (X2 +X6) ∪ {2}
X3 = (X1 +X2) ∩ (X6 +X6) ∪ {3}
X6 = (X1 +X2) ∩ (X3 +X3)

and the claim is that the least solution of this system is ((10∗)4, (20∗)4, (30∗)4, (120∗)4).
The first equation has already been verified before, and in the new notation this
calculation is as follows:

((10∗)4 + (30∗)4) ∩ ((20∗)4 + (20∗)4) =
((10∗30∗)4 ∪ (100∗)4 ∪ (30∗10∗)4) ∩ ((20∗20∗)4 ∪ (100∗)4) = (100∗)4

Then, the right-hand side evaluates to (10∗)4. The rest of equations hold by
similar calculations:

((10∗)4 + (10∗)4) ∩ ((20∗)4 + (120∗)4) =
((10∗10∗)4 ∪ (20∗)4) ∩ ((20∗120∗)4 ∪ (200∗)4 ∪ (320∗)4 ∪ (120∗20∗)4) = (200∗)4

((10∗)4 + (20∗)4) ∩ ((120∗)4 + (120∗)4) =
((10∗20∗)4 ∪ (30∗)4 ∪ (20∗10∗)4) ∩ ((120∗120∗)4 ∪ (1320∗)4 ∪ (300∗)4) = (300∗)4

((10∗)4 + (20∗)4) ∩ ((30∗)4 ∪ (30∗)4) =
((10∗20∗)4 ∪ (30∗)4 ∪ (20∗10∗)4) ∩ ((30∗30∗)4 ∪ (120∗)4) = (120∗)4

3.3 An Attempt to Find a Non-Conjunctive Lan-
guage

In all computational models the main question is what is their limitations.
Which are the languages that can be produced by these models and which can’t.
Still, it remains an open problem to find a language that is not conjunctive. The
only answer we can give in this question is that we have a cubic time algorithm
which recognizes conjunctive grammars. From the time hierarchy theorem we
know that there are languages which aren’t in Time(O(n3)). Then, we know
that these languages can not be produced by any conjunctive grammar, but we
don’t have a method of checking if a language, which belongs to Time(O(n3)),
is conjunctive or not. Additionally, because the language {wcw | w ∈ {a, b}∗}
is conjunctive we can’t expect to have a theorem like pumping lemma, as we
have in automata or in context-free grammars.
In this paragraph I will make an attempt to find a language which is not
conjunctive. The hypothesis is that the language which is not conjunctive is
WW = {ww | w ∈ {a, b}∗}. The idea of showing that this language is not
conjunctive, is to find a classification on conjunctive grammars. This will be
a function from the set of conjunctive grammars to natural numbers. If we
denote the set of conjunctive grammars by CG, then a classification could be
a function F : CG → N. Moreover, we want to give successive approximation
of WW with a family of languages Li, where WW =

⋃
i∈N Li, and for i < j

we want F (Li) < F (Lj). Someone may notice that we put a language as an
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element of the domain of the function F instead of a grammar. But, we denote
by F (L), for a conjunctive language L, the least F (G) where G is a conjunctive
grammar and L = L(G), F (L) = min{F (G) | L = L(G)}. From now on, we
will use that notation for any classification that we define. Before we define this
family of languages we have to define something else. Let w be a word over Σ∗.
We define [w] to be the number of distinct letters alternating into the word w,
for example [a5b3a7c2] = 4. Now, we can define the family of languages Li:

Li = {ww | w ∈ {a, b}∗ and [w] = i}

The first attempt of finding a classification is the function NT : CG → N,
where NT will take a grammar as an input and it will give the number of
its non-terminal symbols. For example, the grammar G = ({a, b}, {S}, {S →
aaS&aSa, S → bbS&bSb, S → ε}, S) has NT (G) = 1. We notice that G pro-
duces L1 and from Proposition 3.2.1 we know that NT (L2) > 1. My first
assumption was that it holds NT (Li+1) > i, for every i ∈ N.
Lets assume NT (Li+1) > i is true for every i ≥ 3, then we will have that WW
is not conjunctive. Lets assume for the sake of contradiction that that WW is
conjunctive. Then for a natural number m it will be NT (WW ) = m. Then we
will make the grammar G′ with the rules:

S1 −→ ABAB . . . AB︸ ︷︷ ︸
4m+8

| BABA . . . BA︸ ︷︷ ︸
4m+8

A −→ aA | a
B −→ bB | b

Then G′ produces the language {w ∈ {a, b}∗ | [w] = 4m + 8}. Now, if we
combine the grammar G′ and a grammar which produces WW , say that is G′′

with start symbol S2, we can take the grammar G which has all the rules of G′

and G′′ and one more rule S → S1&S2.1 We will have then that L2m+4 = L(G),
but NT (G) = m + 4 which contradicts to the conjecture that NT (L2m+4) >
2m + 3 because we have for every number of non-terminals m that m + 4 <
2m+ 4. This gives us the conclusion that if the conjecture is true, WW is not
conjunctive.
Until now, we haven’t shown that for each i ∈ N, Li is conjunctive language.
From the following grammars we will see that the statement ‘ for every i ∈ N
we have that NT (Li+1) > i’, is not true. We will give a grammar Gi which will
produce the language Li, and each grammar Gi will have five non-terminals.
Let Si be the initial symbol of every Gi respectively. In each Gi we will use the
following non-terminals and their rules:

A −→ aA | a
B −→ bB | b
An −→ aAna | BAB . . .︸ ︷︷ ︸

n

Bn −→ aBna | ABA . . .︸ ︷︷ ︸
n

1We can assume that grammars G′ and G′′ don’t have common non-terminals, if they
have, we just change names of the non-terminals of one of the grammars.
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An example for specific n of the above is A3 will have the rule A3 → BAB,
and B4 will have the rule B4 → ABAB. We have already seen that L1 can be
produced by the grammar S1 → aaS&aSa | bbS&bSb | ε. It is easy to see that
the grammar which produces L2 is S2 → A1B&AB1 |B1A&BA1. For general
i ∈ N we will have the following grammars which produce Li:
For i even

Si −→ Ai−1BAB . . .︸ ︷︷ ︸
i−1

&ABi−1ABA . . .︸ ︷︷ ︸
i−2

& . . .&ABA . . .︸ ︷︷ ︸
i−1

Bi−1

Si −→ Bi−1ABA . . .︸ ︷︷ ︸
i−1

&BAi−1BAB . . .︸ ︷︷ ︸
i−2

& . . .&BAB . . .︸ ︷︷ ︸
i−1

Bi−1

For i odd

Si −→ Ai−2Ai−2&ABi−2ABA . . .︸ ︷︷ ︸
i−2

& . . .&ABA . . .︸ ︷︷ ︸
i−2

Bi−2A

Si −→ Bi−2Bi−2&BAi−2BAB . . .︸ ︷︷ ︸
i−2

& . . .&BAB . . .︸ ︷︷ ︸
i−2

Ai−2B

We notice that each Gi needs only five non-terminals, Si, A,B and Am, Bm
for m = i − 1 or m = i − 2, so we need another way of classification. This
could be to count the number of & that a grammar has. But, probably it is
not a good way to do so, since languages with similar ‘complexity’ will have
different measures. Like in case of the obvious grammars which produce L2 and
{ anbmanbm | n,m ≥ 0}, where they are similar languages but in the case of
L2 we need the double number of & because we have a disjunction of the first
letter a or b. So, in the next definition we will give the following, and probably
better, classification.

