
CISC859 Pattern Recognition, Winter 2019 
Assignment 3, due February 11 

 
Estimating classifier performance (Course reader pp 25-34) 
1) As discussed on page 30 of the course reader: DHS Equation (39) on page 484 gives the probability of getting k 
errors when using n¢ test samples, if the true error rate is p. 
 

a) Informally explain this equation: how do the three factors arise? 
Here is a review of “n choose k” notation.   = 

 is the number of different ways of choosing a subset of size k from a 

set of size n. For example, create a committee of k=7 people from n=100 candidates by lining up the 100 candidates and 
choosing the first 7 people. There are 100! ways to form the line. Divide by 7! because all permutations of the first seven people 
result in the same committee, and divide by 93! because all permutations of the last 93 people result in the same committee. 
 

b) The number of classes, c, does not appear in equation (38).  Is this a mistake, or is it true that it doesn’t matter 
how many classes there are? 
 

c) Refer to DHS Fig 9.10 on page 485. Someone tests a classifier by running 50 tests and finding that there are 10 
errors. The estimated error probability is 20%. Use DHS Fig 9.10 to find the 95% confidence interval: the true 
P(error) has a 95% chance of lying within this interval. 
 
 
 
Parametric estimation of a probability density (course reader pp 37-38)  
2) Consider a recognizer for upper case characters (26 classes, w1 to w26).  We choose 5 features, x1 to x5.  We 
decide to use a Bayes classifier, and assume that all the p(x | wi) densities have a multivariate normal form.  We use 
parameter estimation to determine the parameters of p(x | wi) from the training samples.   

a) Describe the contents of the parameter vector q.  How many parameters have to be estimated, in total? 

b) Describe the operation of the classifier at "run time".  We are given a feature vector x’ for an unknown sample.  
How does the classifier process this feature vector?  How does it make use of the estimated q in this process? 
 
 

3) [This problem is adapted from DHS page 140, problem 2 “Let x have a uniform density ...”] 
Let x be distributed uniformly between 0 and q.  In other words, p(x | q) = 1/q when 0≤x≤q, and p(x | q) is zero 
when x is outside the range 0≤x≤q. 

(a) Sketch p(x | q) versus x, for a fixed value of the parameter q.  (This is the “usual sketch” for a uniform density.) 

(b) Sketch p(x1 | q) versus q (where q > 0) for a fixed value of x1.  This sketch depicts the situation where some 
sample x1 has been observed, and we are trying out various guesses for the value of q.  (If we guess that q is 
smaller than x1 then we have made a mistake. It is impossible for q to be less than x1 because that would mean zero 
probability of obtaining x1 as a sample drawn from this density, but we are told that we did obtain x1 as a sample.)  
This sketch allows you to compare what happens if the guessed q is equal to x1 versus guessing that q is larger or 
smaller than x1. 

(c) Suppose that n samples x1, ..., xn are drawn independently according to p(x | q). Argue that the maximum 
likelihood estimate for q is the largest of the n samples. An intuitive discussion suffices: informally argue why it is 
plausible that the best estimate for q is the largest observed sample. You can refer to the sketch from part (b) in 
your argument. 

Here the single parameter q is sufficient for characterizing a density uniform from 0..q.  More generally, a uniform 
density in one-dimensional space requires estimating two parameters: estimate mean and variance, or alternatively 
estimate a, b where the density is uniform in the range [a, b].   

A note about notation: Here DHS uses x1...xn to denote n samples that are used for estimating q.  Do not confuse 
this with similar-looking notation elsewhere in DHS where (x1, ..., xd) are the elements of a feature vector.   
 



Nonparametric estimation of a probability density  (course reader pp 39-41)  
4) Here we write p(x) instead of p(x | wi), since the density estimation is done one class at a time. 
We have the following data for making a nonparametric estimate of p(x).   
 

 

a) What is the estimate at x=(1, 1) if we use a "volume” (in this case, an area) 
with side-length 1? 
 

b) What is the estimate at x=(1, 1) if we use a volume with side-length 0.5? 
 

It’s fine to estimate k by eye: “It appears that k of the 10 points lie in a volume 
centered at (1, 1)”.    
 

