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Abstract

Tensegrity systems are a type of structural system relying on a balance of tension and com-

pression forces to maintain structural soundness. These systems have a wide variety of

applications ranging from architecture to biological modeling, art, and even space explo-

ration. This thesis provides a �exible modeling platform for tensegrity systems, allowing

exploration of a wide range of systems, including fractal and adaptive tensegrity systems.

In order to provide the necessary �exibility for scienti�c exploration, this framework in-

corporates a hierarchical object de�nition structure. A hill climbing algorithm is provided

for �nding minimal potential energy states of these systems. Extensive validation of the

presented hill climbing algorithm shows that this algorithm �nds global minima in 99% of

test cases. This framework employs a clear distinction between object de�nition, object

sampling, and object optimization, to allow for a greater range of uses.
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Glossary

Symbol Meaning

O - An object in a tensegrity system. Objects are referred to as atomic if they

have no constituent sub objects, and as compound otherwise.

L(O) - The length of an atomic object O.

N(O) - The natural length of an atomic object O. This is the length an object would

have without the application of compressive or stretching forces.

d(O) - The di�erence between L(O) and N(O). If d(O) > 0 this is referred to as a

stretch, otherwise it is a compression.

K(O) - The elasticity, or spring constant, of an atomic object O. Inelastic objects

are treated as having elasticity 0 for ease of notation.

VO - A state vector of an object O.

µO(VO) - µO de�nes a mapping between state vectors VO and states of the object O

EP (VO) - The potential energy of an object O in the state VO.

S(O) - The state space of the object O.

x
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Chapter 1

Introduction

A tensegrity system is a physical structure made up of tensioned and compressed objects.

Figure 1.1 shows a tensegrity icosahedron in a stable state con�guration. Tensegrity sys-

tems are used in applications including architecture, art, design, modeling connective tissues,

and space exploration, as discussed in Section 1.4. This thesis constructs a �exible simula-

tion platform that supports exploration and experimentation of adaptive and non-adaptive

tensegrity systems. Section 1.5 details these contributions.

De�nition. A tensegrity system is said to be in a stable state if in the absence of external

forces the system remains at rest in that state.

1.1 Advantages of Simulation

Simulating physical systems allows us to create and explore a variety of systems cheaply

and e�ciently. There are many advantages to modeling tensegrity systems using computer

simulations. Some of the advantages of using theoretical models to simulate physical systems

are discussed by Yucesoy and Huijing [23]. Among these advantages is the ease of designing

idealized systems for use in hypothesis testing and generation. Further, simulations allow us

to experiment with values which are di�cult or even impossible to create experimentally, or
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(a)
(b)

Figure 1.1: The Tensegrity Icosahedron : Although none of the rigid objects in this systems
are in contact, the system as a whole maintains a shape and has a certain struc-
tural soundness. (a) shows a physical example of a tensegrity icosahedron, while
(b) shows our simulation of it.

which would be di�cult or impossible to measure accurately.

Many interesting physical tensegrity models have been built by various artists, engi-

neers and physiology researchers. This is illustrated later in this thesis in �gures 1.6, 1.9,

and 6.2. Building such models is di�cult and time-consuming. Building even the simple

tensegrity icosahedron from �gure 1.1a can be a challenge.

Computer simulation allows easy investigation of the properties of a large variety

of complex tensegrity models. For example, researchers are interested in investigating the

properties of fractal tensegrity structures [18]. Even a simple fractal tensegrity structure

with only one self-similar submodel, such as the one in �gure 1.2a, is challenging to build.

In contrast, the simulation platform contributed by this thesis easily supports exploration

of more complex fractal tensegrities such as �gures 1.2b, 1.2c, and 1.2d. Our framework

attaches smaller versions of the main icosahedron to the original system by inserting them

into an elastic edge (as per the model constructed by Graham Scarr, see �gure 1.2a). Scarr

and others are investigating various fractal structures that may be useful in biotensegrity

modeling; for example, a rod could be replaced by an icosahedral helix (Figure 21 in [18]).



1.1. ADVANTAGES OF SIMULATION 3

(a) (b) (c)
(d)

Figure 1.2: (a) A physical example of a fractal tensegrity icosahedron c©Graham Scarr
(http://www.tensegrityinbiology.co.uk/), reproduced with permission. (b) Our
simulated model of a fractal tensegrity icosahedron. (c) Our simulated model of
a multiple iteration fractal tensegrity icosahedron. (d) Our simulated model of
a single iteration fully fractal tensegrity icosahedron.

The simulation platform supports exploration of adaptive tensegrity systems. An

adaptive tensegrity changes properties dynamically over time in response to tensional and

compressive forces in the model. An example of the e�ects of adaptation is shown in Fig-

ure 1.3. Details as to the adaptation rules can be found in chapter 4. The stable states

shown in �gures 1.3b and 1.3c are produced by a potential-energy minimization algorithm

(presented in section 3.2.2) run without, and respectively with, adaptive constraints. This

type of simulation allows us to see how tensegrity systems with constituent adaptive objects

would react to various loads and displacements. Exploring such behaviors is very di�cult

with physical models, because adaptive materials are expensive and di�cult to work with.

Simulation provides an inexpensive and convenient way to study materials with a variety of

adaptivity criteria.
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(a) (b) (c)

Figure 1.3: Illustration of adaptive tensegrity : (a) A starting state for a tensegrity icosahe-
dron in which a single rod has been displaced far from the rest of the system.
This system moves to a stable state in which potential energy of the system is
minimized. We simulate this by applying the optimization algorithm described in
section 3.1.3. (b) The end result when optimization occurs without adaptation:
the system returns to the shape of the standard tensegrity icosahedron. (c) The
end result when optimization includes application of the adaptation rules pre-
sented in chapter 4 : the system ends in a stable state that evidences a memory
of displacement.
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1.2 De�nitions of Tensegrity

The de�nition this thesis uses when referring to tensegrity comes from Dr. Chris Barnes.

