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ABSTRACT 
Because functional near-infrared spectroscopy (fNIRS) 
eases many of the restrictions of other brain sensors, it has 
potential to open up new possibilities for HCI research. 
From our experience using fNIRS technology for HCI, we 
identify several considerations and provide guidelines for 
using fNIRS in realistic HCI laboratory settings. We empir-
ically examine whether typical human behavior (e.g. head 
and facial movement) or computer interaction (e.g. key-
board and mouse usage) interfere with brain measurement 
using fNIRS. Based on the results of our study, we estab-
lish which physical behaviors inherent in computer usage 
interfere with accurate fNIRS sensing of cognitive state 
information, which can be corrected in data analysis, and 
which are acceptable. With these findings, we hope to faci-
litate further adoption of fNIRS brain sensing technology in 
HCI research.  
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General terms: Human Factors  
Keywords: functional near-infrared spectroscopy, fNIRS, 
brain-computer interface, human cognition, BCI 
INTRODUCTION 
Brain sensing and imaging techniques, primarily developed 
for clinical settings, have been powerful tools for under-
standing brain function as well as for diagnosing brain inju-
ries or disorders. More recently, these devices have found 
uses outside of hospital and laboratory settings, and human-
computer interaction (HCI) researchers have begun to em-
ploy them to understand more about the user’s cognitive 
state relative to the task at hand [2, 10]. This has been made 
possible due to technological advances and lower costs 
associated with the devices.  

However, to be valuable in HCI, the sensors should collect 
useful information while ideally allowing normal interac-
tion with the computer. In this regard, functional near-
infrared spectroscopy (fNIRS) is well-suited for use in HCI 
(Figure 1) and there have been recent studies using fNIRS 
in HCI to distinguish game difficulty levels [9], to measure 
mental workload [13], and for letter drawing [19].  These 
studies have revealed that fNIRS sensors show potential for 
opening up new possibilities in HCI research. 
From our experience with fNIRS [9, 12, 13], we felt it was 
important to identify and examine empirically considera-
tions necessary for appropriate use of fNIRS in realistic 
HCI laboratory settings.  Common behaviors such as head 
and eye movements currently are restricted during fNIRS 
experiments. Based on the results of our study, we provide 
guidelines clarifying which behavioral conditions need to 
be controlled, avoided, or corrected when using fNIRS, and 
which factors are not problematic. With this information, 
researchers can better take advantage of fNIRS brain sens-
ing technology.  

 
Figure 1: A participant wearing one fNIRS probe. 

Brain Sensing in Human-Computer Interaction 
In HCI contexts, cognitive state information could be valu-
able to interface designers, both for evaluation of user inter-
faces as well as for input to interactive systems [13, 18]. In 
evaluation of user interfaces, researchers may use the cog-
nitive state information as an objective, real-time measure 
to assess and compare user interfaces. When designing in-
teractive systems, the additional information could lead to 
interfaces that respond carefully to changes in the user’s 
cognitive state.  
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In many traditional brain-computer interfaces, which often 
were designed for disabled users, the user is trained to con-
trol his or her brain activity and this brain signal is used 
explicitly as the primary input to the system [21]. More 
recently, it has been suggested that untrained users may 
benefit from systems that use pattern recognition and ma-
chine learning to classify signals users naturally give off 
when using a computer system [13, 18]. The system would 
use brain sensors to automatically discover aspects of the 
user’s cognitive state and use this information as passive or 
implicit input to a system, augmenting any explicit input 
from other devices, and increasing the bandwidth from hu-
mans to computers.  
The motivation for using fNIRS and other brain sensors in 
HCI research is to pick up cognitive state information that 
is difficult to detect otherwise. It should be noted that some 
changes in cognitive state may also have physical manife-
stations. For example, when someone is under stress, his or 
her breathing patterns may change. It may also be possible 
to make inferences based on the contents of the computer 
screen, or on the input to the computer. However, since 
these can be detected with other methods, we are less inter-
ested in picking them up using brain sensors. Instead, we 
are interested in using brain sensors to detect information 
that does not have obvious physical manifestations, and 
that can only be sensed using tools such as fNIRS.  
While we intend to use fNIRS to pick up psychophysiolog-
ical data, we do not expect that the participant is physically 
constrained while using the computer. However, in most 
studies using brain sensors, researchers expend great effort 
to reduce the noise picked up by the sensors. Typically, 
participants are asked to remain still, avoid head and facial 
movement, and use restricted movement when interacting 
with the computer. In addition, many factors cannot be con-
trolled, so researchers sometimes throw out data that may 
have been contaminated by environmental or behavioral 
noise, or they develop complex algorithms for removing 
the noise from the data. By doing this, the researchers hope 
to achieve higher quality brain sensor data, and therefore 
better estimates of cognitive state information. 
However, it is not clear that all of these factors contribute 
to problems in fNIRS data or that these restrictions improve 
the signal quality. Ideally, for HCI research, the fNIRS 
signals would be robust enough to be relatively unaffected 
by other non-mental activity occurring during the partici-
pant’s task performance. In fact, one of the main benefits of 
fNIRS is that the equipment imposes very few physical or 
behavioral restrictions on the participant [14]. Thus, we 
would like to establish which physical behaviors inherent in 
computer usage interfere with accurate fNIRS sensing of 
cognitive state information, which can be corrected in data 
analysis, and which are acceptable.  
FNIRS AND OTHER BRAIN SENSING TECHNOLOGIES 
Because most brain imaging and sensing devices were de-
veloped for clinical settings, they often have characteristics 
that make them less suitable for use in realistic HCI set-