Definition 3.3.1. We define the function DAP over a conjunctive grammar
G = (Σ, N, P, S), DAP : N ×P(N)→ N, by the formula

DAP (A, Y ) = max
u∈PA

{DAP (u, Y ∪ {A}) + k}

where k is the number of occurrences of & in u and by convention
DAP (u,M) =

∑
B∈(N−M)DAP (B,M), where u ∈ (Σ ∪ N ∪ {&})∗ and B

appears in u and finally PA = {u ∈ (Σ ∪N ∪ {&})∗ | A→ u ∈ P}.
We define the degree of G by DAP (G), where DAP (G) = DAP (S, {S}).

The previous definition is a little complicated, so we will give some examples
of this degree for specific grammars. In Example 3.1.1, we have that its degree
is 1. Because DAP (S, {S}) = DAP (AB&DC, {S}) + 1 = DAP (A, {s}) +
DAP (B, {s})+DAP (C, {s})+DAP (D, {s})+1 and for everyX ∈ {A,B,C,D},
we have DAP (X, {S}) = 0. Similarly, we have the degree of the grammar in
Example 3.1.2 that is 2. Finally, lets calculate the DAP degree of a little more
complicated grammar, the one of Example 3.2.1.

DAP (A1, {A1}) = DAP (A2, {A1, A2}) + DAP (A3, {A1, A3}) + 1 =
DAP (A6, {A1, A2, A6}) + DAP (A2, {A1, A2, A3}) + DAP (A6, {A1, A3, A6})

+ 3 = DAP (A3, N) + DAP (A6, N) + DAP (A2, N) + 6 = 9
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Now, we will give some propositions which are easy to prove and we leave that
job at the reader.

Proposition 3.3.1. Let L1 and L2 two conjunctive languages with DAP (L1) =
m and DAP (L2) = n. Then it holds that DAP (L1 ∩ L2) ≤ m+ n+ 1 and that
DAP (L1 ∪ L2) ≤ max{m,n}.

Proposition 3.3.2. Let G = (Σ, N, P, S) be a conjunctive grammar. For every
A,B ⊆ N , and C ∈ N , where A ⊆ B, we have
DAP (C,A) ≥ DAP (C,B).

Proposition 3.3.3. Let G = (Σ, N, P, S) be a conjunctive grammar. For every
A ∈ N and B ⊆ N , we can calculate DAP (A,B) in a finite number of steps.

Proposition 3.3.4. For a conjunctive language L we have that, DAP (L) = 0
iff L is a context-free language.

The claim here is that the degree of the language Li+2 is at least i, i.e.
DAP (Li+2) ≥ i. If this claim is true, we have managed to prove that the
language WW is not conjunctive. For the sake of contradiction, we assume that
the language WW is a conjunctive language, then it has a degree. Let m be that
degree. Then the language L2(m+2) = WW ∩ ((aa∗bb∗)2(m+2) ∪ (bb∗aa∗)2(m+2))
has degree at most m+ 1 which contradicts the claim.
Lets think about DAP (Li), we start our thinking in small i. For i = 1, we have
the language L1 = (a2)∗ ∪ (b2)∗, where the grammar with the rules S → A |B,
A → aaA | ε and B → bbB | ε, produces it. From this grammar we have that
DAP (L1) = 0, where the claim holds. For the language L2 we know that it’s
not context-free so we know that DAP (L2) ≥ 1, and from the grammar

S −→ AD&EB |DA&BE
A −→ aAa |D
B −→ bBb |E
D −→ bB | ε
E −→ aE | ε

we have that DAP (L2) = 1, where again the claim holds. Unfortunately, I
haven’t found a way to continue with the rest Li, for i ≥ 3. A thought
was to try induction, but we can’t use Li for speaking about Li+1 because
of their definition. Then, I tried to prove the claim for some more general
family of language than Li, this form of languages could be of the form L′i =
{w1ba

n1bw2ba
n2b . . . banibwn+1ba

n1bwn+2ba
n2b . . . banibw2n+1 | wk ∈ {a, b}∗

for k = 1, . . . 2n + 1}. But again no results. Continuing in this way, we intro-
duce a class of conjunctive languages, we will call them generalized context-free
(GCF) languages. This class of languages seems to contain Li, and if this is
true then again we have proven my claim.

Definition 3.3.2. Let a given conjunctive grammar G = (Σ, N, P, S). Then,
D ∈ N is called a GCF symbol if
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• L(D) is a context-free language (or similarly DAP (L(D)) = 0)

• All the non-terminal symbols which appear on the right-hand side of all
rules with head D, are GCF symbols.

The conjunctive grammar G is GCF grammar, if S is a GCF symbol. A language
L is GCF language, if there exists a GCF grammar G, where L = L(G) and
DAP (L) = DAP (G).

For example, the grammar of Example 3.1.1 is a GCF grammar but the
grammars from Examples 3.1.2 and 3.2.1 are not. Lets see some propositions
for GCF grammars, again they are easy to verify and we leave it to the reader.

Proposition 3.3.5. Let L be a conjunctive language. Then L is a GCF lan-
guage iff L can be written as a finite intersection of context-free languages.2

Proposition 3.3.6. Let L be a GCF language and R a regular language. Then
if DAP (L) = m we have that DAP (L ∩R) ≤ m.

Proposition 3.3.7. Let L be a unary language. Then L is a GCF language iff
L is regular.

Two words about the proof of the second proposition is that we prove it
with induction on DAP. Where, at basis step we know it by Theorem 2.1.2 and
it is easy to continue on the next steps. Now, we will see another proposition a
little more complicated and more interesting.

Proposition 3.3.8. Let L be a GCF language. Then DAP (L) = m iff L ∈(
t (um+1CF )− t(umCF )

)
.3

Proof. We begin with the “only if” part. Then, we have that DAP (L) = m for a
GCF language L and we want to show that L ∈ t(um+1CF ) and L /∈ t(umCF ).
We have that if DAP (L) = m then L ∈ t(um+1CF ) from induction on m and
with the help of the identity (A∪B)∩(C∪D) = (A∩C)∪(B∩C)∪(A∩D)∪(B∩D)
for all sets A,B,C,D. In our case, A,B are sets of t(us1CF ) and C,D are sets
of t(us2CF ), where s1 + s2 + 1 ≤ m. Then we can see that each A∩C, B ∩C,
A ∩D and B ∩D have the most m intersections.
We have that L /∈ t(umCF ) by contradiction. For contradiction sake we assume
that there are Lij context-free languages which L is of the form

L = (L11 ∩ . . . ∩ L1m) ∪ . . . ∪ (Ln1 ∩ . . . ∩ Lnm)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m for a natural number n. Then, for every
language Lij we have a context-free grammar Gij = (Σ, Nij , Pij , Sij) which
produces it. We can assume that for every two (i, j) 6= (k, l) it’s true that
Nij ∩Nkl = ∅. Then we can create the conjunctive grammar:

G = (Σ, (
⋃
ij

Nij) ∪ {S}, (
⋃
ij

Pij) ∪ {S → Si1& . . .&Sim | 1 ≤ i ≤ n}, S)

2From now on we will use the notation t for finite union and u for finite intersection.
Moreover, we will use the notation tk for at most k unions and uk for at most k intersections.

