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Abstract—We propose a new method for collecting infor- Il. BACKGROUND
mation on regulatory elements found by any motif discovery
program. We suggest that combining the results of, leave-one- A DNA sequence can be represented as a string over

out motif discovery runs provides additional information. By  the four letter language of nucleotiddst, C, G, T}, and

examining motifs found in » — 1 of the sequences and scoring genes can (simplistically) be viewed as substrings of a DNA

them on the remaining sequence, we overcome some of the issue . .

arising from noisy data to identify more high-quality motifs. sequence. These substrings are used by living cells as the
We describe preliminary investigations of this approach, blueprints for making specific proteins, which in turn carry

using MEME for motif discovery. We show that the Leave-one- out all the functions of cellular life. While all cells in an

would. We demonstrate that our method increases the power oy q ragically different sets of proteins, reflecting both the
of small datasets. We also explore how the information gain of

the method changes as the number of sequences increases. OurCells’ function in the organism and current conditions or
approach may be generalized to any number of sequences, and heeds. The first step in the process of making a protein from
may be applied with any motif-inference package that generates its gene blueprint is called transcription or gene expression.
a final population of solutions and scores. Understanding how cells control the expression of various
I. INTRODUCTION genes gives us clues into the nature of the relevant proteins,

This paper introduces an alternative system for ranking tHg2ding to a better understanding of biology, evolution, and
results of software packages that identify common regulatoﬁ?”‘j"ar responses to strgss or disease. Embedded in the non-
elements in sets of sequences. The question of whetrfé}dlng DNA of an organism are many control sequences that
several related runs of a system analyzed together codiifluénce when a gene is expressed and which potentially-
provide more information about the overall strength of £0ding portions of the gene (exons) are spliced together to
motif than a single such run was examined. This work i&rm the gene product.

a preliminary exploration of the effects of using a Leave- Commonly, the DNA region just upstream of a particular
one-out Scoring strategy inspired byway cross-validation, 9ene is thought to contain many short substrings of DNA
similar to the Jackknife approach used by statisticians #§at do not actually encode any part of a protein, but that
improve error estimation [15], [6]. By observing the change§ay be used to control the associated gene’s expression. For
caused by adding or removing a sequence, we are able&¥aMmple, molecules called transcription factors may bind to
further evaluate the motifs found. these regions of the DNA, either inhibiting or facilitating the

Building upon existing motif discovery systems, Leave€eXxpression of the gene. These DNA sequences are known as
one-out Scoring provides a new method of evaluating contanscription factor binding sites (TFBSs). These and other
mon regulatory elements. Here, we describe preliminagedquences that may be used to regulate gene expression
investigations of this approach, using MEME for motifare collectively known as regulatory elementsregulatory
discovery. We study the behavior of Leave-one-out Scoringotifs in this manuscript we will just refer to them asotifs
on four sequence clusters that are expected to share comThough a given transcription factor may have a preferred
mon regulatory elements: two sets of orthologous promotdiFBS sequence that it binds to, identification of such motifs
regions spanning a wide range of organisms, and two sdgnon-trivial, in part because the motifs are short (lengths
upstream ofC. elegangenes tightly co-expressed in multipleof 6-8 base pairs are common), their locations may be
time series. anywhere within 1-2 kilobases of the gene, and any particular

We show that the collection of motifs found by combiningbinding site may be only an inexact match to the ideal
multple Leave-one-out runs is larger than the set found bysequence. Thus, distinguishing biologically functional motifs
single traditional run, but not hugely so, reflecting substantidfom those appearing just by chance is difficult.
overlap of the motifs found in each run. The intuition behind There are many different methods designed to identify
the method is that the overlap information provides morenotifs from sets of sequences thought to share common or
information about the motifs than their original score in dhomologous regulatory proteins (see reviews [11], [16]). Pop-
single set of sequences. Overall, we are interested in whethgar approaches include searching clusters of co-regulated
this method provides sufficient new information to justify thegenes (often those whose expression patterns are similar
added expense of computation. across many conditions) for statistically over-represented mo-



