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ABSTRACT 
Multitasking has become an integral part of work environ-
ments, even though people are not well-equipped cognitive-
ly to handle numerous concurrent tasks effectively. Systems 
that support such multitasking may produce better perfor-
mance and less frustration. However, without understanding 
the user’s internal processes, it is difficult to determine op-
timal strategies for adapting interfaces, since all multitask-
ing activity is not identical. We describe two experiments 
leading toward a system that detects cognitive multitasking 
processes and uses this information as input to an adaptive 
interface. Using functional near-infrared spectroscopy sen-
sors, we differentiate four cognitive multitasking processes. 
These states cannot readily be distinguished using beha-
vioral measures such as response time, accuracy, keystrokes 
or screen contents. We then present our human-robot sys-
tem as a proof-of-concept that uses real-time cognitive state 
information as input and adapts in response. This prototype 
system serves as a platform to study interfaces that enable 
better task switching, interruption management, and multi-
tasking.  

Author Keywords 
fNIRS, near-infrared spectroscopy, multitasking, interrup-
tion, brain computer interface, human-robot interaction 
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General Terms 
Human Factors 

INTRODUCTION 
Multitasking has become an integral part of work environ-
ments, even though people are not well-equipped to effec-
tively handle more than one task at a time [26]. While mul-

titasking has been shown to be detrimental to performance 
in individual tasks [26], it can also be beneficial when a 
secondary task provides additional information for complet-
ing the primary task, such as allowing people to integrate 
information from multiple sources. 

Multiple windows, multiple monitors and large displays 
make it possible for the interface to handle multitasking, 
and many researchers have investigated how best to support 
the user who is balancing multiple tasks. Because multi-
tasking can elicit several different cognitive states, the us-
er’s needs during multitasking may change over time.  
However, it is difficult to determine the best way to support 
the user without understanding the internal cognitive 
processes occurring during task performance. 

In this paper, we describe a preliminary study and two ex-
periments using neural data in which we identified four 
mental processes that may occur during multitasking and 
have direct relevance to many HCI scenarios. These 
processes are almost indistinguishable by examining overt 
behavior or task performance alone.  However, using our 
non-invasive brain-sensing system (Figure 1) with func-
tional near-infrared spectroscopy (fNIRS), we can automat-
ically distinguish these four states. By detecting specific 
cognitive states that occur when multitasking, we can build 
user interfaces that better support task switching, interrup-
tion management and multitasking. We show an example of 
this with a proof-of-concept adaptive human-robot system 
that can change behavior based on brain signals received. 
This prototype system serves as a platform to provide the 
basis for designing and evaluating future brain-based adap-
tive user interfaces, with broader applications beyond hu-
man-robot team tasks. 
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Figure 1. Functional near-infrared spectroscopy is a port-

able non-invasive tool for detecting brain activity. 

 



 

 

This paper makes the following contributions: (1)We show 
that specific cognitive multitasking states, previously stu-
died with fMRI, can be detected automatically with fNIRS 
which is more practical in HCI. (2)We moved from a sim-
ple letter-based task in previous work to actual HCI-related 
tasks that elicit similar states. (3)We show a working proof-
of-concept human-robot platform that supports adaptive 
behavior based on the cognitive states detected with fNIRS.  

Related Work: Multitasking Support 
Although computers are capable of handling multiple 
processes simultaneously, people have a difficult time due 
to high mental workload from increased working memory 
demands and the overhead of switching context between 
multiple tasks. Repeated task switching during an activity 
may lead to completion of the primary task with lower ac-
curacy and longer duration, in addition to increased anxiety 
and perceived difficulty of the task [1].  The challenge is to 
devise an effective way to measure workload and attention-
shifting in a dynamic environment, as well as to identify 
optimal support for multitasking.  

Measuring Mental Workload and Other Cognitive States 
Managing mental workload has long been an active topic in 
HCI research and high mental workload has been identified 
as a cause of potential errors [2]. Researchers have shown 
that different types of subtasks lead to different mental 
workload levels [15]. As a measure for mental workload, 
researchers have proposed pupil dilation [17] in combina-
tion with subjective ratings as this is non-invasive, and al-
lows the user to perform the tasks as the data is processed in 
real time. Other physiological measures, including skin 
conductance, respiration, facial muscle tension and blood 
volume pressure, have also been used to detect cognitive or 
emotional states to improve machine intelligence [6, 23, 
29].  While adaptive user interfaces may be designed to 
reduce mental workload, any automation may also result in 
reduced situation awareness, increased user complacency 
and skill degradation, and these human performance areas 
should be evaluated in the system [28]. 