3We remind to the reader that by CF we denote the set of context-free grammars.
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But we have that L = L(G) and DAP (G) = m − 1, which contradicts with
DAP (L) = m. The “if” part is obvious from the previous part.

We give all these definitions because in [8] we have a similar family of lan-
guages with Li. In this family of languages we have that as we take more
complicated languages we need more intersections of context-free languages in
order to produce them. Then, if we prove that Li are GCF languages we will
have proven that WW is not a conjunctive language. We end this paragraph
with a notice. Every word over {a, b} can take us at a unique vector σ ∈ N∗
and vice versa.4 For example the word a3b2a4 gives us the vector (3, 2, 4) and
the vector (0, 5, 2, 1) gives as the word b5a2b1. We can see that every language
over {a, b} has a unique correspondence to an element of P(N∗) and vice versa.
The question here is can we find some properties on elements of P(N∗), where
its correspondence to be GCF languages or conjunctive languages.

3.4 Synchronized Alternating Pushdown Automata

In this section we introduce another computational model, called synchronized
alternating pushdown automata (SAPDA). This is similar to the pushdown au-
tomata of 2.4. As, we have shown that the class of context-free grammars is
equal to the class of languages accepted by PDAs, we will show the equivalence
of the class of conjunctive languages with the class of languages accepted by
SAPDA. The original paper introducing this concept is [11]. For making our
model similar to automata and to pushdown automata as introduced in 2.4, we
give a different but equivalent definition of SAPDA as it’s given in [11]. So,
the proof of equivalence of the class of conjunctive grammars with the class of
SAPDA is also different than the one given in the orininal paper. Moreover,
I believe that the proof which I give here is simpler and easier for someone to
understand.

3.4.1 Definition

Definition 3.4.1. A synchronized alternating pushdown automaton5 is a six-
tuple A = (Q,Σ,Γ, δ, q0, F ) where Q,Σ,Γ and F are all finite sets, and

• Q is a set of states

• Σ is the input alphabet

• Γ is the stack alphabet
4Here, we assume that every word starts with an a. In different case, we will take n-tuple

of natural numbers with 0 at the first position.
5Note that the given definition is different from the original paper [11]. We give a different

definition of SAPDA for symmetry with automata and PDA. The main difference is that in
the paper is defined the SAPDA which accept an input if every leaf node empties its stack.
Here, SAPDA is defined to accept an input if every leaf node is in an acceptance state when
it reads its input.
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• δ : Q × Σε × Γε → P({(q1, u1) ∧ . . . ∧ (qk, uk)|k = 1, 2, . . . , i = 1, . . . , k,
qi ∈ Q and ui ∈ Γ}) is the transition function

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accept states.

We describe the current stage of the automaton computation as a directed
labelled tree. In this tree we encode the stack contents, the current states of
the stack-branches, and the remainning input to be read for each stack-branch.
Each leaf node has a processing head which reads the input and writes to its
branch independently. When a multiple-state conjunctive transition is applied,
the stack branch splits into multiple branches, one for each conjunct. The
branches process the input independently. When all children leaves are exactly
the same, they collapse to the parent node, which becomes a leaf, after which
the computation continues from the parent branch. The internal nodes are not
labelled. We can give them a name for practical reasons when we want to refer
to them, we will name them with the stack content α ∈ Γ∗ which they had when
they were leaves. The label of every leaf is a triple (q, w, α), where q ∈ Q is
the current state, w ∈ Σ∗ is the remainning input to be read and α ∈ Γ∗ is the
stack-branch contents.
A configuration of a SAPDA is a directed labeled tree where each internal node
is named with a string of the stack alphabet and each leaf with a triple of the
form (q, w, α). The computation of a SAPDA is the same as the computation
of a PDA, where every computing step is made at only one leaf every time.
The only other difference is that here we have an additional step, where a leaf
can become an internal node and create leaf nodes when a multiple transition
is applied. An accepting computation for a SAPDA on an input w,is when it
starts with the single node tree (q0, w, ε) and reaches a configuration of which
every leaf node has read its input word and it is in an accept state.
The following examples will help us understand better how a SAPDA works.

Example 3.4.1. In this example, we will give the formal description of the
SAPDA that recognizes the language {w ∈ Σ∗ | |w|a = |w|b = |w|c}.6 Let A be
(Q,Σ,Γ, δ, q0, F ), where
Q = {q0, q′0, q1, q2, q3}
Σ = {a, b, c}
Γ = {a, b, c,#}
F = {q3}
δ is defined as follows:

6We remind that for a word w and a letter a, we denote by |w|a the number of a’s that
appear in w.
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δ(q0, ε, ε) = {(q′0,#)}
δ(q′0, ε, ε) = {(q1, ε) ∧ (q2, ε)}
δ(q1, c, ε) = {(q1, ε)}
δ(q1, σ, ε) = {(q1, σ)}, σ ∈ {a, b}

δ(q1, σ′, σ′′) = {(q1, ε)}, σ′ 6= σ′′ and σ′, σ′′ ∈ {a, b}
δ(q2, a, ε) = {(q2, ε)}
δ(q2, σ, ε) = {(q2, σ)}, σ ∈ {b, c}

δ(q2, σ′, σ′′) = {(q2, ε)}, σ′ 6= σ′′ and σ′, σ′′ ∈ {b, c}
δ(q1, ε,#) = {(q3, ε)}
δ(q2, ε,#) = {(q3, ε)}

The first step of the computation puts the symbol # for testing later if the
stack is empty. After that, the next step of the computation opens two branches,
one for verifying that the number of as in the input word equals the number of
bs, the state q1 is responsible for that. The other, for verifying that the number
of bs equals to the number of cs, which q2 is responsible for that. State q1 pushes
into the stack the letters as and bs, or it matches them and deletes both of them
if it sees a pair of a,b where one is the reading input symbol and the other is
the top of the stack of this branch. State q2 works similarly. When, states q1, q2
turn out to state q3 means that we have reached the end of the input word and
the stack is empty, otherwise the SAPDA halts and it doesn’t accept.
Lets see a possible computation of the previous example on the input abbcccaab:

(q0, abbcccaab, ε) . (q′0, abbcccaab,#) . (q1, abbcccaab,#) ∧ (q2, abbcccaab,#) .
(q1, bbcccaab, a#) ∧ (q2, abbcccaab,#) . (q1, bcccaab,#) ∧ (q2, abbcccaab,#) .

(q1, cccaab, b#) ∧ (q2, abbcccaab,#) . (q1, cccaab, b#) ∧ (q2, bbcccaab,#) .
(q1, cccaab, b#) ∧ (q2, bcccaab, b#) . (q1, cccaab, b#) ∧ (q2, cccaab, bb#) .