tifs, using techniques such as expectation maximization[1] or |-z o (17)C|“St36r 6% i (8)0'“5“3” 117 .
Gibbs sampling[19]. Alternatively, one can examine multiple —znh-o X
orthologous sequences for motifs that are preferentially con-| agp-2 X X | X | X
served throughout evolution [4], [5]. Interspecies comparison | S990%2 | X | X | X | X
is a powerful tool to distinguish actively conserved sequences| cwn-1 X
(an indicator of functionality) from sequences conserved due | F35D2.3 X
to shared ancestry [7], [17], [18]. The best such methods take mdﬂl § X
advantage of phylogentic information to model the evolution | |in-18 X X | x| x
of a putative motif. R02D3.1 X

In this manuscript, we consider both types of sequence sets ?33'519 5 X XX
- those from co-expressed genes and those from orthologous 127p12.1 X
sequences corresponding to the promoter regions of the same vab-8 X
gene in multiple species. For this study, we use MEME to %3271'1 §
find the motifs[1]. MEME uses an EM algorithm to identify ZK622.3a X
motifs of maximum likelihood with respect to a probabilistic | C34B2.7 X X
model of the sequence. While MEME does not make use of %?3;2 5 §
any phylogenetic information, it and other similar methods | gy3 X X | x| x
have successfully been used to identify conserved motifs R(l)<6017.4 § « § §
from orthologous sequences[4]. 'TSOngOJ X

Il. A PPROACH 12088 X [ X][X]X
TABLE |

Suppose that an arbitrary motif-finding progra®ris used
to find the best motifs, according to some scoring syste
common to a set of, sequences. While the motifs identified
this way are the best according to the given scoring system,

it is not clear that they are always the most biologicallyfo‘g&md as the data set grows in size, and that if LOO can
I

meaningful. Furthermore, when the sequences are derivR p identify these motifs with a small subset of the data,

from different species or _from pptentlally-nmsy CIUSt?rﬁt is improving the quality of the motif-discovery process
of co-expressed genes, it is possible that some functio oughout

regulatory motifs are not actually well represented in al
sequences. Such motifs might not score very well on the IV. METHODOLOGY AND DATA
full set of n sequences, or might not even be found at all.
Suppose that instead, we run the same progPaom n — 1 A. Data Sets
of the sequences, to identify a new set of motifs. We can do The Leave-one-out motif-finding procedure (LOO) was
this n times, leaving out each sequence in turn, just as itested on two types of datasets: orthologous regulatory se-
leave-one-out cross-validation[13]. If we find a motif thatquences from a range of species, and regulatory sequences
scores well in then — 1 sequences, especially if it does sofrom clusters of co-expressed genes.
multiple times, it may be interesting and functional even if it Two sets of co-expressed genes were taken from [2], which
does not score well enough in allsequences to be detectedstudied gene expression during embryonic development in
by P. This is the intuition behind the approach we investigatthe wormC. elegans To be in the same cluster, genes dis-
here. played similar expression patterns in 10 timepoints spanning
First, let us introduce some terminology. We use the termarly embryonic development in each of the wild-type and
AllMax to denote the motif set found in the-species run, two RNAi knockout models. Clustering was done as in [3].
because it represents motifs founddllythe sequences, using Briefly, genes were grouped using a quality-based clustering
the maximalset of sequences available (rather than a subsaiethod [9], but only if the co-expressed genes were consis-
of it). We also consider subsets of sequences, and run ttetly co-clustered under a noise model fit to the expression
same leave-one-out approach (calle@O hereafter in the data. Such an approach ensures that clusters are particularly
text) on those subsets. We therefore call a rurPdfin this  tight and robust. Since the knockout experiment was designed
case, MEME) on a subset &f sequences aAllSubsetrun, to highlight genes likely to be directly or indirectly regulated
and we can then talk about LOO runs on the subset of siby the transcription factgoal-1, we focused here on clusters
k as well. likely to contain pal-1 targets. Clusters 60 and 177 were
To assess the quality of the motifs we discover using thehosen from those that showed a clgmai-1-target expres-
LOO method is challenging without biological validation ofsion pattern because of their sizes, respectively 17 and 8
the motifs. However, we address this question in part bgenes. The 1000bp region upstream of the transcription start
evaluating whether LOO can be used on small subsets site for each gene was downloaded from WormBase using
sequences (of sizé < n) to help approximate the results WormMart (www.wormbase.org/biomart/martview). Table |
of an AllMax run. The idea here is that better motifs aralisplays the genes found in these clusters.