Task Switching and Measuring Interruptibility 
When managing multiple tasks, interruptions are unavoida-
ble. To address this, researchers have developed systems 
that try to identify the cost associated with interruption 
based on different inputs, such as desktop activity, envi-
ronment context [7, 13, 35], eye tracking [12], or other phy-
siological measures such as heart rate variability and elec-
tromyogram [4] and handle interruptions accordingly. They 
have found interruptions to be less disruptive during lower 
mental workload [16, 30]. Other studies tried placing inter-
ruptions near the beginning, middle or end of a task [5], at 
task boundaries [25], or between repetitive tasks which 
were considered as more interruptible [27]. It was also 
shown that interruptions relevant to the main task tend to be 
less disruptive for the users than irrelevant interruptions [5].  

Various interruption schemes may affect performance in 
different ways; however, there is no universally optimal 
interruption scheme. Interrupting the user as soon as the 
need arises, for example, emphasizes task completeness 
over accuracy, while allowing the user to defer interrup-
tions indefinitely does the opposite [31]. McFarlane [24] 
discusses four distinct methods for coordinating interrup-
tion—immediate, negotiated (user selects when to be inter-
rupted), mediated (an intelligent agent selects when to inter-
rupt), and scheduled (interruptions appear at fixed times)—
and found that no optimal method existed across users and 
tasks. Thus, it is crucial that the style of interruption adapts 
to the task. Systems have been developed that quantify the 
optimal time to interrupt a user by weighing the value 
against the cost of interruption [15]. In addition to deter-
mining the optimal time for switching tasks, researchers 
have tried to determine the best method for reminding users 
of pending background tasks. Miyata and Norman [26] note 
that important alerts specifically designed for someone who 
is deeply engaged in another task would most likely be in-
appropriate and may even be disruptive in other situations. 

 
Figure 2. In the Delay scenario, the secondary task requires little attention, but the primary task goal is held in working memory. In 

the Dual-Task scenario, both primary and secondary tasks require attentional resources to be allocated for each task switch, but  
goals are not held in working memory. Branching has characteristics of both Delay and Dual-Task scenarios (Figure 3). 

 



 

 

Brain Sensing for HCI 
Real-time cognitive state information can inform the tra-
deoffs to create intelligent user interfaces.  Design of user 
interfaces that employ real-time cognitive state information 
has become an emerging topic in HCI recently (for an over-
view, see [18]). Much of this work has used brain sensing 
as explicit input to the system to make selections or control 
the interface [21, 36], although there have been examples of 
passive brain sensing to be used either as implicit input or 
for evaluation of user interfaces [9, 11, 22]. Our work fo-
cuses on using fNIRS sensors to detect signals users impli-
citly produce while interacting naturally with a system. 
These sensors detect changes in oxygenated and deoxyge-
nated blood in a region of the brain by using optical wires 
to emit near-infrared light [3]. The sensors are easy to use, 
have a short set-up time and are portable, all characteristics 
which make fNIRS suitable for use in realistic HCI settings 
[34]. However, because it is a novel technique for brain 
sensing, there have been few studies showing specific mea-
surements with fNIRS and their appropriate use in HCI. 

Multitasking Scenarios: Branching, Dual Task, Delay 
Multitasking behavior involves several high-level brain 
processes, which vary depending on the types of tasks and 
the interaction between the tasks. Koechlin et al. [19] de-
scribed three distinct, but related multitasking scenarios, 
which they refer to as branching, dual-task, and delay. 
These are the foundation for the studies described here. 

Branching (Figures 2,3) is illustrated by the following sce-
nario: A user is tackling a complex programming task but is 
interrupted by an incoming email from her boss that is time 
sensitive. Thus, the user must “hold in mind goals while 
exploring and processing secondary goals” [19]. Branching 
processes are triggered frequently in multitasking environ-
ments and pose a challenge to users.  

However, some situations may involve frequent task 
switching without the need to maintain information about 
the previous task (e.g. A user is monitoring and responding 
to high priority software support issues that are logged by 
clients as well as responding to important emails, and regu-
larly switches between the two tasks). These tasks are re-
ferred to as dual-task because there are two tasks that re-
quire attentional resources (Figure 2). These situations 
could also utilize adaptive support in the user interface, but 

the adaptive behavior would be distinct from that of 
branching.   