(q1, cccaab, b#) ∧ (q2, ccaab, b#) . (q1, cccaab, b#) ∧ (q2, caab,#) .
(q1, cccaab, b#) ∧ (q2, aab, c#) . (q1, cccaab, b#) ∧ (q2, ab, c#) .

(q1, cccaab, b#) ∧ (q2, b, c#) . (q1, cccaab, b#) ∧ (q2, ε,#) .
(q1, cccaab, b#) ∧ (q3, ε, ε) . (q1, ccaab, b#) ∧ (q3, ε, ε) . (q1, caab, b#) ∧ (q3, ε, ε)

. (q1, aab, b#) ∧ (q3, ε, ε) . (q1, ab,#) ∧ (q3, ε, ε) . (q1, b, a#) ∧ (q3, ε, ε) .
(q1, ε,#) ∧ (q3, ε, ε) . (q3, ε, ε) ∧ (q3, ε, ε)

which is an accepting computation since all branches have reached the end of the
input word and all branches are at the accept states. In Figure 3.1 we can see
the ninth step of the previous computation of the form of the tree configurations.

Now, we consider the following example of a SAPDA which accepts the
interesting non context-free language {wcw | w ∈ {a, b}∗}, which we can’t even
produce by any finite intersection of context-free languages. The example is of
particular interest as it shows the model’s ability to utilize recursive conjunctive
transitions.

Example 3.4.2. In this example, we will give the formal description of the
SAPDA that recognizes the language {wcw | w ∈ {a, b}∗}. Let A be (Q,Σ,Γ, δ, q0, F ),
where
Q = {q0, q, q′, qe, q′e, qac} ∪ { q1σ | σ ∈ {a, b}} ∪ { q2σ | σ ∈ {a, b}}

43



# 

(q , cccaab, b#) 
1 2(q , cccaab, bb#) 

# 

(q , cccaab, b#) 
1 2(q , ccaab, b#) 

1

Figure 3.1: In the figure are the 9th and 10th configurations of the computation
which we did of Example 3.4.1

Σ = {a, b, c}
Γ = {d,#}
F = {qac}
δ is defined as follows:

δ(q0, ε, ε) = {(q,#) ∧ (q′,#)}
δ(q′, σ, ε) = {(q′, d)}, σ ∈ {a, b}
δ(q′, c, ε) = {(qe, ε)}
δ(q, σ, ε) = {(q, ε) ∧ (q1σ, ε)}, σ ∈ {a, b}
δ(q, c, ε) = {(q′e, ε)}
δ(q1σ, τ, ε) = {(q1σ, d)}, σ, τ ∈ {a, b}
δ(q1σ, c, ε) = {(q2σ, ε)}, σ ∈ {a, b}
δ(q2σ, τ, ε) = {(q2σ, ε)}, σ, τ ∈ {a, b} and σ 6= τ
δ(q2σ, σ, ε) = {(q2σ, ε), (qe, ε)}, σ ∈ {a, b}
δ(qe, σ, d) = {(qe, ε)}, σ ∈ {a, b}
δ(qe, ε,#) = {(qac, ε)}
δ(q′e, σ, ε) = {(q′e, ε)}, σ ∈ {a, b}
δ(q′e, ε,#) = {(qac, ε)}

The computation of the SAPDA starts by splitting in two branches. Each
branch has two main phases: before and after the sign c is encountered in the
input. In one branch, with the state q′, it makes sure that the number of letters
before c is the same with the number of letters after c. In the first phase of this
branch, we count the number of letters before c by putting the symbol d into
the stack for each letter that we read at the input. Later, when this branch
reaches to the symbol c changes to state qe. The only function of this state is
to check if the letters of the remainning input are the same with the number of
ds on the stack. Thus, this branch of the SAPDA accepts inputs of the form
wcu, where w, u ∈ {a, b}∗ and |w| = |u|.
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The other branch is more interesting but also more complicated. In the first
phase of this branch, each input letter which is read leads to a conjunctive
transition that opens two new stack-branches. One new branch continues the
recursion, while the second checks that the following condition is met.
Assume σ is the nth letter on the left from the sign c. If so, the new stack
branch opened during the transition on σ will verify that the nth letter from
the end of the input is also σ. This way, if the computation is accepting, the
word will in fact be of the form wcuw, where w, u ∈ {a, b}∗. To be able to check
this property, the branch must know σ and σ’s relative position to the sign
c. To remember σ, the state of the branch head is q1σ, where the 1 superscript
denoting that the computation is in the first phase. To find the relative position,
the branch adds a sign d to its stack for each input symbol read after the σ, until
the c is encountered in the input. Therefore, when the c is read, the number of
ds in the stack branch will be the number of letters between σ and the sign c in
the first half of the input word.
Once the c is read, the branch perpetuating the recursion ceases to open up new
branches, and instead transitions to qe. All the other branches denote that they
have moved to the second phase of the computation by transitioning to states
q2σ. From this point onward, each branch waits to see the σ encoded in its state
in the input. Once it does encounter σ, it can either ignore it and continue to
look for another σ in the input, in case there are repetitions in w of the same
letter, or it can guess that this is the σ which is the one in the right position
and move to state qe. After transitioning to qe, if in fact σ was in the right
position from the end, the sign # of the stack branch will be exposed exactly
when the last input letter is read. At this point, it transits to the accept state. If
all branches successfully guess their respective σ symbols then the computation
will reach a configuration where all leaf nodes are labelled (qac, ε, ε), which is an
accepting configuration.

3.4.2 Equivalence with conjunctive grammars

In this paragraph we will show that conjunctive grammars and synchronized
alternating pushdown automata are equivalent in power. Both are capable of
describing the class of conjunctive languages. We will show how to convert
any conjunctive grammar into a synchronized alternating pushdown automaton
that recognizes the same language and vice versa. Recall that we defined a con-
junctive language to be any language that can be described with a conjunctive
grammar. Our goal in this paragraph is to show the following theorem, which
is the equivalent of Theorem 2.4.1.

Theorem 3.4.1. A language is conjunctive if and only if some synchronized
alternating pushdown automaton recognizes it.

As we often do in theorems which are ‘if and only if’, we will split it into
the two following propositions.

Proposition 3.4.1. If a language is conjunctive, then some synchronized al-
ternating pushdown automaton recognizes it.
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Proof. Let L be a conjunctive language, then we know that L has a conjunctive
grammar G which generates it. We will convert the conjunctive grammar G
into a synchronized alternating pushdown automaton P . The proof of this
proposition is similar to the proof of Proposition 2.4.1. The SAPDA P will
accept an input w, if and only if the grammar G generates it. It will follow
the grammar’s rules. In order to do that, we will use the same mechanism with
the one which we used on PDAs. Here, we have to notice that each leaf of the
SAPDA is like a normal PDA. The only difference is that in the SAPDA model
we can choose to split a node, but still each leaf node is like a normal PDA7.
Again, like in the proof of Proposition 2.4.1, we will have three main states
qstart, qloop, qaccept and ancillary ones. Which the only transition for qstart, will
be δ(qstart, ε, ε) = {(qloop, ε, S#)} 8 and there are not any transitions which
starts from qaccept. The stack alphabet will be Γ = Σ∪N ∪ {c, d,#}, where we
assume that c, d,# /∈ Σ ∪ Γ.
As every leaf is similar with a PDA, the only thing left to explain is what
happens when we have to simulate a rule of the form A → u1& . . .&uk, where
ui ∈ (Σ∪Γ)∗ and i = 1, . . . , k. A first glimpse of how we will do that simulation
is at Figure 3.2. We assume that P wants to simulate a rule of the form A →
u1& . . .&uk, for k ≥ 2. Then, if the input is w, we will have a factorization
of w, w = w1w2, where w1 ∈ L(A) and w2 ∈ L(u′) if ‘Au′#’ is the whole
string on the stack. Then P first pops A off the stack and goes to state pA.
State pA guesses the length of w2 and pushes into the stack the string cc · · · c︸ ︷︷ ︸

|w2|

d.