De�nition (http://tensegritychiro.com/). Tensegrity is a concept in architecture and biol-

ogy where a balance of tension and compression results in a maximum e�ciency and economy.

This de�nition is used because it is concise and captures the essence of this type of

structure clearly and succinctly.

De�nitions of tensegrity have ranged widely, depending on the uses each author had

in mind for the system. For this reason several similar but distinct de�nitions currently

exist. Fuller de�nes tensegrity as follows.

De�nition. [3] Tensegrity describes a structural-relationship principle in which structural

shape is guaranteed by the �nitely closed, comprehensively continuous, tensional behaviors of

the system and not by the discontinuous and exclusively local compressional member behav-

iors.

On his website, Kenneth Snelson, an artist who has worked extensively with tensegrity

structures, de�nes it as follows.

De�nition (kennethsnelson.net). Tensegrity describes a closed structural system composed

of a set of three or more elongate compression struts within a network of tension tendons, the

combined parts mutually supportive in such a way that the struts do not touch one another,

but press outwardly against nodal points in the tension network to form a �rm, triangulated,

prestressed, tension and compression unit.

Snelson adds the stipulation that tensegrity systems form triangulated units to ex-

clude systems which �t the rest of the de�nition but are �accid and do not have structural

integrity.
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1.3 History

First coined in Buckminster Fuller's 1961 paper Tensegrity [2], the term tensegrity is an

amalgamation of the phrase tensional integrity. Although he did not coin the term until 1961,

Fuller had been discussing the interplay of tensional and compressional forces in structures

from a much earlier date. The starting point for what are now recognized to be tensegrity

systems can be seen as early as Fuller's 1947 talk on energetic-synergetic geometry at the

Black Mountain College.

While Fuller coined the term, he was by no means the only person to have worked

on the concept. Several people worked and even submitted patent applications on similar

designs around the same time. A more detailed overview of the history of tensegrity can be

found in various publications ( [7], [8], and [15]).

Figure 1.1 shows one of the most basic tensegrity structures, the tensegrity sphere,

or tensegrity icosahdron. Although none of the rigid objects in this system are in contact,

the system as a whole maintains a shape and has a certain structural soundness. This thesis

focuses largely on models of the tensegrity sphere (with variations) as will be discussed in

chapter 5.

The construction and symmetries of these and other classical tensegrity models are

discussed in "A Practical Guide to Tensegrity Design" by Burkhardt. [1]
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1.4 Tensegrity Structures in Real World Applications

Tensegrity is used in a wide variety of �elds. In this section we highlight some examples of

its applications.

1.4.1 Tensegrity in Architecture

Figure 1.4: The Kurilpa Bridge

Figure 1.5: The proposed Filamen-
tosa building project

The Kurilpa Bridge (seen in �gure 1.4) is a $63 million pedestrian and bicycle bridge

over the Brisbane River in Brisbane, Queensland, Australia [6]. This bridge holds the title

of the world's largest hybrid tensegrity bridge at 470 meters in length. The bridge structure

comprises 18 structural steel bridge decks, 20 structural steel masts and 16 horizontal masts.

These elements make up the rigid objects in the tensegrity structure. The tension objects

are the complex cabling system comprising 80 main galvanized helical strand cables and 252

superduplex stainless steel cables. The bridge is a hybrid tensegrity system due to the 72

precast concrete deck slabs which sit on the main bridge deck and are secured to the steel

structure and each other by in-situ concrete stitch pours.

Another example for tensegrity inspired architecture is the proposed Filamentosa

building project (Figure 1.5). Tristan D'estree Strek, one of the architectural minds behind

this project, hopes to design and build skyscrapers whose tensegirty based skeletons could
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adapt to their environments. His work at ORAMBRA [20], the O�ce for Robotic Architec-

tural Media and The Bureau for Responsive Architecture, aims to use the responsive nature

of tensegrity in order to reduce energy uses in buildings. The tensegrity skeleton seen in

Figure 1.5 would allow for far lighter, less resource intensive buildings, which are easier to

construct and maintain.

More information on the uses of tensegrity in architecture and design can be found

in [7].

1.4.2 Tensegrity in Art and Design

Figure 1.6: The Snelson Needle

Figure 1.7: A 3-strut tensegrity hammock

Kenneth Snelson, an American sculptor and artist, has long been working with tenseg-

rity structures. He was one of the �rst to build the systems that Fuller described in his 1947

talk, and has since gone on to make a large variety of tensegrity sculptures. Figure 1.6 is his

famous Snelson's Needle (sometimes know as Snelson's Tower), an 18 meter high tensegrity

tower connected to the ground in only three points. While swaying with its environment this
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tower manages to stay upright without having any of the rigid objects connected to each

other.

Tensegrity structures have also been adopted to help us relax. The 3 strut tensegrity

hammock shown in Figure 1.7 is a great example of everyday uses for tensegrity structures.

1.4.3 Tensegrity in Biological Modeling

Figure 1.8: A physical tensegrity
model of the human
body.
c©2006, Tom Flemons
(http://www.intensiondesigns.com/),
reproduced with permis-
sion

Figure 1.9: A physical tensegrity
model of a foot.
c©2006, Tom Flemons
(http://www.intensiondesigns.com/),
reproduced with permis-
sion

Tensegrity modeling is used in physiology. As is discussed in [13], [16], [17], and [19]

the fascial network can be modeled as the tensional constituent of a tensegrity system within

the human body. Bones and hydrostatic pressure are modeled as the compressive elements

of this system. Tom Flemons and Graham Scarr have built interesting physical models of
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tensegrity forces in the human body (see �gures 1.8, 1.9, and 6.1).