mGENES USED FOR THE DIFFERENT RUNS OEEAVE-ONE-OUT SCORING
L



l—Zebraﬂsh B. Method

L?Sﬁim For the purposes of this study, regulatory motifs were
— Frog identified using MEME[1], version 3.5.3. For all experiments
e with MEME, we searched for a maximum of 100 motifs,
- exactly 6 bp in length, _under the assump_uon th_at a motif
_ appeared at most once in each sequence (i.e., using the zero-
l__[mﬂgg or-one option). The E-value cutoff was 1e-100, and motifs
Rat were allowed to occur on either the positive or negative
Macagque strand. o o .
_EHuman Note that any other motif identification scheme with a
Chirrip system for scoring a given motif on a given sequence could
Pig be used. We chose to use MEME's reported information
ﬁgﬁm content as a way of scoring the motif on the input sequences.
Given a position weight matrix W for a motif, 1ét/; , be
Blephant the frequency of base at positioni, and letb, be the
dog background frequency of bagen the input sequence. Then
tenrec the information content of that motif [16] is
Fig. 1. Phylogeny for the selected vertebrate specibss evolutionary Ww.
tree describes relationships among the set of vertebrates selected for Leave- Z ( Z Wi.alog w) (1)
Fln;i—out Scoring. The phylogeny was constructed using data from [12], [14], position i \letter a ba
For each LOO run, a subset of the sequences was chosen.
Within that subset, MEME was run with all sequences but
SDEZ CCNC2 one, returning the best motifs and their information content.
Species | All(15) | 3| 4 | 5 |AlT(Q) [ 3] 4 [ 5 We then scored those motifs in the left-out species as
Human X XTX X X X TX X well, by computing their information content for the best
mg;%ue X S X possible motif match in the remaining sequence. The left-
Cow X X out information content was calculated using the background
Elephant X X letter frequencies and the position weight matrix from the
?gr?rec >)§ X | X é X | X corresponding: — 1 sequence run. This was repeated for all
Rabbit X possible combinations (to leave out every sequence once),
Mouse X X | X | X X X | X | X for each set of sequences.
gitossum oS Ol IRal ol IR ol ol As a baseline experiment, MEME was also run with all
Chicken X X the sequences for comparison purposes, to obtain the AllMax
Frog X set (or AllSubset in the case of a subset).
%:t?g('fg‘n ;é The results of all the runs were then compiled to produce
a LOO scorefor each motif (equation 2).
TABLE II
SPECIES USED FOR THE DIFFERENT RUNS OEEAVE-ONE-OUT SCORING Sp—1 % (n — 1) + 81

()

The LOO score is based on the information content (score)

the motif received in each of the runs. In equatiorns2, |

refers to the score obtained in the- 1 sequence run, while

Two other sets of sequences were chosen from aligned up- refers to the left out sequence score, ands the total

stream regions of orthologous genes (SDF4 and CCNL2) imumber of sequences tested. If a motif was found in more
multiple species. The data came from the multiple alignmetian one run, the scoreg_; ands; were obtained by taking
of 15 vertebrate genomes to the human genome availalttee average score of each run. Taking the minimal or maximal
at the UCSC Genome web site, release 18 (March, 20083lue has the potential for skewing the score too much, while
[10]. These particular genes were chosen because they Halling the average smooths out these irregularities. We then
at least 1000bp in all available species that aligned well wittanked the motifs according to their LOO scorefréquency
the 2000bp upstream of the transcription start site in humaimdex for each motif was also calculated: this figure indicates
Not all species had uniqgue orthologs for each gene, so thdte percentage of the LOO runs where the motif was found.
are 15 sequences in the SDF4 but only 11 for CCNL2. Table For each dataset, four different LOO tests were conducted.
Il shows which species were used for these genes; FigureFirst, we ran LOO with the maximal number of sequences
shows the putative evolutionary relationships between thesgailable (between 8 and 17). Then, subsets of 3, of 4 and
species. of 5 sequences were selected from each of the datasets and

n



tested with the LOO method. Tables | and Il indicate whicltonsistent results across all the sequence sets, we suspect that
sequences were selected for each test, with each datasetthe assumption does hold for all of them.