It continues with splitting the node with pA, to nodes p3, . . . , pk+2 and p1,
without reading the input or changing the stack. Then p1 guesses the length of
w1 and reads |w1| symbols from the input without doing something else. Then
p1 splits to two nodes, p2 and qloop. Node p2 will have only these transitions
δ(p2, σ, c) = {(p2, ε)} and δ(p2, ε, d) = {(qaccept, ε)}, where σ ∈ Σ. So, state p2

is responsible for checking if the guess of p1 was correct. Also, the remaining
w2 continues normally in qloop, after deleting the string ‘cc . . . cd’ off the stack.
Each leaf node with the state pi+2 represents the conjunct ui, for i = 1, . . . , k.
So, when pA is slitted to nodes p1 and p3, . . . pk+2, each pi+2 writes the string
ui on the top of the stack and continues normally by going to state qloop. To
sum the above, when P reads on the top of the stack a variable A, and wants
to simulate the rule A → u1& . . .&uk, it guesses a factorization of the input
w, w = w1w2 and secures that A produces w1. It can do that, by putting |w2|
mark symbols c after A which ensure that A produces the first |w| − |w2| =
|w1| symbols of the input w. The rest transitions are defined the same as in
Proposition 2.4.1. To conclude our proof, we must add to P the transitions
(qloop, σ, c) ∈ δ(qloop, ε), for σ ∈ Σ, and (qaccept, ε) ∈ δ(qloop, ε, d).

7But we can’t just split a node when we want to follow a rule with conjuncts. If we do
so, we will do the mistake that SAPDA will do a computation on AC&BC when we want to
compute (A&B)C, which are not equal if we notice the rules A→ a, B → aa and C → a|aa.
Then, L((A&B)C) = ∅ but L(AC&BC) = {aaa}.

8We can push into the stack two symbols, with the help of an ancillary state.
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. . .

pA

p3

p1

pk+2

p2 ploop

Figure 3.2: The mechanism for simulating a conjunctive rule.

We just showed how to convert a conjunctive grammar into a SAPDA. We
will show now, how to convert a SAPDA into a conjunctive grammar. But before
we give the next proposition we need to simplify our task. We can assume that
every SAPDA P has an equivalence SAPDA P ′ which satisfies the following
three conditions:

• It has a single accept state, ‘qaccept’.

• It empties its stack before accepting.

• Every transition either pushes a symbol into the stack or pops one off the
stack or splits one of its leaf nodes, but it doesn’t do any of them at the
same time.

Similarly with the PDAs, the first two conditions are shown easily. In the first
one, we can put a new state qaccept which will be the only terminal state. We
change the transition function and from the old terminal states we go to the
new one without reading something from the input or from the stack. In the
second one, we do the ‘trick’ to test if the stack is empty as we have already
seen. We modify the transition function just before to accept and it goes to
a state that empties the stack. Then, it goes to the accept state. We satisfy
the third condition by replacing each transition which splits a node and at the
same time pops or pushes a symbol into or off the stack with a two transition
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sequence that first splits and then pops or pushes a symbol. We can do that by
introducing new states for each leaf node, which will remember the state that
it was to go and the symbol that it was to be popped or pushed. Moreover, we
modify the transition function by replacing each transition that simultaneously
pops and pushes with a two transition sequence that goes through a new state.
We also replace each transition that neither pops nor pushes nor splits, with
a transition sequence that pushes then pops an arbitrary stack symbol. Thus,
in the rest of the paragraph we assume that every SAPDA satisfies the three
previous conditions.

Proposition 3.4.2. If a synchronized alternating pushdown automaton recog-
nizes a language L, then L is conjunctive.

Proof. In this proof we need to make a conjunctive grammar G, from a given
synchronized alternating pushdown automaton P , which will produce the same
language as the one which P accepts. This means, that we want for a word w,
which synchronized alternating pushdown automaton P accepts, to be generated
by the grammar G.
In order to do that, we will prove something more general. We will make a
grammar G, that for every two states p, q and t stack symbol, we will have
grammar’s variables A+t

pq , A−tpq and Aεpq. The variables Aεpq will generate all the
strings that can take P from state p with an empty stack to state q with an
empty stack9. If the superscript is +t, then the variables A+t

pq will be generate
all strings that can take P from state p with an empty stack to state q with the
stack to contain only the symbol t. Similarly, the variable A−tpq will be generate
all strings that can take P from state p with the stack to contain only the symbol
t, to state q with an empty stack. We have to notice that Aσpq, σ ∈ {ε,+t,−t},
can also generate strings that take P from p to q, regardless of the stack contents
at p, leaving the stack at q in the same condition as it was at p with respect to
σ.
Now, we will formally describe the grammar G. The set of the G’s variables is
{Aσpq | p, q ∈ Q and σ ∈ Γε }. The G’s start symbol is Aεq0,qaccept

. We make the
G’s rules by the following description10:

9In the model of SAPDA the stack is a tree. So, when we say that an input x can take
P from state p with empty stack to state q with an empty stack, we mean that the first and
last configuration is the single node tree. The first one is labelled (p, u, ε) and the last one
is labelled (q, u′, ε), for some u, u′ ∈ Σ∗. Even if we had configurations on the computation
with multiple node trees, we can reach to the final configuration to be a single node tree after
steps based on collapses.

10We have to notice that some rules, we do not need to put them here, because they are
produced by others. Like the rule Aεpq → aA−trq , which can be produced by A+t

pq −→ a and

Aεpq −→ A+t
prA

−t
rq . But, we give all of these rules to help us understand easier the purpose of

every rule. Also, we have to keep in mind that the SAPDA P can do only one of pop,push or
split at each step of a computation.
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Aεpq −→ AεprA
ε
rq, for all p, r, q ∈ Q

Aεpq −→ A+t
prA

−t
rq , for all p, r, q ∈ Q

A+t
pq −→ AεprA

+t
rq , for all p, r, q ∈ Q

A+t
pq −→ A+t

prA
ε
rq, for all p, r, q ∈ Q

A−tpq −→ AεprA
−t
rq , for all p, r, q ∈ Q

A−tpq −→ A−tprA
ε
rq, for all p, r, q ∈ Q

Aεpq −→ aAεrsb, if (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)
Aεpq −→ aA−trq , if (r, t) ∈ δ(p, a, ε)
Aεpq −→ A+t

ps b, if (q, ε) ∈ δ(s, b, t)
Aεpq −→ aAεp1q& . . .&aAεpkq

if (p1, ε) ∧ . . . ∧ (pk, ε) ∈ δ(p, a, ε)
A+t
pq −→ aA+t

p1q& . . .&aA+t
pkq

if (p1, ε) ∧ . . . ∧ (pk, ε) ∈ δ(p, a, ε)
A−tpq −→ aA−tp1q& . . .&aA−tpkq

if (p1, ε) ∧ . . . ∧ (pk, ε) ∈ δ(p, a, ε)
Aεpp −→ ε, for all p ∈ Q
A+t
pq −→ a, if (q, t) ∈ δ(p, a, ε)