1.4.4 Tensegrity in Space Exploration

Figure 1.10: A Design for a tensegrity casing for a probe to Titan. c©Vytas SunSpiral [21],
reproduced with permision

NASA has been experimenting with using an accentuated tensegrity icosahedron as

the casing and transportation system for probes destined to explore the surface of Titan,

one of Saturn's moons. Sunspiral et al. point out that, due to the relatively sparse density

of these objects, tensegrity casings are cheaper and more easily shipped in space; moreover

their structure and design allow them to absorb a great deal of impact force and then return

to a stable state [21]. The payload is suspended in the middle of the icosahedron to protect

it from impacts. The system they propose (see �gure 1.10) has the icosahedron using its

six rods as legs, powered by motors built into the elastics, allowing for a more robust and

versatile transportation system than the traditional wheeled rover.
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1.5 Contributions

This thesis lays the foundation for �exible tensegrity modeling software that can be used in a

variety of applications. Though tensegrity modeling software has been used in other applica-

tions, at the time of this project there was no publicly available software for such modeling.

Two months prior to the publication of this paper NASA released the NTRT, or NASA

Tensegrity Robotics Tookit, a collection of C++ and MATLAB software modules for the

modeling, simulation, and control of Tensegrity Robots, at http://ti.arc.nasa.gov/tech/asr/intelligent-

robotics/tensegrity/ntrt. We are contributing code to NTRT in ongoing and future work.

The following contributions are made:

1. A �exible approach simulating a wide variety of tensegrity systems. In particular, a

�exibility in de�ning the types of objects that can be used as constituents of tensegrity

systems (chapter 2), and a �exibility in simulation and optimization methods (section

3.1). An object de�nition includes:

• A list of �xed parameters that de�ne the attributes of the object.

• A list of variable parameters that de�ne the state space of the object.

• A potential energy function that uses the �xed and variable parameters to deter-

mine the potential energy of the object in each state.

2. Design and implementation of a hill climbing algorithm to �nd minimal energy states

of simulated tensegrity systems (Chapter 3). Execution of this hill climbing algorithm

can optionally include application of adaptation rules as discussed in chapter 4.

3. Experimental results and validation for simulations of selected tensegrity systems.

(Chapter 5)

In summary, the main contribution of this thesis is a �exible framework for exploring

the properties of tensegrity structures. The exploratory properties of this framework have
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already yielded an interesting and unexpected insight, namely that the tensegrity icosahedron

has an alternative stable state (�gure 1.11). Figure 1.11a shows the stable state usually

produced by the potential energy minimization algorithm of Section 3.2.2. An alternate

stable state produced by the energy minimization algorithm (�gure 1.11b) was validated by

constructing it physically to demonstrate that it is stable (�gure 1.11c). We constructed

this model by starting with a physical model in the regular stable state shown in �gure

1.1a; transforming this into the state shown in Figure 1.11c required three of the elastics

to be unhooked and reattached, but otherwise there was no change to the system or its

connectivity. This new stable state was an interesting and exciting discovery for us, and as

far as we are aware has not been reported in the literature. The unexpected appearance of

this new con�guration in the simulation was �rst thought to be a bug in the algorithm. After

no bug could be detected, the unexpected result was veri�ed by constructing the physical

model shown in 1.11c. This physical construction was shown to be a stable state that is

resilient and capable of withstanding outside forces (�gure 1.12).This initial distrust of the

results of the algorithm highlights the need for validation of the algorithm. Test suites used

for the purposes of validating the algorithm are described in chapter 5.

(a) (b) (c)

Figure 1.11: Discovery of an alternate stable state for the tensegrity icosahedron: (a) The
expected, and usual, result of the optimization algorithm. (b) A simulated
result showing the alternate stable state for the tensegrity icosahedron. (c) A
physical model of the alternate stable state for the tensegrity icosahedron.
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Figure 1.12: The alternate stable state with weight loading.
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Chapter 2

Modeling Rod and Elastic Tensegrity Systems

Here we describe our approach to modeling tensegrity systems. Our focus is on modeling

the e�ects of compressive and stretching forces within the tensegrity systems.

De�nition. An object is a part of a tensegrity system. Compound objects are those ob-

jects which are made by combining several other objects, while atomic objects are objects

which cannot be broken into sub objects. Note that a tensegrity system as a whole is a com-

pound object, though not all compound objects are tensegrity systems. Section 2.1 describes

the components that de�ne an object.

This chapter culminates with a description of how to model a generic rod and elastic

tensegrity system (section 2.7). To de�ne this broad class of compound objects we �rst

de�ne some atomic objects that comprise it (elastics in section 2.3 and rods in section 2.4)

and present examples of simpler compound objects (rubber band model in section 2.5 and

the tensegrity icosahedron in section 2.6). For each object, in sections 2.2 to 2.7, we describe

how to de�ne the set of possible states, how to �nd the potential energy of each state, and

how to �nd the state(s) that minimize potential energy.
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2.1 Four Components that De�ne an Object

In this section we list the components required to de�ne an object.

1. Fixed Parameters:

These are the parameters of the object that remain constant in every state of the

object.

2. State Vector and an Associated Interpretation:

The state vector describes the possible states that the object can be in. The interpre-

tation de�nes a mapping from the state vector to the state it represents.

3. Potential Energy Function:

The potential energy function is denoted EP (VO), whereO is the object we are modeling

and VO is the current state vector of the object. This function uses the �xed parameters

of the object and parameters in the state vector to determine the potential energy

stored in the given state of the object.

4. Minimizing Potential Energy:

This component de�nes how to �nd states which have minimal potential energy. In

simple systems closed form solutions may be given (sections 2.2, 2.3, 2.4, 2.5). In more

complex systems closed form solutions are di�cult to derive (sections 2.6 and 2.7); in

this case the state space search algorithms presented in chapter 3 can be applied.