We found that the AllSubset runs, for subsets of size 3
to 5, typically detected only 20 to 30 percent of the motifs

In this section, we will address issues of motif qualityfoyng by the AllMax run (Figure 3a). By considering both
using LOO and the stability of the LOO approach @s AjiSubset and the additional motifs found only in one or
Increases. more LOO runs, we were able to approximately double the

Overall, the number of distinct motifs discovered by theymper of the AllMax motifs identified, using just 3, 4, or
LOO method does not increase linearly with the number of sequences instead of Thus, it appears that this approach
sequences in the subset (Figure 2). Rather, in most cases, f8ws us to extract more information from smaller datasets.
observe an eventual decrease when LOO is executed Withyure 3a shows the average results over all four data sets.
all the sequences. The number of motifs found by LOO igjgures 3b, ¢, and d show the details for each data set using
considerably less thah times the number of motifs in the jyst OO, just AllSubset, and the two combined, respectively.
single run, proving there are strong similarities among the These results show that LOO motif-finding using small
motifs found by each of the runs. amounts of data can help approximate the results of having
a much larger set of related sequences. This suggests that the
LOO method can help identify more meaningful motifs in a
variety of contexts.

300
250 M_ﬂ B. Gain from LOO changes as increases

V. RESULTS ANDDISCUSSION

350

@
=
::-E 200 w If LOO were run on a larger set of sequences than our
S 180 trial data sets (whose sizes range from 8 to 17 sequences),
= 100 the doubling of the percentage of AllMax motifs that we
— obtain using LOO (as shown in Figure 3) might no longer

5 . . . be seen. For example, if we limited our attention to motifs

3 4 5 Al detected with reasonable frequency in the LOO runs, (that is,

not just in one ofn runs), we might expect that the results
of LOO for a sufficiently large subset or cluster would not
—+— ClusterB0 —=— Cluster 177 —a— SDF4 —— CCML2 be very different from the AllMax results themselves. We
decided to investigate whether the sequence sets we chose
were large enough that this was the case.

To do so, we compared the number of distinct motifs
) we found from the combined LOO runs (with frequency
A. LOO increases power of small data sets of at least1/3) to the number of motifs found in the full

Hoping to estimate motif quality without actually knowing AllSubset run, when the subset size was 3, 4, &;.0fThat
which motifs are biologically meaningful, we investigateds, in the last case, we ran LOO on each full sequence
whether the use of LOO with only a few sequences would atluster). We call motifs found in at leas/3 of the LOO
low us to identify more of the motifs that could be identifiedruns frequentmotifs. The results are reported in Figure 4 as
with larger amounts of data. If so, LOO could be particularlythe percentage of new motifs found with LOO compared to
useful both for finding promoter signals controlling only athe corresponding AllSubset run. We call this value glain
small number of target genes, and for cross-species motif the LOO run. We expected to see the gain converging
finding when the relevant sequences are only available infeom a large percentage (over 100) for a 3-sequence subset
few species. to a fairly low percentage when run on the fullsequences.

The idea that this test reflects motif quality relies on the While the trend in the Figure 4 generally agrees with
assumption that motifs found in the full AllMax run are morethe expected pattern, several interesting points arise. The
likely to be biologically relevant than those identified fromfirst is that this “convergence” is not consistent across all
only a small subset of the data. This assumption might not adequence sets. Though there is a downward trend across
ways hold true, especially when the subset runs contain ortlye co-expressed cluster data as the number of sequences
sequences from a few closely related mammals, while thesed increases, the data from the multiple species alignment
AllMax data set includes fish and birds. To address this possictually shows a higher gain for species than for 4 or 5
bility, while we chose only mammals for the subset runs, wepecies, particularly for the gene SDF4. Partially this is due
attempted to include some diversity within the mammaliato the fact that the number of motifs found in the AllMax run
population rather than picking the closest trio of mammal&r SDF4 drops significantly, but there may be other factors
available (see Table Il for details). For the co-expresseat work as well.
gene clusters, where subsets were chosen arbitrarily and th@©ne possible contributing factor is that the subset runs
clusters are designed to exclude spuriously correlated genegre selected to contain only mammalian species. While
the argument seems more compelling. However, as we fourndnvergence may be expected when more and more closely