The third multitasking paradigm is illustrated with the fol-
lowing scenario: A user is tackling a complex programming 
assignment and at the same time gets instant messages 
which the user notices, but ignores. Here, the secondary 
task is ignored and therefore requires little attentional re-
sources. They refer to this as delay because the secondary 
task mainly delays response to the primary task (Figure 2). 

In their experiment, Koechlin et al. demonstrated using 
functional Magnetic Resonance Imaging (fMRI) that these 
three multitasking processes have different activation pro-
files in the prefrontal cortex of the brain, particularly in 
Brodmann’s Areas 8, 9 and 10. Their task involved 
processing rules based on letters appearing on the screen. 
Each stimulus was either an uppercase or lowercase letter 
from the word “tablet.” The expected response from the 
user was different depending on the case of the letter, so 
switching between uppercase and lowercase letters would 
be similar to balancing two tasks. There were four condi-
tions in their experiment, each with different rules for res-
ponding, designed to trigger specific multitasking behavior 
(Figure 4): 

1) Delay: Are two consecutive uppercase stimuli in imme-
diate succession in the word “TABLET’? Ignore lowercase. 
2) Dual-Task: Are two consecutive stimuli of the same case 
in immediate succession in the word tablet?  When the case 
changes, is the first letter in the series a ‘T’ or ‘t’? 
3) Branching: For uppercase stimuli, respond as in Delay. 
If the letter is lowercase, respond as in Dual Task. 
4) Control: Are two consecutive stimuli in immediate suc-
cession in “TABLET’? All stimuli were uppercase. 

Koechlin et al. [20] later showed that even during branch-
ing, there were distinct activation profiles that varied de-
pending on whether the participant could predict when task 
switching would occur or whether it was random.  The ex-

 
Figure 3. Branching: Primary and secondary task both 

require attentional resources to be allocated, and the pri-
mary task goal must be kept in mind over time. 

 

 
Figure 4. Conditions from [19]. Stimuli were either upper-

case (red) or lowercase (blue) letters from the word “tablet” 
and the response varied depending on the case. Check indi-

cates a match and x indicates a non-match stimulus. 

 



 

 

perimental setup was almost identical to the earlier study, 
except that in all conditions, the branching paradigm was 
used. There were two experimental branching conditions 
(Figure 5) and a control: 

1) Random Branching: Upper- and lower-case letters were 
presented pseudorandomly. 
2) Predictive Branching: Uppercase letters were presented 
every 3 stimuli. 
3) Control Branching: The same six-letter sequence (A e t a 
B t) was shown repeatedly.  

The significance of these two experiments lies in the fact 
that all experimental conditions had the same stimuli and 
the same possible user responses, so the conditions could 
not be easily distinguished from one another by simply ob-
serving the participant. Using fMRI, however, it became 
possible to distinguish the conditions based on the distinct 
mental processes (and thus, distinct blood flow patterns) 
elicited by each task.  

In addition, the cognitive states identified in these experi-
ments have direct relevance to many HCI scenarios, partic-
ularly when a user is multitasking.  Automatically recogniz-
ing that the user is experiencing one of these states provides 
an opportunity to build adaptive systems that support multi-
tasking.  For example, by recognizing that most interrup-
tions are quickly ignored, as in the delay condition, the sys-
tem could limit these types of interruptions or reduce their 
salience as appropriate.  Further, if a user is currently expe-
riencing a branching situation, the interface could better 
support maintaining the context of the primary task, whe-
reas during dual-task scenarios this would be unnecessary.  
Finally, distinguishing between predictive and random sce-
narios could trigger the system to increase support when the 
user’s tasks become unpredictable. 

This paper builds from their experiments with the goal of 
designing interfaces that recognize these states and behave 
in appropriate ways to support multitasking.  We conducted 
a preliminary study to reproduce the results of Koechlin et 

al. [19] using fNIRS which is practical for HCI settings 
unlike fMRI in which slight movement can create motion 
artifacts and corrupt the image [34].  We then followed with 
two experiments that look at distinguishing the cognitive 
multitasking states in other scenarios besides the “tablet” 
task to investigate whether these are generic cognitive 
processes, and not simply tied to the particular task used in 
the earlier study.  Finally, we designed and built a proof-of-
concept platform that recognizes and classifies the fNIRS 
signal and uses it as input to drive an adaptive human-robot 
system. 