2.1.1 Remarks on States and State Vectors

There is a clear distinction between the states of the object and the state vectors of the

object. Each state vector can be interpreted to a state of the object but this mapping

depends on the interpretation we de�ne. De�ning an appropriate interpretation and state

vector for a system is challenging.
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The ideal state vector provides a bijection between states and state vectors. This

provides us with a canonical representation for the states of the object, and makes state

space searching heuristics more accurate and e�cient. Further this bijection helps us when

doing mathematical proofs in regards to �nding minimal energy states. An example of such

a proof can be seen in section 2.5.4.

De�nition. An isometry is a distance-preserving map: the relative distances between points

in the space are kept constant (i.e. rigid motion is permitted). Two states are isomorphic

if there exists an isometry mapping one to the other.

Since we are calculating potential energy in the absence of any external forces, and

rigid motion does not change potential energy, any two isomorphic states have the same

potential energy level. Because we are only interested in the potential energy of the systems

we are studying, any two states which are isometries of each other will be treated as the same

state. Ideally, we would like our interpretation of state vectors to map isomorphic states to

the same state vector. This reduces the search space and further aids in proof structures.

An example of such an ideal state vector is given in section 2.2.2.
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2.2 Linear Springs

Figure 2.1: A spring.

In this section we preset the modeling of ide-

alized linear springs. A linear spring can be

stretched or compressed arbitrarily far and

still act linearly as de�ned by Hooke's law:

F = −K(S) · d(S) (2.1)

In equation (2.1) d(S) is the change in length

of S, the amount by which the spring has

been stretched or compressed. This value is negative when the spring is compressed and

positive otherwise. This equation is used in Section 2.2.3 to de�ne the potential energy of a

state of the spring.

2.2.1 Fixed Parameters of a Spring

A spring S is de�ned by its spring constant K(S). This value de�nes how resistant the

spring is to being compressed or stretched. The length of the spring is not required as a

�xed parameter because the linearity assumption implies that length does not have an e�ect

on the potential energy of the spring.

2.2.2 State Vector of a Spring

The state of a spring S, is de�ned by the displacement d(S). Thus the state vector is

one-dimensional.

We now use springs to give a more concrete example of isomorphic states, as intro-

duced in section 2 de�nition 2.1.1. The state vector of a spring contains one value: the

stretch, or displacement, applied to the spring. Let S be a spring of length 5 in state A with
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endpoints [0, 0, 0] and [0, 0, 7]. The state vector VA = [2] represents the spring S in state A.

Let state A′ be the rotation of the spring in state A by ninety degrees in the x − z plane.

The spring now has endpoints [0, 0, 0] and [7, 0, 0], and so the state vector VA′ = [2] = VA.

In this example the state vector representation chosen preserves the information relating to

potential energy and maps isomorphic states to the same state vector.

2.2.3 Potential Energy of a Spring

The potential energy of a linear spring S, with spring constant K(S), in a state de�ned by

a displacement of d(S) (as given in [12]) is

EP (VS) =
1

2
·K(S) · d(S)2. (2.2)

2.2.4 Minimizing Potential Energy of a Spring

By inspection, we can see that equation (2.2) is minimized when the absolute value of d(S)

is minimized. Hence, the state in which the spring has minimal potential energy is the one

in which d(S) = 0.
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2.3 Elastics

Figure 2.2: An unstretched
elastic.

We de�ne elastics as linear springs that do not push when

compressed but do exert force when stretched.

2.3.1 Fixed Parameters of an Elastic

An elastic E is de�ned by its elasticity constant K(E).

2.3.2 State Vector of an Elastic

The state of an elastic E is de�ned by the change in length

(displacement) it has been subjected to. We denote this by

d(E).

2.3.3 Potential Energy of an Elastic

Since elastics are a type of specialized spring, we derive from equation (2.2) that the potential

energy function of an elastic E is

EP (VE) =
1

2
·K(E) ·max(0, d(E))2. (2.3)

2.3.4 Minimizing Potential Energy of an Elastic

By inspection, to minimize the above equation we must make d(E) ≤ 0.



2.4. RODS 20

2.4 Rods

We model a rod as an idealized solid structure which cannot be compressed or stretched.

2.4.1 Fixed Parameters of a Rod

A rod R is de�ned by its length, denoted L(R).

2.4.2 State Vector of a Rod

Rods have no varying state, so the state vector of a rod is empty.

2.4.3 Potential Energy of a Rod

Since the rod cannot be compressed or stretched, it cannot store any potential energy. The

potential energy of the rod is always zero.

2.4.4 Minimizing Potential Energy of a Rod

Because a rod does not store any energy there is nothing to minimize.

This concludes our discussion of three types of atomic objects: linear springs, elastics,

and rods. Next we describe the modeling of compound objects: the rubber band model, the

tensegrity icosahedron, and the rod and elastic models.
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2.5 Rubber Band Model

Figure 2.3: A state of the
rubber band
model.

Here we model a rubber band stretched around a set of �xed

points forming a convex hull. Each segment of this convex

hull is modeled as an elastic (as de�ned in section 2.3). The

rubber band system is interesting because as we see in section

2.5.4 it has a closed form solution for �nding minimal potential

energy states, a contrast to the rod and elastic models de�ned

in section 2.7.

2.5.1 Fixed Parameters of the Rubber Band Model

The rubber band B has 2n+ 2 �xed parameters:

• n 2D points P0 through Pn−1 around which the rubber band is stretched, stored as 2n

values.

• a value K(B) representing the elasticity constant of the band.

• a value N(B) representing the natural length of the band.

Let the edge Ei denote the part of the rubber band which lies between the points Pi

and Pi+1 mod n. These edges are modeled as separate elastics.

2.5.2 State Vector of the Rubber Band Model

The states of the model are the various ways in which the rubber band B can be stretched

around the n points. Hence a state is de�ned by how much of the natural length of the band

lies in each edge Ei. The natural length given to an edge Ei is denoted by N(Ei).