Subset size

Fig. 2. Total number of LOO motifs found for 3, 4, and 5 species subset
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Fig. 3. Percent of AllMax motifs found for 3, 4, and 5 species subsets. a) Average (over all 4 data sets) percent of AllMax motifs found using just
AllSubset, just LOO, and both methods combined. b) LOO details for all 4 data sets. c) AllSubset details. d) Combined LOO and AllSubset details.

related sequences are added to a data set, it is not expected TABLE Il
when the sequences bemg added are noisy, or mo.re dlStar_]tlyZO BEST MOTIFS FOUND INCCNL2. Score refers to the LOO score
related. Thus, we see a trend reasonably consistent with L . .

obtained from equation 2; Rank to the ranking according to Score.
the convergence theory for CCNL2, whose eleven sequences

. . . AllScore is the score obtained with the All-sequence run (no LOO),
include ten mammals and a bird. However, for SDF4, acldlngAIIRank to the ranking according to AllScore. Blank scores and ranks in

in the fu." .Set of sequences me.ans adding two fish anﬂIScore and AllRank indicate the motif was not ranked as one of the 100
an amphibian sequence to the bird and eleven mammalian
sequences. Thus, fewer motifs meet the significance criteria
for the the AllMax run, and the hlghel’ gain for thespecies Motif Score | Rank | AllScore | AllRank Freq
run is perhaps to be expected. Also consistent with this theory | TTAAAA | 14.57 14.8 1 0.91
is the fact that the co-expressed clusters of worm genes bettenl 2244TA | 1452 14.8 1 8-23
fit the expected convergence pattern, and that the pattern is| TTasta | 14.49 14.8 1 0.82

1
2
3
4
strongest for Cluster 60, the largest cluster. TTTATT | 14.11 2 0.09
7
8
9

best motifs found in the All-sequence run.

. . . - . . : TTTTAT | 13.93 0.55
Another interesting point arising from this experiment is | tgaaaa | 138 1

that even for Cluster 60, with 17 sequences, using LOO on | GTTTTT | 13.71 0.36
all 17 sequences yields a 44% increase in the set of frequent| TTTCTT | 13.64 126 30 | 082

. i TTCATT | 1355 | 10 0.27
motifs (those found in at leasy/3 of the LOO rqns) over the AAACAT | 1354 | 11 0.45
sequences found by using AllMax alone. This suggests that | TACTTA | 1353 | 12 | 14 4 1
even a cluster of 10-20 sequences is not sufficiently large for | TTCTTT | 13.53 | 13 | 135 11 1073

: . . .| TTTTTC | 1352 | 14 | 14 4 0.55
this process to h_ave cor_werged. While one p053|b_le cause iS GTapAA | 1352 | 14 0.55
that there is an increasing amount of noisy data in the full | AAAAGA | 1352 | 16 | 12.6 30 0.45
cluster, it seems equally plausible that clusters need to be| TGAATT | 13.51 1 17 | 14 4 0.45

. ) TTTTCT | 1348 | 18 | 13 27 0.27
considerably larger before this process converges. T6TTTT | 1347 | 19 | 14 4 0.45

0.09

For example, Table Il shows some sample motifs found by [ TGAATA | 13.46 | 20
the LOO approach on all 11 CCNL2 sequences. In the table,