PRELIMINARY STUDY 
Our preliminary experiment extends Koechlin et al.’s work 
[19] to more realistic HCI settings.  We wanted to deter-
mine whether we could distinguish between branching, 
dual-task and delay situations.  These states were success-
fully distinguished using fMRI [19], but fMRI is not prac-
tical in HCI settings.  Our hypothesis was that the same 
could be achieved using fNIRS. Since the sensors are 
placed on the forehead, they are particularly sensitive to 
changes in the anterior prefrontal cortex, where Koechlin et 
al. [19] showed distinct activation profiles during delay, 
dual and branching tasks.   

Three participants wore fNIRS sensors as they performed 
the experimental tasks. To trigger the three cognitive states, 
we used the same experimental paradigm used in [19].   

To determine whether these tasks could be distinguished, 
we performed leave-one-out cross validation in Weka [10] 
to classify the fNIRS sensor data.  In MATLAB, the fNIRS 
signal was detrended by fitting a polynomial of degree 3 
and then a low-pass elliptical filter was used to remove 
noise in the data. Using support vector machines, we 
achieved reasonably high accuracy classifying the tasks 
across the three participants (68.4% mean across three pair-
wise classifications, and 52.9% accuracy for three-way 
classification). This was a small sample of users, and we 
hope to achieve higher accuracy, but found the results en-
couraging enough continue in this research direction.  

MULTITASKING EXPERIMENTS 
From the promising results of the preliminary study, we 
investigated whether we could detect these three states in 
other tasks and domains that are more relevant to interac-
tive user interfaces. Our hypothesis was that the cognitive 
functions elicited in the “tablet” tasks were generic 
processes that occur during multitasking.  Numerous HCI 
scenarios involve multitasking, and we chose a human-
robot team scenario to further explore the detection of cog-
nitive multitasking in user interfaces. 

Multitasking in Human Robot Interaction 
Human-robot team tasks inherently involve multitasking, as 
the user is both performing his or her part of the task, while 
monitoring the state of the robot(s). Thus, these tasks pro-
vide an appropriate example for studying adaptive multi-
tasking support, and may see improved performance with 

 
Figure 5. Experimental conditions from Koechlin et al. [20]. 

 



 

 

brain-based adaptive interfaces. Thus, the simple word-
related task was replaced by a human-robot interaction 
(HRI) task that has similar properties. 

Experimental Tasks 
We conducted two separate experiments which built from 
the human-robot team task described by Schermerhorn and 
Scheutz [32] and adjusted it to include tasks that would 
induce delay, dual-task and branching, similar to our pre-
liminary study. The tasks involved a human-robot team 
performing a complex task that could not be accomplished 
by the human nor the robot alone. The robot and the human 
had to exchange information in order to accomplish the 
task. The robot continually updated the human operator 
with status updates to which the human responded.  

In the two separate studies, the participant worked with a 
robot to investigate rock types on the surface of Mars and 
had to perform two tasks. The robot presented the partici-
pant with status updates, either about a newly found rock or 
a new location to which it moved. Each rock classification 
update informed the user of the newly discovered rock’s 
class, which was based on size and ranged from Class 1 to 
Class 5. Each location update alerted the user of the robot’s 
current location. The spacecraft to which the robot was 
transmitting could detect the robot’s location to the nearest 
kilometer and assumed the robot was moving in a straight 
line. Thus, the location updates presented to the user ranged 
from 0 to 800 meters, in 200 meter increments. 

The participant’s primary task was to sort rocks, and the 
secondary task was to monitor the location of the robot. 
Each time the participant received a status update from the 
robot (in the form of a pop-up on the screen), s/he had two 
possible responses: either respond with the left hand by 
typing “S” to signify same or the right hand by typing “N” 
to signify new. After a rock classification, “S” instructed 
the robot to store the rock in the same bin, while “N” in-
structed the robot to store the rock in a new bin. After a 
location update, “S” instructed the robot to maintain the 
same transmission, while “N” instructed the robot to begin 

a new transmission. The correct response after a particular 
update varied among the conditions.   

Experiment 1: Delay, Dual-Task & Branching 
The first experiment contained three conditions, analogous 
to those in [19], each with its own rules for the user re-
sponse (Figure 6): 

Delay: Do two successive rock classification messages fol-
low in immediate consecutive order? If so, put it in the 
same bin. If not, select a new bin. For all location updates, 
begin a new transmission. 