tings. For example, although functional magnetic resonance 
imaging (fMRI) is effective for functional brain imaging, it 
is susceptible to motion artifacts, and even slight movement 
(more than 3mm) will corrupt the image. In addition, be-
cause of the magnetic field, there can be no metal objects, 
making computer usage impractical. The most common 
technology used for brain measurement in HCI is elec-
troencephalography (EEG) because it is non-invasive, port-
able, and relatively inexpensive compared with other brain 
imaging devices [18]. Some obstacles with using EEG for 
HCI are that it is susceptible to artifacts from eye and facial 
movements, requires gel in the participant’s hair, takes 
some time to set up properly, and is subject to noise from 
nearby electronic devices.  
Recently, fNIRS has been used in HCI because it has many 
characteristics that make it suitable for use outside of clini-
cal settings [9, 13, 19]. Benefits include ease of use, short 
setup time, and portability, making it a promising tool for 
HCI researchers. In addition, there are no technical restric-
tions for using EEG and fNIRS together [12], and the two 
technologies could complement one another.  
fNIRS provides a measure of blood oxygen concentration, 
indicative of brain activity when measured on the head 
[25]. Near-infrared light is sent into the forehead where it 
probes the tissues of the cortex up to depths of 1-3cm. 
Oxygenated and deoxygenated hemoglobin (respectively 
[HbO] and [Hb]) are the main absorbers of light at these 
wavelengths, and thus the diffusely reflected light that is 
picked up by the detector correlates with the concentration 
of oxygen in the blood. The basic technology is common to 
all systems, and the measured signal depends on the loca-
tion of the probe and the amount of light received. 
There are many possible placements of fNIRS probes, al-
lowing the study of multiple brain regions. The most com-
mon placements are on the motor cortex [24], and the pre-
frontal cortex (PFC) [6, 19], although other regions have 
also been explored [11]. We built on past experiments and 
chose to study the anterior prefrontal cortex (aPFC), an 
active region that deals with high-level processing [23], 
such as working memory, planning, problem solving, 
memory retrieval and attention. We believe these signals to 
be of great potential to HCI, rather than measurements at 
the motor or visual cortex. Thus, our considerations below 
are intended for researchers measuring the aPFC, as the 
impact of the human behavior and typical interactions will 
vary depending on the measured region of the brain. How-
ever, we expect our results to be valid for other experimen-
tal setups and contexts that use the prefrontal cortex area. 
FNIRS CONSIDERATIONS 
With the introduction of any new technology, there are 
considerations that should be made for its proper use. For 
this reason, we use our previous experience with fNIRS as 
well as a literature review to recognize characteristics spe-
cific to fNIRS sensors that are relevant for HCI, and devel-
op paradigms for using fNIRS properly in HCI research. In 
particular, we identify below potential sources of noise and 
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artifacts in the fNIRS signal when used in typical HCI la-
boratory settings. 
Head Movement  
Several fNIRS researchers have brought attention to motion 
artifacts in fNIRS sensor data, particularly those from head 
movement [5, 20]. Matthews et al. [20] explains that “mo-
tion can cause an increase in blood flow through the scalp, 
or, more rarely, an increase in blood pressure in the interro-
gated cerebral regions.” In addition, they point out that 
“orientation of the head can affect the signal due to gravi-
ty’s effect on the blood.” They note that these issues are 
significant if the head is not restricted, and even more so in 
an entirely mobile situation. However, other researchers 
indicate that fNIRS systems can “monitor brain activity of 
freely moving subjects outside of laboratories" and note 
that “measurements with less motion restriction in the dai-
ly-life environment open new dimensions in neuroimaging 
studies” [14]. While fNIRS data may be affected by head 
movements, this should be contrasted with fMRI where 
movement over 3mm will blur the image. Because of the 
lack of consensus in the community, we chose to investi-
gate the artifacts associated with head movements during 
typical computer usage to determine their effect on fNIRS 
sensor data in a typical HCI setting.  
Facial Movement 
fNIRS sensors are often placed on the forehead, and as a 
result, it is possible that facial movements could interfere 
with accurate measurements. Coyle, Ward, and Markham 
point out that “slight movements of the optodes on the 
scalp can cause large changes in the optical signal, due to 
variations in optical path. It is therefore important to ensure 
robust coupling of optodes to the subject’s head” [4]. These 
forehead movements could be caused by talking, smiling, 
frowning, or by emotional states such as surprise or anger, 
and many researchers have participants refrain from mov-
ing their face, including talking [3]. However, as there is 
little empirical evidence of this phenomenon, we will ex-
amine it further in the experiment. We selected frowning 
for testing as it would have the largest effect on fNIRS data 
collected from the forehead. 
Eye movements and blinking are known to produce large 
artifacts in EEG data which leads to the rejection of trials 
including such an artifact [16]. However, fNIRS is less 
sensitive to muscle tension and researchers have reported 
that no artifact is produced in nearby areas of the brain 
[16]. It would also be unrealistic to prevent eye blinks and 
movement in HCI settings. Overall, we conclude eye arti-
facts and blinks should not be problematic for fNIRS, and 
we do not constrain participants in this study.  
Ambient Light 
Because fNIRS is an optical technique, light in the envi-
ronment could contribute to noise in the data. Coyle, Ward, 
and Markham advise that stray light should be prevented 
from reaching the detector [4]. Chenier and Sawan [3] note 
that they use a black hat to cover the sensors, permitting the 
detector to only receive light from the fNIRS light sources.  