Note that it is possible for p(x) to be greater than 1.  For example, if a one-
dimensional density f(x) is uniform in the range 1.1≤x≤1.2, this means that 
f(x)=10.0 in that range. 

 
 

Nearest neighbor classifier  (course reader pp 41-43)  
5a) Under what conditions would you expect the kNN (k-Nearest Neighbor) classifier to give better results than the 
NN (Nearest Neighbor) classifier? 
 

b) How are the prior probabilities P(wi) reflected in the NN and kNN classification methods?  For example, 
consider character recognition: in English, the letter e is much more frequent than the letter q.  A Bayes' classifier is 
affected by this, because it uses the value of P(wi) in the process of making a classification decision.  In contrast, an 
NN classifier for OCR does not make explicit reference to P(wi); it just looks for the nearest neighbor.  So the 
question is: how do the prior probabilities have an effect on an NN classifier? 
 
 

Decision trees  (course reader p 46)  
6) Here is a decision tree for a two-class problem with three binary features (x1, x2, x3).  Class w1 is defined by the 
Boolean formula “(x1 AND x2) OR x3”.  This means that for samples in class w1, either both features x1 and x2 are 
present, or feature x3 is present.  Everything else is in class w2. 

   

a) Find the expected length from the root to a leaf for this tree.  
Assume that the values 0 and 1 are equally likely for each of the three 
features x1, x2, and x3. This means that each of the 8 feature vectors 
(000, 001, 010, etc) is equally likely, and as a result, some leaves are 
reached more frequently than other leaves. The expected path 
length tells us “how many features, on average, have to be measured 
when using this decision tree to come up with a classification”. 
 

b) Create a decision tree that performs the same classification with 
shorter expected path length. State the expected path length of your 
tree. 

 
 

Classifier combination (course reader pp 46-48)  
7) Classifiers A, B, and C each perform digit recognition (10 classes). Assume that the classifiers are independent: 
if classifier A makes an error on a certain input, that does not affect the probability of classifier B making an error 
on this input. Also, there is no correlation among the wrong answers: if A and B both make an error, the chance 
that they both give the same wrong answer is 1/9. 
Classifier D is defined as a combination of the outputs produced by classifiers A, B, C.  It operates as follows: 

• If two or three of A, B, C produce the same answer wi, then classifier D answers wi 
• If all three of A, B, C produce different answers, then classifier D rejects the input. 

(a) Classifiers A, B, C are correct 50% of the time. What is P(correct), P(reject), P(error) for classifier D? [See 
discussion on the next page to help you get started.] 
(b) Classifiers A, B, and C are correct 70% of the time. What is P(correct), P(reject), P(error) for classifier D? 

•

•
•

•

•

•

•
•

•

•

0 1 2
0

1

2
x2

x1

x1

x3

x2x3

ω1

ω1ω1

ω2

ω2

0

0

0

0

1

1

1

1



(c) Optional -- you don’t have to do this if parts (a) and (b) took you a long time. Find P(correct) for majority-
voting combination of 5 classifiers, where each classifier is correct 70% of the time.   
 
 
 

Discussion for problem 7   
There are many ways to calculate the answers.  Some analysis is given on page 48 of the course reader and here is 
further discussion about parts (a) and (b). 
 
You need to find the probability of the various situations that cause classifier D to be right, wrong, or reject.  Since 
P(correct) + P(reject) + P(error) = 1, you only need to figure out two of these three values. (Or you can be thorough 
and figure out all three values; then check the correctness of your work by making sure that they sum to 1.)   Here 
is a summary of the situations. 
 

Classifier D rejects if  
• A, B, C produce three different answers. All three might be wrong, or one of the answers might be right. 

 

Classifier D is correct if 
• All three of ABC give the right answer. 
• Two of ABC are right. This can happen 3 ways: AB right and C wrong; BC right and A wrong; AC right 

and B wrong. 
 

Classifier D is wrong if 
• All three of ABC give the wrong answer AND at least two of these wrong answers agree. 
• Two of ABC give the same wrong answer, and the third classifier gives the right answer. 

 
 
In summary, the performance of classifier combination can be improved in two ways: 
1. Improve the component classifiers, as illustrated by going from 50% to 70% correct in parts (a) and (b).  
2. Combine more classifiers, as illustrated by going from 3 to 5 classifiers in parts (b) and (c). 
 