Dual-Task: Do two successive messages of the same type 
follow in immediate consecutive order? If so, select the 
same rock bin or maintain the same transmission. If the 
update is of a different type (switch task between rock and 
location), is the message either a Class 1 rock or a location 
of 0 meters? If so, select the same rock bin or maintain the 
same transmission. In all other cases, place the rock in a 
new bin or begin a new transmission. 

Branching: For rock classification messages, respond as in 
Delay. If the update is a location, respond as in Dual Task. 

Participants 
This study included 12 healthy volunteers (10 male), be-
tween the ages of 18 and 34. Four additional volunteers had 
participated in the study, but are not included in this analy-
sis because their performance in the tasks was below 70% 
in more than two trials per condition, indicating that they 
were not correctly performing the tasks.  In addition, data 
from another participant is not included due to technical 
problems with the fNIRS system.  All participants were 
right-handed, had English as their primary language, had no 
history of brain injury and had normal or corrected-to-
normal vision. Informed consent was obtained for all partic-
ipants. This experiment was approved by our institutional 
review board. 

Design and Procedure 
Before the experiment, each participant was given the op-
portunity to become familiar with each of the three tasks 

 
Figure 6. Stimuli and responses for conditions in Experiment 1. These conditions are analogous to those in [19]. (See Figure 4). 

 



 

 

during a practice session without the fNIRS sensors. The 
conditions were presented in counterbalanced pseudo-
random order. Each task was repeated until the participant 
achieved greater than 80% accuracy in the task. After this 
accuracy was achieved for all three conditions, the fNIRS 
sensors were placed on the participant’s forehead.  The par-
ticipant was presented with an initial rest screen, which was 
used to collect a baseline measure of the brain activity at 
rest. After that, the user had to complete ten 40-second tri-
als for each of the three conditions, which were presented 
randomly.  Between each task, the user was presented with 
the instructions for the next task, followed by a rest screen.    

Equipment 
We used a multichannel frequency domain OxiplexTS from 
ISS Inc. (Champaign, IL) for data acquisition.  Two probes 
were placed on the forehead to measure the two hemis-
pheres of the anterior prefrontal cortex (Figure 1). The 
source-detector distances were 1.5, 2, 2.5, and 3cm. Each 
distance measures a different depth in the cortex. Each 
source emits two light wavelengths (690nm and 830nm) to 
detect and differentiate between oxygenated and deoxyge-
nated hemoglobin. The sampling rate was 6.25Hz. 

Results 
To examine the differences between the three task condi-
tions, we looked at behavioral data collected during the 
experiment as well as the fNIRS sensor data.  In both expe-
riments, any trials where the participant achieved less than 
70% accuracy in the task performance were removed in the 
analysis, since this would indicate that the subject was not 
actually performing the task correctly. 

Behavioral Results: In the three conditions, the stimuli were 
essentially the same, as were the possible responses.  Thus, 
it would be difficult for an observer to detect any difference 
from the screen contents or the subject’s behavior alone.  

Like the sensor data, response time and accuracy measure-
ments can be obtained automatically without interfering 
with the task so we investigated whether they would vary 
depending on the condition. 

Statistical analysis was performed utilizing the InStat statis-
tical package by GraphPad Inc. All variables were tested for 
normal distribution with the Kolmogorov-Smirnov test. For 
normal distributions, the repeated measurements one-way 
analysis of variance (ANOVA) with the Tukey post-hoc test 
for multiple comparisons was used.  For non-Gaussian dis-
tributions, we used the Friedman (non parametric repeated 
measurements ANOVA) test. The level of statistical signi-
ficance was set at 0.05 (Figure 7).  

Since dual task and branching behavioral results are simi-
lar, the factor was not significant overall, but is in pairwise 
comparisons. We found statistical significance in response 
time between delay and dual (p < 0.001), delay and branch-
ing (p < 0.001), but not between dual and branching (p > 
0.05). Similarly, we found statistical significance in accura-
cies between delay and dual (p < 0.05), delay and branch-
ing (p < 0.05), but not dual and branching (p > 0.05). Also, 
correlations between accuracy and response time for each 
task were not statistically significant. We also looked at 
learning effects based on response time and learning effects 
based on accuracies as users progressed through the expe-
riment. We did not find a learning effect. 