While this is a concern for researchers currently using raw 
fNIRS sensors that are still under development, we feel that 
future fNIRS sensors will be embedded in a helmet or hat 
that properly isolates them from this source of noise. There-
fore, in this paper, we do not further examine how the in-
troduction of light can affect fNIRS data. Instead we just 
caution that excess light should be kept to a minimum when 
using fNIRS, or the sensors should be properly covered to 
filter out the excess light. 
Ambient Noise 
During experiments and regular computer usage, one is 
subjected to different sounds in the environment. Many 
studies using brain sensors are conducted in sound-proof 
rooms to prevent these sounds from affecting the sensor 
data [22]. However, this is not a realistic setting for most 
HCI research. Therefore, we conducted this study in a set-
ting similar to a normal office. It was mostly quiet, but the 
room was not soundproof, and there was occasional noise 
in the hallway, or from heating and air conditioning sys-
tems in the building.  
Respiration and Heartbeat 
The fNIRS signals picks up artifacts from respiration and 
heart beat, by definition, as it measures blood flow and 
oxygenation [4, 20]. These systemic noise sources can be 
removed using known filtering techniques. For a discussion 
of the many filtering techniques, see Matthew et al. [20] 
and Coyle et al. [4].  
Muscle movement 
In clinical settings, it is reasonable to have participants per-
form purely cognitive tasks while collecting brain sensor 
data. This allows researchers to learn about brain function, 
without any interference from other factors such as muscle 
movement. However, to move this technology into HCI 
settings, this constraint would have to be relaxed, or me-
thods for correcting the artifacts must be developed. Fink et 
al. discussed the difficulty of introducing tasks that have a 
physical component in most brain imaging devices, ex-
plaining that they may “cause artifact (e.g. muscle artifacts 
in EEG or activation artifacts due to task-related motor 
activity in fMRI) and consequently reduce the number of 
reliable (artifact-free) time segments that can be analyzed” 
[7]. In addition, they note that the test environment of fMRI 
scanners also makes it difficult for any physical movement.  
One of the main benefits of fNIRS is that the setup does not 
physically constrain participants, allowing them to use ex-
ternal devices such as a keyboard or mouse. In addition, 
motion artifacts are expected to have less of an effect on 
the resulting brain sensor data [9]. In this study, we ex-
amine physical motions that are common in HCI settings, 
typing and mouse clicking, to determine whether they are 
problematic when using fNIRS. 
Slow Hemodynamic Response 
The slow hemodynamic changes measured by fNIRS occur 
in a time span of 6-8 seconds [1]. This is important when 
designing interfaces based on fNIRS sensor data, as the 
interface would have to respond in this time scale. While 
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the possibility of using event-related fNIRS has been ex-
plored [11], most studies take advantage of the slow re-
sponse to measure short term cognitive state, instead of 
instantaneous ones.  
EXPERIMENTAL PROTOCOL 
Understanding how the potential noise sources described 
above affect fNIRS data during cognitive tasks is critical 
for proper use of fNIRS in HCI research. Thus, we devised 
a study to empirically test whether or not several common 
behavioral factors interfere with fNIRS measurements. 
Specifically, we selected typical human behaviors (head 
and facial movement) and computer interaction (keyboard 
and mouse usage), to determine whether each of them 
needs to be controlled, corrected, or avoided at all cost. 
This will help us determine whether standard interfaces can 
be used along with fNIRS in real brain-computer interfaces. 
We will call each of the examined physical actions arti-
facts, since they are not the targeted behavior we would 
like to detect with fNIRS. Using fNIRS, we measured brain 
activity as these artifacts were introduced while the partici-
pant was otherwise at rest, as well as while the participant 
was performing a cognitive task. We then compared these 
results to signals generated while the participant was com-
pletely at rest with no artifact, as well as to when the partic-
ipant performed the cognitive task without the artifact. This 
allowed us to determine whether the artifact had an influ-
ence on the signal generated in a rested state, as well as if it 
has an impact on the signal during activation. 
For each artifact, there were four conditions tested as de-
scribed above: (A) a baseline with no cognitive task or arti-
fact; (B) the cognitive task alone with no artifact; (C) the 
artifact alone with no cognitive task; and (D) the cognitive 
task along with an artifact (see Figure 2).  
Our goal in designing the protocol for each artifact was to 
reproduce realistic occurrences. As these artifacts do not 
necessarily happen often, we tried to balance conservatism 