=1}
=3

. described here (generally a full partitioning or hierarchical

clustering method is used, and no noise-tolerance filter is
o 200 ;\ applied), typical clusters of co-expressed genes are likely
= -\ to be much noisier than those we tested. Thus, even larger
2 150% cluster sizes are likely to benefit from the Leave-one-out
E e \\ approach.
= o NEZ Furthermore, the LOO approach may allow the extraction
S 5oy = of better motifs using a single motif-finding method, without
- — , .
relying on the consensus of a number of different methods.
0% . . T Thus, radically novel motif-detection programs that identify
3 4 5 All regulatory elements rarely found by other methods might
Subset size particularly benefit from the use of Leave-one-out Scoring.
Future work should extend the preliminary findings re-
—— SDF4 —— CONL2 —— ClusteiB0 —=— Cluster177 | ported here to larger data sets and additional methods. At a
b) minimum, we would like to investigate the effects of the LOO
180 method using several common motif-recognition algorithms.
180 ; We would also like to further investigate convergence behav-
g 140 % ior by examining a much greater range of cluster sizes, and
2 b2 to compare the behavior of these methods on the promoter
= 138 regions of co-expressed genes to those on aligned sequences
= f0 AN . from multiple species. Another interesting possibility would
oy a0 %j—j*\”&‘a be to extend Leave-one-out Scoring to Leave-k-out Scoring.
a0 T This new method would examine motifs in— &k (k > 1)
0 , : , sequences. Finally, to combat the rising computational costs
3 4 g Al asn and k grow, one could perform only random subsets
Subset size of the desired LOO runs (essentially a constrained form of
Bootstrapping).
|—*—SDF‘1 —#— CCNLZ —— Clusteril +C|uster1??| The ideal test of this method would be a labeled data

set with “correct” motifs. While this is not available as
Fig. 4. a) Frequent new motifs found by the combined LOO runs, a§Uch, one possible strategy would be to start with known,
a pegcentafgfe of those fC_>funfd bydtge corLeZIﬂ%ncgng AIISl(Jl;]Set run b) Raskperimentally-validated transcription factor binding sites,
numpers o requent motifs foun y eacl ubset run (the numerator i H H
part a). ﬁnq to work backwards to show that this approach valldate§
a higher percentage of those than the straightforward appli-
cation of any of a variety of motif detection techniques. The

“Rank” refers to the sequence rank by information conterd€nes w_ith the greatest n_umber of long orthologous p_romoter
(score) in the original 11-species AllMax run. AllMax motifs '€910ns in the most species, those we selected for this study,
with the same information content are listed as having thid not happen to contain clusters of experimentally validated
same Rank. The table shows examples of many motifs wiflinding sites. However, as sequence availability increases, it
high information content that are found with high frequenc?h(’“'d be possible to find some good candidate sequence sets

in the LOO runs, but that would not have been found aP" this éxperiment. ,
all using a single MEME run on all the sequences. Thus, With datasets from orthologous sequences, adding a para-

it seems worth considering the LOO approach even fdpeter concerning the evolutionary distance of each species
sequence clusters of reasonable size would allow us to make decisions about the validity of a

motif based on the distance to the evolutionary norm of the
VI. CONCLUSIONS AND FUTURE DIRECTIONS held-out species. To enforce this rule, it would perhaps be

) ) ~ possible to eliminate motifs that are outside of a certain

A new method of motif analysis, Leave-one-out Scoringsange, defined by a multiplier of the standard deviation.

was developed and tested. Using this strategy, it may Rertainly, a number of motif detection programs make use
possible to achieve “better” rankings of motifs than thosgs eyolutionary data [4], [8]; it would be interesting to
obtained using a single run of a given motif finding methOdeprore the effects of integrating the LOO method with

approach will often justify the added computational expensgny|ogenetic data.
The behavior of the LOO method asincreases suggests
that typical clusters containing tens of co-expressed genes
may not yet have “converged” to the point where LOO pro- [1] T L Bailey and C Elkan. Fitting a mixture model by expectation
. . . [ . maximization to discover motifs in biopolymers. Second Interna-
vides only redundant information. As motif finding is often

) ! tional Conference on Intelligent Systems for Molecular BioJqmges
done in much less conservatively-formed clusters than those 28-36. AAAI Press, Menlo Park, CA, 1994.
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