A−tpq −→ a, if (q, ε) ∈ δ(p, a, t)

The only thing that we still have to do, is to explain why our construction works.
We do that by proving the following two propositions: If Aεpq generates x, then
x can bring P from p with an empty stack to q with an empty stack. Also, the
same holds for variables A+t

pq and A−tpq , depend of + or − which have only the
symbol t at the beginning or at the end of computation. And: If x can bring
P from p with an empty stack to q with an empty stack, then Aεpq generates x.
Also, if x can bring P from p with t the only symbol in the stack to state q with
empty stack, then A−tpq generates x. Moreover, if x can bring P from p with
empty stack to state q with t the only symbol in the stack, then A+t

pq generates x.
We will prove both propositions with simultaneous induction on the number of
steps in the derivation of x from Aσpq, σ{ε,+t,−t} and on the number of steps
in the computation of P .
For the first proposition we have that, if the derivation has one step, then we
have to use a rule which on the right-hand side contains no variables. The only
rules in G where no variables occur on the right-hand side are Aεpp → ε, A+t

pq → a
and A−tpq → b, where (q, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(p, b, t) respectively. Thus,
input ε takes P from p with an empty stack to p with an empty stack, input
a takes P from p with an empty stack to q with t the only stack symbol and
input b takes P from p with t the only stack symbol to q with an empty stack.
Thus, the proposition holds for one step derivations.
If the derivation is of length of k+ 1, for k ≥ 1, we assume that the proposition
holds for derivations of length of at most k. Suppose that Aεpq

k+1=⇒ x. The first
step of this derivation is one of the previous rules. We will see the proof only
for two of them, similarly we can prove the others. We will see the proofs for
the rules, Aεpq ⇒ AεprA

ε
rq and Aεpq ⇒ aAεp1q& . . .&aAεpkq

.
In the first rule, we consider the factorization of x, x = yz, where Aεpr generates
y and Aεrq generates z. Because both Aεpr

∗⇒ y and Aεrq
∗⇒ z are most of k steps,

we have from induction hypothesis that y can bring P from p with an empty
stack to r with an empty stack and z can bring P from r with an empty stack
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to q with an empty stack. Thus, x can bring P from p with an empty stack to
q with an empty stack, which it is what we want to show.
In the second rule, the first derivation is Aεpq ⇒ aAεp1q& . . .&aAεpkq

. We consider
the factorization of x, x = ay. So, we have that each Aεpiq produce y, for
i = 1, . . . , k, where each of them are at most k derivations. From the induction
hypothesis we have that the input y can bring P from pi with empty stack to
q with empty stack. Thus, each leaf of the computation of P on x ends with
(q, ε, ε)11, then it collapses to the parent node. Thus, input x can bring P from
state p with an empty stack to state q with empty stack, as we want. Similarly
we do for the other rules of G.
For the second proposition, we have that if the computation has zero steps, it
starts and ends at the same state, say p. In zero step, P only has time to read
the empty string, so x = ε. By construction, G has the rule Aεpp → ε. We know
that P can’t split a node and pop or push a symbol into or off the stack in one
move. Then in one step, P can only push a symbol into its stack if we want
to start with an empty stack and to finish with a symbol into the stack. Then,
the only possible step is to read a character of the input and to push a symbol
into the stack, then we have (q, t) ∈ δ(p, a, ε). From the construction of G, we
have the rule A+t

pq → a. Similarly for popping a symbol off the stack, we have
the rule A−tpq → a. Thus, the proposition holds for zero and one steps.
We assume that the proposition holds for computations of length at most k,
where k ≥ 1. We will prove it for computations of length k + 1. First, we
suppose that P has a computation wherein x brings p with an empty stack to
q with an empty stack in k+ 1 steps. At the first step of a computation, either
P pushes a symbol into the stack , or it splits the root node. We will see each
case separately.
We assume that in the first step of the computation, P pushes a symbol into the
stack. Then, we have a transition (r, t) ∈ δ(p, a, ε), where w = ay. Moreover,
we have that y can bring P from state r with t the only symbol in the stack
to state q with an empty stack, at k steps. From the induction hypothesis we
have that A−trq

∗⇒ y, then Aεpq
∗⇒ w because from the construction of G we have

the rule Aεpq → aA−trq if (r, t) ∈ δ(p, a, ε). The proofs are the same when the
computation starts with popping or pushing a symbol, if we want to show that
w can bring P from state p with t the only symbol in the stack to state q with
an empty stack, we have A−tpq

∗⇒ w and if w can bring P from state p with an
empty stack to state q with t the only symbol in the stack, we have A+t

pq
∗⇒ w.

We assume now, that the computation splits its root node at the first step. Then,
we have a transition (p1, ε)∧ . . .∧ (pk, ε) ∈ δ(p, a, ε), where w = ay. Then, each
leaf (pi, y, ε) has an computation that accepts y. From the induction hypothesis
we have that for each i, Aεpiq

∗⇒ y. From the rule, Aεpq → aAεp1q& . . .&aAεpkq
, we

11Here, we assume that x is the hole input word and the computation on P starts with
an empty stack. We have to notice that a similar explanation holds for x to be an initial
substring of the input word or the computation on P to start with symbols on the stack.
We are speaking for input x, it doesn’t matter how the computation will continue, and we
don’t touch the symbols that may be in the stack initially. So, for each leaf we would have
(q, u1, u2), where the remaining input u1 is the same at each leaf as it is the stack content u2.
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have that Aεpq
∗⇒ w. Similarly we have the proofs for A−tpq

∗⇒ w and A+t
pq
∗⇒ w,

when the computation starts with splitting its node.
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Chapter 4

Boolean Grammars

Boolean grammars generalize both context-free and conjunctive grammars. Boolean
grammars were introduced by A. Okhotin in [15] and appear to posses many
interesting properties. The semantics of Boolean grammars was defined later
in [16], as it is more complicated than the semantics for context-free grammars
or conjunctive grammars. The idea behind the semantics of Boolean gram-
mars came from the area of logic programming. For a further study of Boolean
grammars see [10, 15, 16, 17, 18].

4.1 Definition

Definition 4.1.1. A Boolean grammar is a quadruple G = (Σ, N, P, S), in
which:

• Σ and N are disjoint finite non-empty sets of terminal and non-terminal
symbols respectively

• P is a finite set of grammar rules, each of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn

where A ∈ N , m,n ≥ 0, m+ n ≥ 1 and αi, βj ∈ (Σ ∪N)∗

• S ∈ N is a non-terminal designated as the start symbol.