(i.e. highly exaggerated artifact) with optimism (i.e. minute 
occurrence of artifact), and chose a reasonable exaggeration 
of the artifact, maximizing the possibility of measuring the 
artifact if it can be measured, yet keeping the conditions 
somewhat realistic. 
Participants 
Ten participants took part in this experiment (mean age = 
20.6, std = 2.59, 6 females). All were right-handed, with 
normal or corrected vision and no history of major head 
injury. They signed an informed consent approved by the 
Institutional Review Board of the university, and were 
compensated for their participation. The experiment is 
within subject (each participant did all the experiments and 
conditions), and was counterbalanced to eliminate bias due 
the order of the experiments, and the conditions.  
Apparatus 
We used a multichannel frequency domain OxiplexTS from 
ISS Inc. (Champaign, IL) for data acquisition. We used two 
probes on the forehead to measure the two hemispheres of 
the anterior prefrontal cortex (see Figure 3). The source-
detector distances are 1.5, 2, 2.5, 3cm respectively. Each 
distance measures a different depth in the cortex. Each 
source emits two light wavelengths (690nm and 830nm) to 
pick up and differentiate between [HbO] and [Hb]. The 
sampling rate was 6.25Hz. We use the term channel to de-
fine a source-detector distance.  
In previous studies using a similar, linearly arranged probe, 
researchers have chosen to use data from the furthest two 
channels only, in order to guarantee that the depth of the 
measurement reached the cortex [9, 13]. While it is likely 
that the shallower channels pick up systemic responses, or 
other noise sources, we decided to keep the data from all 
four source-detector distances measured as they might help 
separate out artifacts from task activation.  
In all the experiments, the participants were at a desk with 
only a small lamp (60 W) beside the desk turned on, and 

 At Rest Performing Cognitive 
Task  

2: Is there a difference between rest and 
cognitive task? 

No artifact present A.  No Artifact +  
 No Cognitive task 

B.  No Artifact + 
 Cognitive Task  

2.1: When no artifact is present, is there a 
difference between rest and cognitive task? 

Artifact present C.  Artifact + 
  No Cognitive task 

D.  Artifact +  
 Cognitive Task  

2.2: When artifact is present, is there a dif-
ference between rest and cognitive task? 

   

  
1: Is there a differ-

ence between      
the presence or    

absence of the  arti-
fact? 

1.1: When the partici-
pant is at rest, is there 
a difference between 
the presence or ab-

sence of the artifact? 

1.2: When the partici-
pant performs the 

cognitive task, is there 
a difference between 

the presence or absence 
of the artifact? 

  

Figure 2: Letters A, B, C, and D show the conditions tested. The numbered questions indicate the comparisons be-
tween the conditions done in the analysis. 

 

 

 

   

160



they were sitting at a distance of roughly 30” from a 19” 
flat monitor. The room was quiet, but was not soundproof 
and noise from the hallway outside the laboratory could be 
heard occasionally. The participants were instructed to keep 
their eyes fixated on one point on the screen, and to refrain 
from speaking, frowning or moving their limbs, unless in-
structed otherwise. 

 
Figure 3: A picture of the right probe. A probe in-
cludes a detector and light sources.  

Procedure and Design 
There were five different experiments conducted with each 
participant, all in one session. These corresponded with the 
four artifacts being studied (keyboard input, mouse input, 
head movement, and facial movement), plus the tasks with-
out any artifact present. In between each experiment, the 
participant could take a break. Although the descriptions 
below are numbered as Experiments 0, 1, 2, 3, 4, the order-
ing of the experiments was counterbalanced between sub-
jects. The main difference between the experiments was 
which additional physical artifact, if any, was introduced as 
the participant performed the two tasks. 
Cognitive Task. All five experiments used the same cogni-
tive task. At the beginning of each trial, the participants 
were shown a 7-digit number on the screen for four 
seconds. The number then disappeared from the screen, but 
the participants were instructed to remember it in their 
head. After 15 seconds, the participants were asked to enter 
as much of the number as they could remember.  
The goal of the cognitive task used in these experiments 
was to provide a common task that participants would per-
form in all experiments, which yields a brain signal that 
could be detected with fNIRS. We choose a simple verbal 
working memory task because previous fNIRS studies have 
reported this type of task to produce a clear and consistent 
brain signal across participants [6, 13]. Many studies have 
successfully shown discrimination of two (or more) states, 
and we believe our results will generalize to those as well. 
Experiment 0: No artifacts 
This experiment consisted primarily of the cognitive task 
and rest periods. No additional artifact was introduced. This 
experiment was used to verify that we could distinguish the 
fNIRS data while the participant was at rest from the fNIRS 
data while the participant performed the cognitive task, 
when no artifact was present.  

First, the researcher read instructions to the participants, 
explaining the two tasks that they would perform in the 
experiment. Then the participants were presented with a 
practice trial which included an example of each task in 
that experiment, so the participants would know what to 
expect. The participants then relaxed for one minute, so 
their brains could be measured at a normal, rested state. 
During this period, as well as all other rest periods, there 
was a black screen and participants were instructed to focus 
their eyes on the focal point and relax, clearing their heads 
of any thoughts. This was followed by ten trials. 