A state is said to be legal if
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n−1∑
i=0

N(Ei) = N(B). (2.4)

The following de�nition of the state vector of the rubber band model has been crafted

such that:

• every state vector represents a legal state,

• there is no redundancy of represented states.

The state vector of the rubber band model is an n−1 dimensional vector V with real

non-negative values.

To interpret this vector we de�ne a new n dimensional vector V ′ as follows:

V ′i =

 Vi 0 ≤ i ≤ n− 2

1 i = n− 1
(2.5)

The natural length attributed to each edge Ei is:

N(Ei) =
V ′i

Σ(V ′)
·N(B) (2.6)

where Σ(V ′) denote the sum of the entires of V ′.

Proposition 1. This construction of a state vector provides a bijection between state vectors

and states of the rubber band system under the above interpretation.

Proof. Let us start by proving the legality of the state that is interpreted from a state vector.
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Let V be a given state vector and V ′ the augmented vector. Then:

n−1∑
i=0

N(Ei) =
n−1∑
i=0

(
V ′i

Σ(V ′)
·N(B)

)
=
N(B)

Σ(V ′)
·
n−1∑
i=0

(V ′i )

=
N(B)

Σ(V ′)
· Σ(V ′)

= N(B).

Hence the state given by this interpretation is indeed legal.

To show uniqueness, let us assume that there are two distinct state vectors V and W

with augmented vectors V ′ andW ′ which lead to the same state. We will use this assumption

to derive a contradiction.

Since V 6= W we have from the de�nition of the augmented array that V ′ 6= W ′.

Hence for some 0 ≤ i ≤ n − 1 we have that V ′i 6= W ′
i . However, by the assumption that V

and W lead to the same state, we have

V ′i
Σ(V ′)

=
W ′
i

Σ(W ′)
. (2.7)

Since V ′i 6= W ′
i , equation (2.7) implies that Σ(V ′) 6= Σ(W ′) (observation 1). By the assump-

tion that V and W lead to the same state we have that

V ′n−1
Σ(V ′)

=
W ′
n−1

Σ(W ′)
.

By the construction of the augmented vector, V ′n−1 = W ′
n−1 = 1. Thus

1

Σ(V ′)
=

1

Σ(W ′)
.
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Hence Σ(V ′) = Σ(W ′), but this contradicts observation 1. Thus we conclude that

our assumption was incorrect; no two distinct state vectors V and W can lead to the same

state.

Remark 1. Note that this construction has a useful linearity property. If N(Ei) = c ·N(Ej)

for some constant c, then this is re�ected in the augmented array V ′ as V ′i = c · V ′j .

2.5.3 Potential Energy of the Rubber Band Model

We model the sections of the rubber bands as individual elastics and treat the potential

energy of the rubber band as the sum of the potential energies of the individual elastics.

De�nition. The stretch in an edge Ei is the di�erence between the length of Ei and N(Ei)

and is denoted by d(Ei):

d(Ei) = |Pi − P(i+1) mod n| −N(Ei). (2.8)

Using equation (2.3), the potential energy of the rubber band model is

EP (B) =
1

2
·K(B) ·

n−1∑
i=0

max(0, d(Ei))
2 (2.9)

2.5.4 Minimizing Potential Energy of the Rubber Band Model

Theorem 1. If the potential energy of the elastic band B is not 0 then equation (2.9) is

minimized when d(Ei) = d(Ej) ∀0 ≤ i, j ≤ n− 1.

Proof. Note �rst that if the stretch of any edge El is negative, the excess natural length

attributed to El can be redistributed throughout the system, hence lowering the energy of

the rest of the system without raising the potential energy of El. This assertion relies on

the fact that the potential energy of the model is greater than 0 and as such there must
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exist an edge with positive stretch. We can now assume without loss of generality that

d(El) ≥ 0 ∀0 ≤ l ≤ n− 1.

We will now use proof by contradiction. Assume that there is a state which has

minimal energy in which stretch is not evenly distributed. Then there exists a pair i, j with

0 ≤ i, j ≤ n − 1 such that d(Ei) 6= d(Ej). The combined potential energy of these edges is

then:

EP =
1

2
·K(B) · (d(Ei)

2 + d(Ej)
2)

To minimize the above equation we need only minimize d(Ei)
2 + d(Ej)

2.

Without loss of generality, assume d(Ei) < d(Ej) and de�ne x such that d(Ej) =

d(Ei) + x. Note that:

d(Ei)
2 + d(Ej)

2 = d(Ei)
2 + (d(Ei) + x)2

= 2 · d(Ei)
2 + 2 · d(Ei) · x+ x2

> 2 · d(Ei)
2 + 2 · d(Ei) · x+ x2

2

= 2 ·
(
d(Ei)

2 + d(Ei) · x+ x2

4

)
= 2 ·

(
d(Ei) + x

2

)2
Therefore we have proven that evening out the stretch between edges Ei and Ej so

that d(Ei) = d(Ej) results in a lower combined potential energy. Since evening out the

stretches of edges Ei and Ej does not change anything else in the system, this operation

lowers the potential energy of the entire system. This shows there cannot be a state which

has minimal potential energy in which stretch is not evenly distributed.
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2.6 The Tensegrity Icosahedron Model

Figure 2.4: The tensegrity
icosahedron
shown in a
state of mini-
mal potential
energy

This model consists of 6 rigid rods R0 through R5, which are

the compression objects in this system. Each rod Ri has two

end points R1
i and R

2
i de�ned in R3 space. Let the list of these

points be denoted by PointList.

The model also contains 24 elastic objects which are the

tension objects in this system. An elastic denoted EP2
P1

connects

elements P1 and P2 in the PointList. Let EdgeSet be the set

of these elastics.