The semantics of a general Boolean grammar is far more complicated than
the one for context-free grammars or conjunctive grammars. We will give se-
mantics for the whole class of Boolean grammars in the next paragraph. For
now we only consider a few simple cases. A string can be produced by a rule
of a Boolean grammar if it can be produced by all the positive conjuncts of the
rule and by none of the negative ones. This interpretation isn’t sufficient to give
meaning to grammars like S → ¬S.
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Example 4.1.1. The following Boolean grammar generates the language { ambncn |
m,n ≥ 0, m 6= n}:

S −→ AB&¬DC
A −→ aA | ε
B −→ bBc | ε
C −→ cC | ε
D −→ aDb | ε

The rules for the non-terminals A, B, C and D are context-free. We have
that L(AB) = {ambncn | m,n ∈ N} and L(DC) = {anbncm | m,n ∈ N}.
Then L(AB) ∩ L(DC) = { ambncn | m,n ≥ 0, m 6= n}.

Example 4.1.2. The following Boolean grammar generates the language {ww |
w ∈ {a, b}∗}1:

S −→ ¬AB&¬BA&C
A −→ XAX | a
B −→ XBX | b
C −→ XXC | ε
X −→ a | b

Again, according to the intuitive semantics, the non-terminals A, B, C and
X should generate the appropriate context-free languages, and

L(A) = {uav | u, v ∈ {a, b}∗, |u| = |v|}
L(B) = {ubv | u, v ∈ {a, b}∗, |u| = |v|}

L(AB) = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |v|, |x| = |y|}

Then, L(AB) contains all strings of even length with a mismatched a on the
left and b on the right, in any position. Similarly, we have for the set L(BA):

L(BA) = {ubvxay | u, v, x, y ∈ {a, b}∗, |u| = |v|, |x| = |y|}

Now, L(BA) specifies the mismatch formed by b on the left and a on the right.
Then the rule for S specifies the set of strings of even length, from C, without
such mismatches. Then, we have:

L(S) = L(AB) ∩ L(BA) ∩ {aa, ab, ba, bb}∗ = {ww | w ∈ {a, b}∗}

To verify this, we have to notice that if from non-terminal A produce the word
w1 and from B the word w2, we have the following: if |w1| = 2i+ 1, the central
a is in i+1 position of the word, then |w2| = 2(k− i−1)+1 (when |w1w2| = 2k)
and we also have that the central b is in (i+ 1) + i+ (k− i− 1) + 1 = k+ i+ 1
position of the word w1w2.
Notice that Proposition 3.2.1 can not be generalized to the case of Boolean
grammars, as the following example illustrates on alphabet {a, b}:

1We have to remember that this language is the one which we tried to show that it’s not
conjunctive. Then if this is true, we will know that conjunctive languages is a proper subclass
of the Boolean ones.
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Example 4.1.3.
S −→ ¬A
A −→ b

There exists an infinity set of strings of L(S) that do not contain b as a
substring (e.g. a, aa, . . .).

4.2 Well-Founded Semantics for Boolean Gram-
mars

In the previous paragraph we presented the definition of Boolean grammars. We
now consider their semantics. Let G be the Boolean grammar with the unique
rule S → ¬S. What is the meaning of this grammar? For every string w we
have the following problem: if w ∈ L(G) then by the rule S → ¬S we have
that w /∈ L(G) and similarly if w /∈ L(G) we will have that w ∈ L(G). So, we
reach to the conclusion that the classical definition of a language with just the
relation ‘∈’ is not enough to define the semantics of Boolean grammars. Then,
we introduce the concept of 3-valued languages. Classical (2-valued) languages
can also be considered as functions from Σ∗ to {0, 1}, i.e. we have that w ∈ L
iff L(w) = 1. Then, we generalize this alternative way of classical definition of
languages and we take 3-valued languages as follows2:

Definition 4.2.1. A 3-valued language L over an alphabet Σ is a function from
Σ∗ to {0, 1

2 , 1}.

Then, given a string w ∈ Σ∗ we have that L(w) = 0 if w doesn’t belong to the
language L, L(w) = 1

2 means that we don’t know if w belongs to the language
L and finally if L(w) = 1 then w is an element of the language L. From now on
all languages of this paragraph will be 3-valued ones. Since we have a different
definition of the languages that we are going to use in this paragraph we have
to re-define the basic operations on the 3-valued languages:

Definition 4.2.2. Let L1, L2 be languages over an alphabet Σ. We define the
3-valued intersection of the languages L1, L2 to be the language L1 ∩ L2 such
that:

(L1 ∩ L2)(w) = min{L1(w), L2(w)}

Definition 4.2.3. Let L1, L2 be languages over an alphabet Σ. We define the
3-valued union of the languages L1, L2 to be the language L1 ∪ L2 such that:

(L1 ∪ L2)(w) = max{L1(w), L2(w)}

Definition 4.2.4. Let L be a language over an alphabet Σ. We define the
3-valued complement of the language L to be the language L such that:

L(w) = 1− L(w)
2Okhotin, in his lectures [27], has a different but equivalent definition of 3-valued languages.

He defines them by a pair of languages (L,L′), where L ⊆ L′. The meaning of when a string
w belongs to the language is that: If w ∈ L then we have that w is in the language (L,L′), if
w ∈ L′ − L then we don’t know and if w /∈ L′ it doesn’t belong to the language.
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The difference of two 3-valued languages L1, L2 can be defined as:

L1 − L2 = L1 ∩ L2

Definition 4.2.5. Let L1, . . . , Ln be languages over an alphabet Σ. We define
the 3-valued concatenation of the languages L1, . . . , Ln to be the language L such
that:

L(w) = max
(w1,...,wn):
w=w1...wn

(
min

1≤i≤n
Li(wi)

)
The concatenation of L1, . . . , Ln will be denoted by L1 · · ·Ln.

Definition 4.2.6. An interpretation I of a Boolean grammar G = (Σ, N, P, S)
is a function I : N → [Σ∗ → {0, 1

2 , 1}].
3

An interpretation I can be recursively extended to apply to expressions that
appear as the right-hand sides of Boolean grammar rules:

Definition 4.2.7. Let G = (Σ, N, P, S) be a Boolean grammar and I be an
interpretation of G. Then I can be extended to become a truth valuation Î as
follows:

• For every symbol α ∈ Σε and for all w ∈ Σ∗ , it is Î(α)(w) = 1 if w = α
and 0 otherwise.

• For every symbol A ∈ N and for all w ∈ Σ∗, it is Î(A)(w) = I(A)(w)

• Let α = α1 . . . αn, n ≥ 2, be a sequence in (Σ ∪ N)∗. Then, for every
w ∈ Σ∗, it is Î(α)(w) = (Î(α1) · · · Î(αn))(w)

• Let α ∈ (Σ ∪N)∗. Then, for every w ∈ Σ∗, Î(¬α)(w) = 1− Î(α)(w)

• Let l1, . . . , ln be conjuncts. Then, for every string w ∈ Σ∗, Î(l1& . . .&ln)(w) =
min{Î(l1)(w), . . . , Î(ln)(w)}

We are now in a position to define the notion of a model of a Boolean
grammar:

Definition 4.2.8. Let G = (Σ, N, P, S) be a Boolean grammar and I an inter-
pretation of G. Then, I is a model of G if for every rule A→ l1& . . .&ln in P
and for every w ∈ Σ∗, it is Î(A)(w) ≥ Î(l1& . . .&ln)(w).