 
Figure 4: Experiment 0 (No artifacts). The white 
areas represent the two conditions analyzed. The 
answer period’s length was variable. 

A trial contained one 15s condition with the cognitive task, 
followed by a 15s rest period to allow the participant’s 
brain to return to a rested state. In addition, there was a 15s 
condition without the cognitive task in which the partici-
pant was essentially at rest (see Figure 4). These conditions 
were counterbalanced so that sometimes participants started 
with the cognitive task, and sometimes they started without 
the cognitive task.  
Preprocessing. The preprocessing step transforms the raw 
data from the device into hemoglobin values, and smoothes 
the data to remove any high-frequency noise, as well as 
heart beat. We chose to filter the data in these experiments 
because this is a standard step in fNIRS experiments, and 
the goal was to determine the influence of interaction tech-
niques and artifacts on a typical fNIRS experiment. We 
applied a simple preprocessing procedure, described in 
Girouard et al. [9]. We used a non-recursive time-domain 
band-pass filter, keeping frequencies between 0.01-0.5 Hz 
[8]. The data was then transformed to obtain oxy- ([HbO]) 
and deoxy-hemoglobin ([Hb]) concentration values, using 
the modified Beer-Lambert law [25]. It should be noted that 
the combination of [HbO] and [Hb] gives a measure of total 
hemoglobin, which we will refer to as [HbT]. We  averaged 
each trial in two seconds periods, to obtain seven averaged 
points we call Time Period. 
Analysis. In this experiment, we wanted to observe whether 
the cognitive task, on its own, yielded a brain signal that 
was distinguishable from the signal during a rested state. 
This result is fundamental to all the other experiments that 
include the cognitive task. If we were not able to signifi-
cantly distinguish the cognitive task from rest with no add-
ed artifacts, it would have been difficult to distinguish the 
two when additional noise was introduced into the data. 
This dataset and all reported in this paper were tested for 
conformity with the ANOVA assumption of normality by 

 15s 15s 15s 

4723361 Rest Rest 

Repeated 10 times 

an
sw

er
 

Sources Detector 
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creating a normal probability plot, on which normal data 
produces a straight or nearly straight line, confirming that 
the ANOVA is an appropriate test of significance. 
We did a factorial repeated measures ANOVA on Cogni-
tive Task (cognitive task or rest) x Hemisphere (left or 
right) x Channel (4) x Time Period (7). This will identify 
differences within each participant, and determine if they 
are significant across participants. This is Comparison 2.1 
in Figure 2. We ran this analysis with [HbO], [Hb] and 
[HbT] data separately. While we did a factorial ANOVA, 
we are most interested in results that show significant inte-
ractions including the Cognitive Task factor, since these 
show significant differences between the signal during the 
cognitive task and the signal during rest. In this analysis, 
and all those following, we will only report significant re-
sults (p<0.05) that are pertinent to current HCI questions. 
Results. From these three analyses, the only relevant signif-
icant factor found was with [Hb], Cognitive Task x Channel 
(F(3, 27)= 5.670, p= 0.031). This confirms that levels of 
[Hb] differ between trials where participants performed a 
cognitive task, and trials where they simply rested, and that 
this difference in [Hb] levels varied by channel. We believe 
we can go forward with the rest of the analysis because of 
this positive result.  
Experiment 1: Keyboard Input 
The keyboard and mouse are the most common input de-
vices for modern computers. We tested keyboard input in 
Exp. 1 and mouse input in Exp. 2. We hypothesized that 
keyboard inputs would not be a problem with fNIRS, since 
most brain activation for motor movement occurs in the 
motor cortex, an area not probed with our fNIRS sensors. 
In addition, we did not believe that the physical act of typ-
ing would cause the sensors to move out of place or change 
the blood oxygenation characteristics in the PFC.  
We decided not to have the participants type specific words 
because we were only interested in measuring the influence 
of the typing motions on the signal, instead of any brain 
activity associated with composing and typing text. They 
were instructed to randomly type on the keyboard, using 
both hands, at a pace resembling their regular typing pace, 
including space bars occasionally to simulate words.  

 
Figure 5: Experiment 1 (Keyboard Input). The white 
areas represent the two conditions analyzed in the 
experiment.  

The protocol was analogous to Experiment 0. The main 
difference is that in both tasks, the participant was also typ-
ing randomly as described above (see Figure 5).  
Analysis. To observe the influence of typing on the brain 
data, we examined the data in several different ways, cor-