The following notation de�nes the 24 elastic objects in

the tensegrity icosahedron. Letting 0 ≤ i ≤ 5, every elastic

object EP2
P1
∈ EdgeSet belongs to one of the following four

categories:

• E
R2

(i+1) mod 6

R2
i

,

• E
R1

(i+2) mod 6

R1
i

,

• E
R2

(i−2) mod 6

R1
i

,

• and E
R2

(i−1) mod 6

R1
i

.

This de�nes the connectivity of elastics seen in �gure 2.4.

2.6.1 Fixed Parameters of the 6 Rod Tensegrity Model

Each rod Ri has a length denoted by L(Ri). Further each edge EP2
P1

has a natural length,

denoted by N(EP2
P1

), and an elasticity value, denoted by K(EP2
P1

).
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2.6.2 State Vector of the Tensegrity Icosahedron

The states of the tensegrity icosahedron are the various positions in which the rods could be

held. The state vector use for this model is described in section 2.7.2.

2.6.3 Potential Energy of the Tensegrity Icosahedron

Since rods are de�ned to have no potential energy (section 2.4), the potential energy of the

system is the sum of the potential energies of each elastic.

The stretch of an elastic EP2
P1
, as de�ned in section 2.3, is

d(EP2
P1

) = |P1 − P2| −N(EP2
P1

). (2.10)

Using equation 2.3, from section 2.3, we have that the potential energy of the system

is:

EP =
∑

E
P2
P1
∈EdgeSet

1

2
·K(EP2

P1
) ·max(0, d(EP2

P1
))2 (2.11)

2.6.4 Minimizing Potential Energy of the Tensegrity Icosahedron

The systems described up until now have had closed form solutions for minimizing potential

energy. Such a solution is not known for the tensegrity icosahedron. Nor is one known for

the more general rod and elastic model (section 2.7). Since the tensegrity icosahedron is an

example of a rod and elastic model, we will use the same methods to �nd a state of minimum

potential energy. This is discussed in section 2.7.4.
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2.7 Rod and Elastic Models

Figure 2.5: A Tensegrity
model made
entirely of rods
and elastics.

Here we present an approach for modeling tensegrity systems

that are made up of varying con�gurations of rods connected

by elastics. Examples of such tensegrity systems include the

tensegrity icosahedron discussed in section 2.6 and the system

shown in �gure 2.5.

2.7.1 Fixed Parameters of the Rod and Elastic Model

This system has the following �xed parameters:

• Number of rods in the system,

• Length of each rod,

• Number of edges in the system,

• Natural length of each edge,

• Elasticity of each edge,

• A connection set describing which edges are connected to

which rods.

2.7.2 State Vector of the Rod and Elastic Model

The particular state vector of a rod and elastic system will vary from system to system, but

it must represent the current positions of the rods in three space. Ideally these positions

could be represented in such a way that there is a bijection between the states of the system

and state vectors.
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Here we present a representation that applies to any rod and elastic model, but does

not have the bijection property mentioned above. The general state vector includes �ve

parameters for each rod: [x, y, z, ρ, φ]. The �rst three values are the x, y, and z co-ordinates

of the center of the rod. The last two values represent the orientation of the rod as two

rotations ρ and φ. These rotations are applied relative to the z-axis: ρ is the rotation in the

z − y plane and φ is the rotation in the x− y plane.

The direction vector D(R) of each rod R can be attained by rotating the z-axis,

de�ned by [0, 0, 1], appropriately. Speci�cally:

D(R) =


cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0

0 0 1




1 0 0

0 cos(ρ) −sin(ρ)

0 sin(ρ) cos(ρ)




0

0

1

 (2.12)

Hence:

D(R) =


sin(φ) · sin(ρ)

−sin(ρ) · cos(φ)

cos(ρ)

 (2.13)

Note that since D(R) was derived by applying rotations to a vector of magnitude

1, |D(R)| = 1. Restricting ρ ∈ [0, π] and φ ∈ [0, 2π] describes all possible orientations

of the rod. We chose not to restrict the rotations; though this creates redundant state

representations, it leads to a continuous potential energy function, which works better with

the hill climbing algorithm described in section 3.2.2.

The state vector of such a model under the above interpretation has m · 5 entries

denoted V0 to V5m−1, where m is the number of rods in the system.

Given a system M the state represented by a state vector V using the above inter-

pretation will be denoted as µM(V ).
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2.7.3 Potential Energy of the Rod and Elastic Model

The potential energy of the system is the sum of the potential energies of each elastic object.

The special case of the tensegrity icosahedron was treated in section 2.6.3, this treatment

generalizes here.

The stretch of an edge EP2
P1
, as de�ned in de�nition 2.5.3, is

d(EP2
P1

) = |P1 − P2| −N(EP2
P1

). (2.14)

Letting EdgeSet be the list of all edges in the system and using equation 2.3 we have that

the potential energy of a system M in state V is:

EP (µM(V )) =
∑

E
P2
P1
∈EdgeSet

1

2
·K(EP2

P1
) ·max(0, d(EP2

P1
))2 (2.15)

The above equation is the potential energy as a function of the state of the system. We can

also de�ne potential energy as a function of the state vector of the system. In order to do so

we number the two end points of a rod. We do this using the direction vector D(R) de�ned

in equation 2.13 and the center of the rod, denoted C(R), de�ned as

C(R) =


x

y

z

 (2.16)

We de�ne the �rst endpoint of the rod R to be C(R)−D(R) · L(R)

2
and the second

to be C(R) +D(R) · L(R)

2
. We denote the jth rod in the system as Rj, for 0 ≤ j ≤ m− 1.

Let E
Rl

k

Rj
i

∈ EdgeSet be an elastic connecting the ith point of the jth rod to the kth

point of the lth rod.

Below, V is a state vector as de�ned in section 2.7.2 and F is a function that computes
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the value of the nth co-ordinate of the ith point on the jth rod. Note that i ∈ {1, 2}, and, for

rods in R3, n ∈ {x, y, z}.