In the definition of the well-founded model, two orderings on interpretations
play a crucial role, as they are taken from the area of logic programming. Given
two interpretations, the first ordering (usually called the standard ordering)
compares their degree of truth:

Definition 4.2.9. Let G = (Σ, N, P, S) be a Boolean grammar and I, J be two
interpretations of G. Then, we say that I � J if for all A ∈ N and for all
w ∈ Σ∗, we have I(A)(w) ≤ J(A)(w).

3We remind to the reader that by [A→ B] we denote the set of functions f from A to B.
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There is an interpretation, among all the others, of a given Boolean grammar
which is the least with respect to the � ordering, we call that interpretation ⊥
which for all A and all w, ⊥ (A)(w) = 0.
The second ordering, usually called the Fitting ordering, compares the degree
of information of two interpretations:

Definition 4.2.10. Let G = (Σ, N, P, S) be a Boolean grammar and I, J be
two interpretations of G. Then, we say that I �F J if for all A ∈ N and
for all w ∈ Σ∗, if I(A)(w) = 0 then J(A)(w) = 0 and if I(A)(w) = 1 then
J(A)(w) = 1.

In this ordering (�F ), the least interpretation among all others is ⊥F which
for all A and all w ∈ Σ∗, we have ⊥F (A)(w) = 1

2 .
Given a set U of interpretations, we will write lub�U (respectively lub�F

U)
for the least upper bound of the members of U under the standard ordering
(respectively, the Fitting ordering).

Now, we have reached to a point that we can define the well-founded se-
mantics for Boolean grammars. The basic idea here is that the intended model
of the grammar is constructed in stages. These stages are related to the lev-
els of negation that the grammar uses. But before we define the well-founded
semantics for Boolean grammars, we need one last definition.

Definition 4.2.11. Let G = (Σ, N, P, S) be a Boolean grammar, let I be the set
of all 3-valued interpretations of G and let J ∈ I . The operator ΘJ : I → I
is defined as follows. For every I ∈ I , for all A ∈ N and for all w ∈ S∗:

• ΘJ(I)(A)(w) = 1 if there is a rule A→ l1& . . .&ln in P such that for every
positive li it is Î(li)(w) = 1 and for every negative li it is Ĵ(li)(w) = 1

• ΘJ(I)(A)(w) = 0 if for every rule A→ l1& . . .&ln in P, either there exists
a positive li such that Î(li)(w) = 0, or there exists a negative li such that
Ĵ(li)(w) = 0

• ΘJ(I)(A)(w) = 1
2 , otherwise.

In the following theorem we will see that the operator ΘJ is monotonic with
respect to the � ordering of interpretations. Moreover, it has a unique least
fixed point:

Theorem 4.2.1. Let G be a Boolean grammar and let J be an interpretation
of G. Then, the operator ΘJ is monotonic with respect to the � ordering of
interpretations. Moreover, ΘJ has a unique least, with respect to �, fixed point
Θ↑ωJ which is defined as follows:

Θ↑0J = ⊥
Θ↑n+1
J = ΘJ(Θ↑nJ )

Θ↑ωJ = lub�{Θ↑nJ | n ∈ N}
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The complete proof of the above theorem is given in [16]. Now, we will
denote by Ω(J) the least fixed point of ΘJ . Given a grammar G, we can use
the Ω operator to construct a sequence of interpretations whose ω-limit MG will
prove to be a distinguished model of G:

M0 = ⊥F
Mn+1 = Ω(Mn)
MG = lub�{Mn | n ∈ N}

Theorem 4.2.2. Let G be a Boolean grammar, then MG is a model of G.
Moreover, MG is the least (with respect to the �F ordering) fixed point of the
operator Ω.

The previous theorem gives us the uniqueness that we need for defining the
well-founded model for a Boolean grammar. For a Boolean grammar G we will
call MG to be its well-founded model. As we mentioned before this way of se-
mantics are form the area of Logic Programming, but we have a difference in
our model. This difference is that in general logic programs the construction of
the well-founded model may require a transfinite number of iterations which is
greater than ω. In other words, the well-founded semantics of logic programs is
not computable in the general case. However, in the case of Boolean grammars,
the model is constructed in at most ω iterations.
Actually, it can be shown, with a similar reasoning as in [20], that the model
MG is the least model of G according to a syntax-independent relation. More-
over, it can be shown that if we have a Boolean grammar without negations or
if we have acyclic negations (that means that there is no non-terminal which
can reach to itself after some computational steps through negation) then we
will have a 2-valued (values 0 and 1) well founded semantics, which will give
values as it will be expected. That means that the well-founded semantics of
a Boolean grammar with no negation agrees with the semantics that we gave
for conjunctive grammars. The construction of the well-founded model is illus-
trated by the following example:

Example 4.2.1. Let G be the grammar given in Example 4.1.2. Then, it is
easy to see that MG = M2, i.e. in order to converge to the well-founded model
of G we need exactly two iterations of Ω. More specifically, in M1 = Ω(M0)
the denotations of the non-terminals A,B, C and X stabilize (notice that the
definitions of these non-terminals are standard context-free rules). However, in
order for the denotation of S to stabilize, an additional iteration of Ω is required.
Notice that the language produced by this grammar is two-valued.
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Conclusion

In this thesis we have examined four interesting classes of formal languages. The
two of them, namely regular and context-free ones, are well-known classes that
have been widely studied in the literature [21, 22, 23, 24, 25]. The other two,
namely conjunctive and Boolean languages, are more recent ones and appear to
possess many interesting properties [1, 3, 15].
For each of the first three classes of formal languages that we have considered,
we have also presented a corresponding equivalent formal automaton model.
More specifically, as we have seen:

• Regular languages are produced by finite state automata

• Context-free languages are produced by pushdown automata

• Conjunctive languages are produced by synchronized alternating push-
down automata

It appears to be an interesting problem to devise a formal automaton model
that captures exactly the class of Boolean languages. A possible idea would be
to extend synchronized alternating pushdown automata with negation nodes,
but of course this needs to be further investigated.
There are many other research problems regarding conjunctive and boolean
languages, which appear to be not only interesting but also very challenging
and non trivial. Some of these problems are surveyed in [10]. In the following
we present the ones that we believe are the most interesting ones and which, if
resolved, will offer a deeper insight to this new area of research:

1. Are conjunctive and Boolean grammars equivalent, or there exist a Boolean
language which is not conjunctive?

2. Are conjunctive languages closed under complementation?

3. Is there a language, which is recognized by deterministic linear bounded
automata working in time O(n2), that doesn’t produced by a Boolean
grammar?

4. Given an arbitrary 3-valued Boolean language L, does there always exist
a 2-valued Boolean language L′ such that L and L′ agree on the set of
strings that are assigned the value 1? In other words, are 3-valued Boolean
grammars more expressive that 2-valued ones?
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Closing, we believe that conjunctive and boolean grammars are very natural
and interesting classes of formal grammars that deserve further investigation
and development.
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