responding with the numbers in Figure 2. Comparison 1 
determines whether there is a difference between typing 
and not typing, regardless of whether there was cognitive 
task. Comparison 1.1 examines whether there is a differ-
ence in the fNIRS data between the presence and absence 
of the typing artifacts when the participant is at rest. Com-
parison 1.2 determines whether there is a difference be-
tween the presence and absence of the typing artifacts when 
the participant performs the cognitive task. Comparison 2 
determines whether there is a difference between doing a 
cognitive task and no cognitive task, regardless of wheth-
er the participant was typing. Comparison 2.2 looks at 
whether there is a difference between rest and cognitive 
task when typing artifacts are present. Note that 2.1 was 
not examined in Experiments 1 to 4, as there are no arti-
facts present in this condition. 
As in Experiment 0, we were most interested in results that 
showed significant interactions including the Cognitive 
Task factor, since these show significant differences be-
tween the signal during the cognitive task and the signal 
during rest. In addition, we were interested in significant 
interactions that included the artifact Typing, since these 
show significant differences between when the subject was 
typing and when the subject was not typing. 
Comparison 1, 1.1 and 1.2 used the interaction Typing 
(present or not) x Hemisphere (left or right) x Channel (4) 
x Time Period (7); Comparison 1.1 uses data from rest 
tasks; Comparison 1.2 uses data during cognitive tasks; 
while Comparison 1 uses both datasets. Comparisons 2 and 
2.2 used the interaction Cognitive Task (cognitive task or 
rest) x Hemisphere (left or right) x Channel (4) x Time Pe-
riod (7). Comparison 2.2 used data containing typing while 
Comparison 2 used data both with and without typing.  
Ideally, we would observe the absence of Typing as a factor 
in significant interactions for Comparisons 1, 1.1, and 1.2. 
For Comparisons 2 and 2.2, ideally we would find Cogni-
tive Task as a factor in significant interactions, as this indi-
cates the ability to distinguish the presence or absence of a 
cognitive task.  
For each comparison, we analyze the data for [Hb], [HbO] 
and [HbT] separately, as was done for Comparison 1 in 
Experiment 0. 
Results. Comparison 1 showed significance for Typing x 
Time Course with [HbO] (F(6, 54)= 3.762, p= 0.034), 
meaning that with cognitive task and rest tasks combined, 
we can distinguish typing using the time course. We did not 
observe any significant interaction that included Typing in 
Comparison 1.1. We can conclude that at rest, there is no 
significant difference in the fNIRS signal between typing 
and not typing. We found that for Comparison 1.2, [Hb] 
data revealed significance with Typing x Hemisphere x 
Channel (F(3, 27)= 3.650, p= 0.042). We find Typing x 
Hemoglobin Type x Time Course to be significant (F(6, 
54)= 6.190, p= 0.012). These results show that when the 
participant is performing a cognitive task, there is a differ-
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ence whether the participant is also typing or not, as typing 
shows up in significant interactions.  
In Comparison 2, we found Cognitive Task x Hemisphere 
to be significant with [Hb] data (F(1, 9)= 5.358, p= 0.046. 
This indicates that when typing and not typing tasks are 
combined, we can determine whether the participant is per-
forming a cognitive task or not using the right hemisphere. 
In Comparison 2.2, [Hb] yielded significance with Cogni-
tive Task x Hemisphere (F(1, 9)= 5.319, p= 0.047). Com-
parison 2.2 demonstrates that given typing, we can distin-
guish whether the participant is also performing a cognitive 
task or not, specifically using [Hb] and hemisphere. 
Discussion. Comparison 1.1 confirmed that the sensors are 
not picking up a difference between the typing task and 
rest. However, in Comparison 1.2, we found that typing is 
influenced by the cognitive task. This is also true in gener-
al, as typing tasks are usually related to the current task. 
Overall, while typing can be picked up when there is a cog-
nitive task present, we can still distinguish the cognitive 
task itself (Comparison 2.2 and 2). This confirms our hypo-
thesis and validates that typing is an acceptable interaction 
when using fNIRS. From this, we can also assume that 
simple key presses (e.g. using arrow keys) would also be 
acceptable with fNIRS since it is just a more limited 
movement than typing with both hands. 
Experiment 2: Mouse Input 
We designed a task that tests mouse movement and click-
ing. We hypothesized that small hand movement such as 
using the mouse would not interfere with fNIRS signal. The 
participant was instructed to move a cursor until it was in a 
yellow box on the screen, and click. The box would then 
disappear and another one would appear somewhere else. 
Participants were directed to move at a comfortable pace, 
not particularly fast or slow, and to repeat the action until 
the end of the condition. All participants used their right 
hand to control the mouse.  

 
Figure 6: Experiment 2 (Mouse Input).  

The procedure was identical to Experiment 1, except that 
the typing was replaced with mouse clicking (see Figure 6). 
We analyzed the data using the same comparisons as in 
Experiment 1, substituting mouse input for keyboard input.  
Results. Comparison 1 yielded no significant interactions, 
indicating that we cannot observe differences between the 
presence and absence of clicking, when combining data 
from the cognitive task and rest. In Comparison 1.1, with 
[Hb], we observe an interaction of Clicking x Channel (F(3, 
27)= 4.811, p= 0.044). This shows that we can tell whether 
someone is clicking, depending on the Channel with the 
participant being at rest. In Comparison 1.2, [HbO] data 