F (V, i, j, n) =



V5·j + (−1)i+1 · sin(V5·j+4) · sin(V5·j+3) ·
L(Rj)

2
if n = x

V5·j+1 − (−1)i+1 · cos(V5·j+4) · sin(V5·j+3) ·
L(Rj)

2
if n = y

V5·j+2 + (−1)i+1 · cos(V5·j+3) ·
L(Rj)

2
if n = z

(2.17)

Using equation 2.17 we can now de�ne the potential energy function of the state via

its state vector.

EP (V ) =
∑

E
Rl
k

R
j
i

∈EdgeSet

1

2
·K
(
E
Rl

k

Rj
i

)
·max

0,

√ ∑
n∈{x,y,z}

(F (V, i, j, n)− F (V, k, l, n))2 −N
(
E
Rl

k

Rj
i

)2

(2.18)

2.7.4 Minimizing Potential Energy of the Rod and Elastic Model

A closed form solution is not known for �nding the minimal energy states of a rod and

elastic model. Instead, a state space searching algorithm can be used. Various algorithms

for minimizing the potential energy of rod and elastic models are presented in the next

chapter.
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Chapter 3

Potential Energy Minimization Algorithms

This chapter contributes a state space search algorithm to �nd the stable state of a tensegrity

system. To de�ne a state space search algorithm we use a sampling algorithm (section 3.2)

to de�ne our search space, and a minimization algorithm (section 3.3) to de�ne our path

through the search space. Often this process entails conducting state space searches of the

system's constituent atomic objects.

De�nition. The state space S(O) of an object or system O is the set of all possible physical

positions O can be in. This space is sampled by our sampling algorithm to create a discretized

sample state space.

Each system O has a potential energy function that maps each point in S(O) to the

potential energy of the system in that con�guration.

3.1 Flexible Software for Scienti�c investigation

The main purpose of the tensegrity modeling framework described in this thesis is for scien-

ti�c investigation. To this end, the implementation of the framework must allow for great

variability of use and ease of customization and expansion. As discussed in [9] it is important

to realize that with scienti�c software, the software is not the end product. The end product
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is the research that can be done with the software.

The following features of our tensegrity modeling framework achieve the ease of cus-

tomization that is required of scienti�c exploratory software:

• The hierarchical object de�nition in chapter 2 allows for easy integration of other

objects into the system.

• State �les contain all information needed to generate objects. This allows for easy and

convenient generation of a variety of models without need to modify the code. An

example of a state �le is given in appendix E.

• There is a clear separation between object de�nition, object sampling, and optimization

algorithm. The hill climbing optimization algorithm presented in section 3.3 requires

a sampling algorithm. The clear separation between these algorithms allows the user

to easily replace either the sampling algorithm or optimization algorithm.

3.2 De�ning the Discretized Search Space

As per de�nition 3 in section 3, the state space S(O) of any system O is in�nite and con-

tinuous: physical positions are represented by real values. In order to search this space we

need to sample it to discretize the space. We construct the discretization by de�ning a �nite

set of positions that can be reached from a given position in a single simulation step.

De�nition. The single step space of an object is a set of positions that, in an appropriate

metric, are close to the original position.

Each sampling algorithm takes a single state as input and produces a single step

state space as output. This set of sampled states is comprised of states which, given an

appropriate metric, are within a given radius of the initial state. For our purposes we want

a sampling algorithm to have the following properties.
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• Return a relatively small number of samples.

This property is important as the computation time of our hill climbing algorithm

(section 3.3) grows linearly with the size of the sample set.

• Sample evenly about the given state.

Our hill climbing method is most likely to yield optimal results if we sample evenly in

every direction. When more sample points are included in the single step state space,

more directions in the sample space are checked by the hill climbing algorithm; this

increases the likelihood that the algorithm �nds the correct direction.

• Provide the ability to control the radius of the sample space.

The hill climbing algorithm described in section 3.3 progressively decreases the radius

of the single step state space. This allows the algorithm to begin with large steps

towards an optimum state, and later re�ne this result with smaller steps.

In order to de�ne an e�ective and e�cient state space search of a tensegrity system, we

de�ne two sampling algorithms that enumerate the ways in which the rods in the system can

move. Section 3.2.1 de�nes a sampling algorithm which moves rods by �xing one endpoint

and allowing the other to shift freely, while section 3.2.2 de�nes a sampling algorithm which

allows both endpoints to move simultaneously.
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3.2.1 Endpoint Sampling Algorithm

We de�ne the single step state space of the system by moving one endpoint of a rod at a

time. This movement de�nes a sphere on which the endpoint can move; this motion does

not a�ect the spatial positioning, or, by extension, the potential energy, of the rest of the

system. More speci�cally if we let P be the end point of a rod R, then the sample space of

P is a sphere centered at the other endpoint of the rod R with radius L(R), as illustrated in

�gure 3.1. The local potential energy at this point is de�ned by the tension on the elastics

connected to P .

Figure 3.1: The sample space of an endpoint
of a rod. The blue point (point
P ) is being moved and the four
white points are connected to the
blue point via elastics. The sphere
represents the sample space and
is colour coded to show the local
potential energy, derived from the
tension in the elastics connecting
P to the four white points.

Figure 3.2: The discretized single
step sample space of an
endpoint.

This sampling algorithm has two parameters, the degree with which the rod is tilted

(α), and the number of points to sample (n). The degree with which the rod is tilted de�nes

how close the states in the single step sample space are to the original state. This is our
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single step space radius.

Below are the steps of the endpoint sampling algorithm, as it is run on a rod R with

endpoint P and parameters α and n:

Step 1 Pick an arbitrary direction ~d0 perpendicular to the rod R

Step 2 Compute the location of P ′, which is the new location of the endpoint P if the rod is

rotated by α in the direction ~d0 ( See �gure 3.3). P ′ is returned as the �rst sample

point.

