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Abstract 

Passive brain-computer interfaces are designed to use 

brain activity as an additional input, allowing the 

adaptation of the interface in real time according to the 

user’s mental state. While most current brain computer 

interface research (BCI) is designed for direct use with 

disabled users, I focus my research on passive BCIs for 

healthy users. The goal of my dissertation is to employ 

functional near-infrared spectroscopy (fNIRS), a non-

invasive brain measurement device, to augment an 

interface so it uses brain activity measures as an addi-

tional input channel. I have measured and classified 

brain signals that are interesting in HCI context, such 

as mental workload and difficulty level of a task. My 

future work will focus on creating an interface that re-

sponds to  one of those measures by adapting the in-

terface. By combining brain signal measured with an 

adaptive interface I expect to contribute a functional 

passive brain-computer interface that measures and 

adapts to the user’s brain signal.  
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Introduction 

A brain-computer interface (BCI) can be loosely defined 

as an interface controlled directly or indirectly by brain 

activity of the user. While most BCI research is de-

signed for direct use with disabled users, we instead 

focus on passive BCIs [1] for healthy users. Passive 

BCIs are interfaces that use brain measurements as an 

additional input, in addition to standard devices such as 

keyboards and mice.  

Electroencephalography (EEG) is the most common 

brain measurement tool in BCI. However, we use func-

tional near-infrared spectroscopy (fNIRS), an emerging 

technology with the advantage of being both non-

invasive and portable (see Figure 1). By measuring the 

reflection of near-infrared light sent into the brain, we 

can extrapolate a measure of brain activity. This tool 

has been used in medical and biomedical contexts, but 

little has been done to take advantage of it in a human-

computer interaction (HCI) context.  

My research goal is to create interfaces that “pay atten-

tion” to the user, to allow them to increase their per-

formance, efficiency, and/or overall experience. Under-

standing when the user is overloaded, for example, can 

provide useful information to the interface, which can 

be adapted to fit the user’s mental state.  

My dissertation includes: measuring and classifying 

meaningful brain signals, creating an interface that 

adapts to one of those measures, and combining brain 

signal measure with an adaptive interface to complete a 

functional brain-computer interface that measures and 

adapts to the user’s brain signal.  

Exploring brain signals measured with fNIRS  

The first step when creating a brain-computer interface 

system is to determine an interesting brain signal using 

the device of choice. Each tool and probe allows for a 

particular area of the brain to be examined, which indi-

cates a need to explore the brain signals.  

fNIRS calculates change in hemoglobin concentrations 

[7] (see Figure 1). Our probes measure the brain area 

called the anterior prefrontal cortex located under the 

forehead, an active region that deals with high-level 

processing [5]: working memory, planning, problem 

solving, memory retrieval and attention. While Mat-

thews et al. note that the “motor cortex activation is 

the most common mental strategy for fNIRS-BCI con-

trol” [4], I believe in the potential of using higher cog-

nitive function in a passive BCI. Because of this rich 

area, I have investigated different signals with HCI po-

tential, including difficulty level [2], mental workload 

[3], reading/memorization, and interest. I observed 

promising results when assessing the signal of those 

experiments.  

Feasibility Study: Mental Workload 

In an experiment that asked subjects to count the 

number of sides of each colors on a rotating cube, we 

attempted to measure different levels of mental work-

load [3]. We could distinguish between them, with be-

tween 56% and 72% accuracy when classifying two 

levels of mental workload, using machine learning clas-

sification. We used a sliding windows method with mul-

tilayered perception. The results are promising, making 

this a successful feasibility study.  

Figure 1. A picture of the right 

probe. A probe includes a de-

tector (larger square) and four 

light sources (smaller squares).  



  

Difficulty levels during video game play 

Distinguishing difficulty levels could prove to be an in-

teresting input signal, on which to adapt the interface. 

The experiment presented the user with two levels of 

difficulty of an arcade game (Pacman) [2]. Data from 

nine participants shows we can discriminate well be-

tween the subject playing or resting (94% accuracy, 

with chance at 50%), as well as discriminate between 

two difficulty levels and rest periods (77% accuracy, 

with chance at 33%), which shows potential for use in 

an adaptive interface. I investigated the data using 

both statistical analysis and machine learning classifica-

tion. 

Reading/Memorizing words with different interest levels  

I also ran an experiment that asked subjects to pas-

sively view, or memorize words of different interest 

level to them. A preliminary statistical analysis shows a 

significant difference in the brain signal between both 

the view type (reading or encoding), and two interest 

levels. Results from this brain signal could be applied in 

a learning software, such as giving feedback about the 

user’s last attempt at memorizing a piece of informa-

tion. Browsing software could also use these results as 

a measure of how hard a user is working on a particular 

text or webpage: encoding might lead to more mental 

workload. It could be used in web searches to select 

pages of previously high mental workload. The interest 

level measure could also provide extra information in a 

browsing situation, as a gage of interest of the current 

document.  

What’s next? 

I am currently choosing a major application for the 

second part of the research. I need to select the brain 

signal with the most possibility, and combine it with an 

interface that will have interesting adaptation potential. 

Creating a passively adaptive lightweight 

interface  

Using one of the signals explored previously as a proof 

of concept, the objective in this part of the thesis is to 

create a lightweight, adaptive interface that will that 

assumes fNIRS reading, and will change according to 

such signal (by using simulated results, for example). 

One possible interface measures degrees of workload or 

interest when reading a webpage and uses that to sort 

the webpages, in order to better search for and find 

them. Another could use cognitive load assessment to 

control information pace of peripheral communication. 

Part of the research will include testing the adapting 

interface. Because we will be using simulated data to 

feed the interface, the best evaluation method might be 

a Wizard-of-Oz experiment. This type of evaluation 

consists on having the experimenter pretend to be the 

computer and react to the user’s input. In this case, 

one would pretend to be the brain measuring device, 

and would feed the interface with a visual evaluation of 

the user’s state.  

Evaluation will provide valuable information about this 

system. One possible evaluation method is to compare 

adapting and non-adapting periods. Comparing adapta-

tion from brain signal and random adaptation would 

also be of interest. We could compare heuristics of per-

formance, enjoyment, awareness of adaptation. 

Creating a complete adaptive BCI 

When the previous parts have been successfully com-

pleted, it would prove interesting to combine the adap-



  

tive interface with real brain-computer data: a specific 

brain signal will be measured with fNIRS, classified, and 

this information will be passed on the interface to react 

accordingly, as illustrated in Figure 2. Although [6] has 

conceptualized a BCI system using fNIRS, I would like 

to create the first working BCI with fNIRS technology. 

In addition to the evaluation techniques applied in the 

previous part, we will explore the value of the adaptive 

system given better brain inputs, as those will improve 

over time. 

Long Term Vision 

I believe we can create passive BCIs with many con-

texts and types of applications. I am currently using 

fNIRS, but I am interested in this and technologies like 

it that can provide more information about the user. 

The use of additional inputs such as psychophysiologi-

cal signals can lead to better HCI. 

Conclusion 

Measuring brain signals related to interfaces can lead to 

applications such as interface evaluation and adapta-

tion. My thesis explores brain signals measured with 

fNIRS, use them to adapt the interface and close the 

loop by connecting brain signals to the adaptable inter-

face. I am really enthusiastic about the potential for 

fNIRS and similar techniques to greatly enhance how 

people interact with computers. The creation of a brain-

computer interface will open opportunities for adapta-

tion on different brain signals, with a device that is 

portable, non-invasive and safe.  
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Figure 2. Basic steps in a brain-

computer interface.  