Statistical Analysis of Signal: We wanted to determine 
whether the hemodynamic response measured by fNIRS 
has a different signature between the three conditions.  For 
each of the two probes, we selected the fNIRS measurement 
channels with the greatest source-detector distances (3cm), 
as these channels are expected to probe deepest in the brain 
tissue, while the closer channels are more likely to pick up 
systemic effects and noise.  From each of these channels, 
we calculated both the change in oxygenated hemoglobin 
and deoxygenated hemoglobin using the modified Beer-
Lambert law [3] after removing noise with a band pass fil-
ter. Thus, we used four channels corresponding with 

 
Figure 7. Behavioral results for Experiment 1: median 
accuracy & standard deviation (top); mean response 

time and standard deviation (bottom). 

 

 
Figure 8. Combined oxygenated and deoxygenated 

hemoglobin by condition for Experiment 1.  
 



 

 

changes in oxygenated and deoxygenated hemoglobin on 
the left and right hemispheres.  Since the hemodynamic 
changes occur over a 5-7 second period, we simplified the 
signal for analysis by dividing the time series measurement 
for each trial into seven segments (~5.57 second each) and 
took the mean over these segments for the four channels.  

In order to confirm that there were differences in brain ac-
tivity during the three conditions, we did an ANOVA com-
paring condition means within subjects.  Since there were 
multiple sensors, factors for the distribution of sensors were 
included (left/right hemisphere), as well as a factor for he-
moglobin type (oxygenated or deoxygenated) and the time 
point.  We used the Greenhouse-Geisser ANOVA values to 
correct for violations in sphericity.  We found a main effect 
of condition (F(2,22)=4.353, p=0.029), in which total he-
moglobin measures were overall higher in the branching 
condition than in the dual-task or delay condition (Figure 
8). There were no other significant effects in this analysis. 

Experiment 2: Random & Predictive Branching 
To follow up on the first study, we conducted a second ex-
periment to determine whether we could distinguish specif-
ic variations of the branching task.  This experiment had 
two conditions that were analogous to those in [20], in 
which the participant was always following the branching 
rules described in Experiment 1: 

Random Branching: Rock classification and location update 
messages were presented pseudorandomly.   

Predictive Branching: Rock classification messages were 
presented every three stimuli.   

Ideally, when using computer systems, the default scenario 
for a user would be similar to the predictive condition, and 
therefore the user would be able to plan ahead and handle 
incoming work appropriately.  If we could automatically 
identify that the user is experiencing random or unpredicta-
ble behavior, there may be appropriate adaptations that the 
system could make to better support the user, which we are 
exploring with the adaptive interface platform described 
below.  This experiment investigates whether we can auto-
matically detect the different scenarios using fNIRS. 

Participants 
This study included 12 healthy volunteers (5 male), be-
tween the ages of 19 and 32. Three additional volunteers 
had participated, but are not included in this analysis be-
cause their performance in the tasks was below 70% in 
more than two trials per condition, indicating that they were 
not correctly performing the tasks.  In addition, data from 
another participant was not included due to technical issues 
with the fNIRS system.  

Design, Procedure & Equipment 
This experiment used the same procedure and equipment as 
in Experiment 1.  However, in this experiment, there were 
only two experimental conditions as described above and 
the participants completed eighteen trials of each condition, 
which were counterbalanced.      

Results 
Behavioral Results: As in Experiment 1, we collected re-
sponse time and accuracy throughout the study to determine 
whether the conditions elicited different measurements. 

Statistical analysis was performed utilizing the InStat statis-
tical package by GraphPad Inc. All variables were tested for 
normal distribution with the Kolmogorov-Smirnov test. For 
normal distributions, a paired t-test was used.  For non-
Gaussian distributions, we used the Wilcoxon matched-
pairs signed-ranks test.  

There was no statistically significant difference in response 
time between random (M=998.67, SD=190.02) and predic-
tive (M=992.81, SD=213.34) branching, t(215)=0.53 
(p>0.05). There also was no statistically significant differ-
ence in accuracy between random (M=93.982, SD=8.144) 
and predictive (M=92.824, SD=8.765) branching (p>0.05). 
Also, correlation between accuracy and response time for 
random branching was not statistically significant (p>0.05), 
but there was a statistically significant correlation in the 
predictive branching condition (p<0.0001).  

Statistical Analysis of Signal: Our goal was to determine 
whether the hemodynamic response measured by fNIRS 
has a different signature between the two conditions.  Our 
analysis was the same as in Experiment 1. 