reveals significant interaction with Clicking x Hemisphere 
(F(1, 9)= 9.599, p= 0.013) and Clicking x Hemisphere x 
Time Course (F(6, 54)= 4.168, p= 0.037). This indicates the 
ability to distinguish Clicking from no motor activity when 
the participant is performing a cognitive task, although this 
effect differs across hemispheres. Finally, we observed 
significant interactions with Clicking x Hemisphere with 
[HbT] (F(1, 9)= 6.260, p= 0.034) and Clicking x Hemis-
phere x Hemoglobin Type (F(1, 9)= 5.222, p= 0.048), 
which leads to the same conclusion as with [HbO] data 
only. Overall, we can tell whether someone is clicking de-
pending on the Hemisphere. 
Comparison 2 yielded no significant interactions, indicating 
that we cannot distinguish between rest and cognitive task, 
when the data includes both clicking and not clicking. In 
Comparison 2.2, we found both Cognitive Task x Hemis-
phere x Hemoglobin Type (F(1, 9)= 5.296, p= 0.047) and 
Cognitive Task x Hemisphere x Hemoglobin Type x Time 
Course (F(6, 54)= 4.537, p= 0.036) to be significant, indi-
cating that even in data containing clicking, we can tell 
whether the participant is doing a cognitive task or resting. 
Discussion. We found that clicking in this experiment 
might affect the fNIRS signal we are collecting, as Com-
parison 1.1 yielded interactions with the factor of clicking. 
This means that when the participant is at rest, there is a 
difference between the presence and absence of clicking. 
The difference in activation is not surprising as we did not 
have a “random clicking” task, but one where subject had 
to reach targets, which may have activated the aPFC. How-
ever, because Comparison 2.2 still was able to distinguish 
Cognitive Task, the cognitive task of remembering numbers 
may produce a different signal from clicking.  
Hence, results indicate that when we want to observe a 
cognitive task that contains clicking, we need to have the 
rest task contain clicking as well, as Comparison 2.2 found 
significant interactions, but Comparison 2 did not. Overall, 
we believe that clicking is acceptable if the experiment is 
controlled, confirming in part our hypothesis.  
Experiment 3: Head Movement 
General head movements could affect the fNIRS signal, 
both because of possible probe movement on the skin, and 
possible change in blood flow due to the movement itself, 
as was noted earlier. We hypothesize that head movement 
could be a problem, as this seems to be reported by many 
researchers.  
Many types of head movements can occur, in all directions. 
We chose a condition that is representative of common 
movement while using the computer: we simulated looking 
down at the keyboard and up at the screen. These move-
ments were done in an intermittent manner, similar to head 
movements that may occur during normal computer usage, 
three times per 15s trial.  
The procedure was identical to Experiment 1 and 2, except 
that the typing or mouse clicking was replaced by the head 
movement (see Figure 7). We analyzed the data using the 
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same comparisons as in Experiment 1 and 2, substituting 
head movement for keyboard or mouse input. 

 
Figure 7: Experiment 3 (Head Movement).  

Results. We found no significant interactions for Compari-
son 1, which indicates that it is not possible to distinguish 
between the presence and absence of head movements 
when the cognitive and rest data are combined. There were 
no significant results for Comparison 1.1, indicating that at 
rest, there is no significant difference in the signal when the 
participant is moving his or her head or not. Comparison 
1.2 showed that with [Hb] data, we can distinguish Head 
Movement x Hemisphere x Channel (F(3, 27)= 5.363, p= 
0.028), and we can significantly observe Head Movement x 
Hemoglobin Type x Time Course (F(6, 54)= 7.455, p= 
0.002), meaning that during the cognitive task, we can tell 
between the participant moving their head or not. 
We found no significant interactions for Comparison 2, 
meaning that it is not possible to separate the cognitive task 
from rest when including both data with head movements 
and data without head movements. In Comparison 2.2, we 
find that Cognitive Task x Hemoglobin Type x Channel x 
Time Course is significant (F(18, 162)= 3.915, p= 0.048). 
With head movements, there is a difference between rest 
and the cognitive task. 
Discussion. Similar to the clicking results, we found that 
we require the presence of head movements in both the rest 
and the cognitive task to distinguish it (Comparison 2.2), 
which leads us to suggest that head movement should be 
avoided. However, the movements in this experiment were 
more exaggerated and frequent than regular moving from 
keyboard to screen: for example, most subjects couldn’t see 
the screen when looking at the keyboard. We suggest that 
participants minimize major head movements, and instead 
move their eyes towards the keyboard. We found our initial 
hypothesis correct, although we believe head movement 
may be minimized and corrected using filtering techniques. 
Experiment 4: Facial Movement 
Forehead facial movement moves the skin located under 
the probe, which may interfere with the light sent into the 
brain and its path. We hypothesize that forehead facial 
movement, e.g. frowning, will have an effect on the data. 
In this experiment, participants were prompted to frown for 
two seconds, every five seconds. Specifically, we asked 
them to draw the brows together and wrinkle the forehead, 
as if they were worried, angry, or concentrating. 
The procedure was also identical to the other experiments, 
except that the artifact introduced was head movement (see 

Figure 8). We analyzed the data using the same compari-
sons as in the other experiments, substituting frowning mo-
tion for keyboard or mouse input, or head movement. 

 
Figure 8. Experiment 4 (Facial Movement).  