We found an interaction between branching type, timepoint, 
and hemoglobin type (F(6,66)=3.035, p=0.038).  This effect 
indicates that, although there was no significant change in 
oxygenated hemoglobin, deoxygenated hemoglobin levels 
were higher in the random branching type than the predic-
tive branching type for the first half of trials, but reversed 
for the second half (Figure 9). Therefore, it should be poss-
ible to distinguish these two conditions using only the 
deoxygenated hemoglobin measure from fNIRS, which is in 
accordance with Huppert et al. who found that the magnetic 
blood oxygenation level dependent (BOLD) signal used in 
fMRI is most tightly tied to deoxygenated hemoglobin in 
fNIRS [14]. There were no other significant effects in this 
analysis. 

 
Figure 9. Average of deoxygenated hemoglobin over all 

subjects by condition for Experiment 2.  

 



 

 

PROOF OF CONCEPT BRAIN-BASED ADAPTIVE USER 
INTERFACE PLATFORM 
In the two experiments described above, we verified that 
there is a significant difference between the cognitive multi-
tasking conditions in the fNIRS signal.  Because we can 
statistically differentiate them, we can apply machine learn-
ing techniques to automatically identify these cognitive 
multitasking states, in real time, in a user interface.  This 
information could then be used to drive the user interface to 
better support cognitive multitasking.   

As a proof-of-concept, we developed a platform for study-
ing brain-based adaptive user interfaces of this type.  The 
system has two main components: the Online fNIRS Analy-
sis and Classification (OFAC) system [8] and the Distri-
buted Integrated Affect, Reflection, Cognition Architecture 
(DIARC) [33] for human-robot interaction (Figure 10).   

The OFAC system receives raw fNIRS signals from Boxy 
acquisition software (ISS, Inc.), classifies them in real time 
and sends the classification results to a specialized DIARC 
component.  In addition to the normal online mode where 
signals are classified and sent in real time, OFAC supports 
offline mode which simulates the analysis and classification 
of previously recorded data, and will be useful in experi-
menting with various adaptive strategies.  As OFAC rece-
ives data, it stores the signal in a database and preprocesses 
the signal (filtering, conversion to oxy- and deoxy- genated 
hemoglobin values using the modified Beer-Lambert law 
[3]), and performs classification using Weka [10].   

The DIARC [33] is an integrated architecture for working 
with complex robots that can support various levels of robot 
autonomy and other adaptive robot behavior. The architec-
ture can interface with physical robots in an environment, 
but also has a simulation mode that allows for simulated 
interactions with a robot on a computer screen (Figure 11), 
along with several different environment configurations. 

To receive input from the OFAC system, we have created a 
DIARC component to which OFAC sends cognitive multi-
tasking state classification results via sockets.  DIARC can 
then use these messages to change the robot’s goal struc-
tures, allowing the robot to adapt its autonomy and beha-
vior.  In addition, we have provided a simulation mode, 
where cognitive state classifications can be entered manual-
ly by inputting classification confidence levels for each of 
the possible states.  This allows for debugging and testing 

of the robot adaptive behaviors, without requiring a human 
to be physically connected to the fNIRS sensing system. 

Integrating the OFAC system with DIARC provides the 
robot with cognitive state information of the human, afford-
ing the robot to adapt its behavior to better support and col-
laborate with the human operator.   Driven by fNIRS cogni-
tive multitasking input, DIARC can adapt various aspects 
of the human-robot interface, such as level of autonomy of 
the robot, the frequency, length and style of the robot's sta-
tus updates, as well as the tone of the robot's voice. 

As an initial step, we created a task scenario and simple 
adaptive behavior based on Experiment 1 described above 
to provide a technical demonstration that the platform func-
tions as intended and can be further expanded to study 
adaptive multitasking user interfaces.  The system was used 
to complete a human-robot team task where the primary 
task was to classify rocks and the secondary task was to 
monitor robot location as in the two experiments above.   

When a branching state was identified—indicating that the 
user was tending to multiple tasks and maintaining informa-
tion about the primary task over time—the robot switched 
to autonomy mode allowing the user to focus on the prima-
ry task of classifying rocks.  In autonomy mode, the robot 
would move autonomously to new locations and find the 
best location for a new transmission. When a non-
branching state was recognized, the robot returned to the 
default behavior, requiring the human to give instructions to 
the robot about whether it needed to start a new transmis-
sion. Staying in autonomous mode throughout the entire 
task would not be ideal as the human needs to be aware of 
the robot’s location and progress to provide corrective 
feedback (as the robot’s search behavior is not optimal), 
ensuring that the message is transmitted before time is up.  

To validate that branching and non-branching could be 
classified in real time and that the robot could receive the 
signal and adapt its behavior, we did two demonstrations.  
First, utilizing the offline mode of OFAC, we sent previous-
ly recorded fNIRS data through the system as if it were 
being collected on a user in real time. We used the pre-
viously recorded data from Experiment 1. The next demon-
stration of the platform was to show that it can perform in 
online mode while a user was wearing fNIRS sensors.   

In both cases, we used the branching and delay tasks de-
scribed in Experiment 1 to invoke known branching and 
non-branching states. There was a training session where 
the branching and delay tasks from Experiment 1 were per-
formed (or were simulated using the data collected in Expe-
riment 1), allowing the robot to build a classification model 
based on the fNIRS sensor data during those tasks. Each 
condition was completed 10 times in random order to pro-
vide training data. Once the training session ended, the sys-
tem switched to testing phase, where the fNIRS signal was 

 
Figure 10. Brain-based adaptive user interface platform. 

 



 

 

classified using the model that had been built during the 
training session. The entire session took about 30 minutes.  

We established that fNIRS data was transmitted from 
OFAC to DIARC in real time, with fNIRS and robot com-
ponents running in full operational mode.  Robot goals and 
behaviors adapted based on the fNIRS data. This proof-of-
concept confirms that our platform can form the basis of 
future study on brain-based adaptive user interfaces. We 
intend to enhance the machine learning techniques to im-
prove the accuracy of the system.  We will also analyze the 
fNIRS response more deeply in our future work, but our 
initial goal was show that there was a significant difference 
between the signals we detected for the different conditions.  
This allows us to discriminate the conditions, and adapt a 
user interface when each state is detected. In addition, we 
will expand adaptive behaviors that are supported to study 
the tradeoffs for making such adaptations. 

DISCUSSION AND CONCLUSION 
This paper builds a foundation for brain-based adaptive user 
interfaces. First, in our preliminary study, we brought re-
search on cognitive activity during multitasking to a system 
that is practical for HCI by showing that fNIRS sensors 
could detect states previously studied with fMRI (which 
cannot be used in HCI settings).  In our next two experi-
ments, we further extended this research to HCI by showing 
that the states elicited in the “tablet” task may be generic 
processes that occur in more realistic HCI tasks, by using a 
human-robot scenario.  We integrated these findings with 
the brain-based adaptive interface platform we developed, 
in order to augment user interfaces with this cognitive mul-
titasking state as input.   

We demonstrated that the platform can form the basis for 
brain-based user-interfaces by implementing a simple adap-
tive scheme based on the experiments. However, to design 
a successful adaptive user interface many factors must be 
considered and the automation scheme will be more com-
plex than that illustrated here.  Parasuraman et al. [28] pro-
pose a framework for supporting user cognition with auto-
mation which describes four stages of human information 
processing (sensory processing, perception, decision mak-
ing and response selection), each of which can have a dif-
ferent automation level.  They also outline criteria for eva-

luating the user interface by examining both human perfor-
mance measures and also system performance criteria (au-
tomation reliability, costs of action outcomes). This frame-
work provides guidelines but does not prescribe specific 
adaptive behavior for every system. Instead each system 
must be carefully evaluated and iteratively designed to meet 
the needs of the users.  Our platform will enable us to con-
duct evaluations of various adaptive behaviors to determine 
the appropriate strategy for supporting multitasking by uti-
lizing signals coming implicitly from the brain.  

Human-robot team tasks provide appropriate scenarios for 
studying adaptive multitasking support, as they inherently 
involve multitasking: the user is performing a task, while 
also monitoring the state of the robot(s). HRI team tasks 
thus may see improved performance with brain-based adap-
tive interfaces. There has been much work on adaptive ro-
bots that change behavior based on the environment or situ-
ation.  We plan to develop robots that have a greater under-
standing of the user’s cognitive state during multitasking, 
and can adapt their behavior to better support the user. 

In addition, we believe that similar brain-based user inter-
faces may support a wide range of contexts that involve 
multitasking and interruptions, such as air traffic control, 
management of unmanned aerial vehicles (UAVs), complex 
data visualization and analytics, and many others. Non-
invasive brain sensing provides an additional channel of 
input to the system without any explicit action by the user. 
However, any adaptation must be done carefully, to ensure 
that the user does not feel that he or she has lost control. 
The platform we have developed will allow us to explore 
adaptive behavior to find the best strategies for these scena-
rios. We can now begin to develop complex systems that 
adapt based on fNIRS brain signals and experimentally 
evaluate them.  
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