Results. Comparison 1 showed significance with [HbO] for 
Frowning x Channel (F(3, 27)= 5.287, p= 0.035). We 
found significance with Frowning x Channel with [HbT] 
(F(3, 27)= 5.343, p= 0.035), Frowning x Hemoglobin Type 
x Channel (F(3, 27)= 4.451, p= 0.046). We see that regard-
less of whether at rest or doing cognitive task, we can dis-
tinguish whether frowning is occurring at some but not all 
channels, which is consistent with previous results. In 
Comparison 1.1, we found that [HbO] data showed Frown-
ing x Channel to be significant (F(3, 27)= 5.194, p= 0.037), 
which we also noticed with both types of hemoglobin (F(3, 
27)= 5.191, p= 0.037). When the participant was at rest, we 
can distinguish whether the participant is frowning or not at 
some but not all channels. Comparison 1.2 found Frowning 
x Channel to be significant for [HbO] data (F(3, 27)= 
4.862, p= 0.042) and with both types of hemoglobin (F(3, 
27)= 4.978, p= 0.041). This indicates that there is a differ-
ence in [HbO] levels when participants were frowning or 
not frowning, and that this difference varied by channel, 
similarly to Comparison 1.1. Comparison 2 found Cogni-
tive Task x Channel x Time Course to be significant with 
[HbO] (F(18, 162)= 3.647, p= 0.043). Cognitive Task x 
Hemoglobin Type x Channel x Time Course was a signifi-
cant interaction (F(18, 162)= 4.130, p= 0.042), both indi-
cating that when frowning data is combined with not 
frowning, we can tell the cognitive task from rest at some 
but not all channels.  Finally, Comparison 2.2 showed no 
significance for interactions that included Cognitive Task, 
indicating we cannot distinguish the cognitive task from 
rest when the subject is frowning.  
Discussion. We found that frowning data always can be 
distinguished from non-frowning. We also learned that if 
all the data includes frowns, then we cannot tell apart the 
cognitive task from the rest condition. However, we found 
that if we mix the data that contains frowning and no 
frowning, we can then discriminate the cognitive task, 
which shows interesting potential..  
Those results indicate clearly that frowning is a problematic 
artifact, and should be avoided as much as possible. This 
confirms our hypothesis. However, given that this was an 
exaggerated movement (3 times in 15s), and that Compari-
son 2 had good results, we can say that if some frowning 
data found its way into the dataset, it might be possible to 
still distinguish the cognitive task and the rest task.  
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Performance data 
In all five experiments, after each cognitive task, partici-
pants entered the 7-digit number that they had been re-
membering. To obtain the error rate of those answers, we 
compared each digit entered to the original digit, and found 
the number of digits correctly answered. A repeated meas-
ures ANOVA examining the error rate across artifact types 
revealed no statistical differences between them (F(4,36)= 
0.637, p= 0.526). This result indicates that each experiment 
was of similar difficulty.  
GUIDELINES FOR FNIRS IN HCI 
To take advantage of the benefits of fNIRS technology in 
HCI, researchers should be aware of several considerations, 
which were identified in this paper, and summarized in 
Table 1. Our goal was to reveal whether or not several 
common behavioral factors interfere with fNIRS measure-
ments. We empirically examined whether four physical 
behaviors inherent in computer usage interfere with accu-
rate fNIRS sensing of cognitive state information. Overall, 
we found that given specific conditions, we can use typing 
and clicking in HCI experiments, and that we should avoid 
or control major head movements and frowns.  
Other artifacts, such as minor head movements, heartbeat 
and respiration may be corrected using filtering. There are 
many types of filtering algorithms that can help reduce the 
amount of noise in data [20]. Methods include adaptive 
finite impulse response (FIR) filtering, Weiner filtering [5, 
17], adaptive filtering [5] and principal component analysis 
[15, 20, 24]. Matthews et al. [20] note that FIR can be used 
in real time if accelerometers are used simultaneously on 
the head to record head motion. The other methods are 
mainly offline procedures, making them less practical for 
real-time systems.  
The experimental protocol was designed to reproduce rea-
listic occurrences of artifacts that might be present during 
typical computer usage in HCI laboratory settings. We pur-
posefully exaggerated the artifacts to make sure they would 
be measured with fNIRS. So, we need to keep that in mind 
as the exaggerated artifacts are less likely to happen than in 
real experiments. Note that this was run in a typical, quiet 
office space, and not in a sound proof room like most brain 
sensing studies.  
In the future, it would be worthwhile to take these results a 
step further, to investigate even more realistic settings with 
multiple potentially interfering sources of noise.  In addi-
tion, it would be useful to investigate using machine learn-
ing to identify the presence of artifacts in fNIRS data. With 
a database of undesirable artifacts in fNIRS signals, we 
could feed data from a new experiment to see whether any 
of the artifacts are found. This could provide a new and 
objective way to remove examples contaminated by such 
artifacts, instead of using visual observation. 
In conclusion, we have confirmed that many restrictions 
such as long setup time, highly restricted position, intoler-
ance to movement, and other limitations, that are inherent 
to other brain sensing and imaging devices are not factors 

when using fNIRS. By using the guidelines described 
above, researchers can have access to the user’s cognitive 
state in realistic HCI laboratory conditions. This is impor-
tant for adoption in HCI, and we recommend fNIRS as a 
valuable and effective input technology. 
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