Q

 

P 

P’ 

α 

L(R) 

L(R) 

Figure 3.3: Rotating the rod by α.

The position of the �rst sample point P ′ is given by the
following formula:

P ′ =

P +
~d0

|~d0|
· L(R) · tan(α)−Q

|P +
~d0

|~d0|
· L(R) · tan(α)−Q|

∗ L(R) +Q (3.1)

In the above equation Q is the opposite endpoint to P
on the rod.

Step 3 Generate the remaining n − 1 sample points by rotating the point P ′ by an angle of

2π
n
about the rod. Repeat this n− 1 times. (See �gure 3.2)

Experimentally, this sampling method was found to yield good hill climbing (section

3.3) results on the tensegrity icosahedron, but the hill climbing algorithm failed to �nd

globally minimal potential energy states in more general tensegrity systems. For example

�gure 3.4 shows the result of this algorithm applied to a fractal tensegrity icosahedron.
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Figure 3.4: The output of hill climbing using the endpoint sampling algorithm on a fractal
system. The small green rod above could be moved downward to reduce potential
energy, but the endpoint sampling algorithm does not include that as an option.

This failure of the hill climbing algorithm to �nd a globally optimal state can be seen

as stemming from the fact that the sample space generated by moving one rod endpoint at

a time does not allow for a rod to move sideways or along its axis. The sampling approach

presented in section 3.2.2 �xes this sampling limitation and allows the hill climbing algorithm

to �nd globally optimal solutions for the system in �gure 3.4 as well as for most of the systems

it was tested on. Details on the testing of these sampling algorithms is presented in chapter

5.
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3.2.2 Rod Sampling Algorithm

In order to create a more thorough sampling of the state space we now de�ne a sampling

algorithm that considers the ways each rod can move, as opposed to the ways a rod endpoint

can move.

The rod sampling algorithm has the following parameters:

• A value n de�ning coarseness of the sampling. This a�ects the number of directions

of rod displacement and rotation. Speci�cally the number of samples generated is

(n+ 1) · (n+ 3) + 2n.

• An angle α de�ning the angle of rod rotation.

• A value t de�ning the distance of rod translation.

Below are the steps of the rod sampling algorithm, illustrated in �gure 3.5:

Step 1 Pick an arbitrary direction perpendicular to the rod. Let this be ~d0.

Step 2 For i ∈ [1..n−1] rotate ~d0 by
2π · i
n

, and de�ne ~di to be the resultant vector. This step

is equivalent to Step 3 in section 3.2.1.

Step 3 Translate the rod by t in each of the following directions (�gure 3.5b):

• Positively along the axis of the rod.

• Negatively along the axis of the rod.

• In each of the ~di directions.

Step 4 For each ~di apply a rotation perpendicular to ~di of α degrees to each rod generated in

Step 3, with the midpoint of the rod as the center of the rotation (�gure 3.5c).

Step 5 For each endpoint of the original rod, rotate the rod by α degrees in the direction of

each ~di (�gure 3.5d).
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Remark 2. Note that Step 5 generates all the positions that the endpoint sampling

algorithm generates for this rod. Hence the rod sampling algorithm provides a strict

superset of the positions provided by the endpoint sampling algorithm.

(a) Original Rod (b) n+ 3 sample positions

(c) (n+ 1) · (n+ 3) sample positions (d) (n+1) ·(n+3)+2n sample positions

Figure 3.5: (a) A single rod to which the rod sampling algorithm is to be applied. The
coarseness parameter n is set to 5 in this example. (b) The �rst step of the
sampling procedure is to create n+2 new rod positions by translating the original
rod by t along the axis of the rod and in n evenly spaced perpendicular directions
(Step 3). (c) The n+3 rod positions are then rotated by α about their midpoints
in each of the n directions resulting in (n+ 1) · (n+ 3) sample positions (Step 4).
(d) Lastly the original rod is rotated by α about each of its endpoints in each of
the n directions, adding another 2n sample positions (Step 5).

The rod sampling algorithm allows the hill climbing algorithm to �nd minimal energy
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states in a vast majority (99%) of test cases (chapter 5). The major concern of this sam-

pling algorithm is that it produces far more samples than the endpoint sampling algorithm,

meaning that the hill climbing algorithm takes signi�cantly more execution time. This will

be discussed in Chapter 5.
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3.3 Hill Climbing Algorithm

In order to �nd a minimal potential energy state of a system, we apply a hill climbing

algorithm to the state space de�ned by the sampling algorithms given in section 3.2. The

hill climbing algorithm presented in this section is not guaranteed to reach a global minima

in all cases, but the validation shown in chapter 5 show that it reaches global minima in a

large majority of cases. Hill climbing methods are more generally discussed in section 2.6

of [14].

The hill climbing algorithm has the following parameters:

• A set of parameters dictated by the sampling algorithm. This includes variables de�n-

ing the radius of the single step sample space, and a scaling factor µ for reducing this

radius.

• An accuracy value σ for estimation purposes. This value determines how close two

numbers must be to be considered equal (i.e. x = y ⇐⇒ |x− y| < σ).

• A starting state for the system.

The hill climbing algorithm runs as follows:

Step 1 Set the base state to be the starting state.

Step 2 Use the sampling algorithm to generate a single step state space S for the base state.

Step 3 If S is empty terminate the process.

Step 4 For each state P ∈ S

• If the potential energy at P is lower than the potential energy of the base state

by at least the accuracy parameter σ, set the new base state equal to P .
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Step 5 If the base state has not changed in this iteration, reduce the radius of the single step

space by a factor of µ and restart the algorithm. In the next iteration the tested states

are closer to the base state. Note that if the sampling radius is smaller than σ it is

considered to be equal to 0; in this case the sampling algorithm returns an empty set,

so the hill climbing algorithm terminates in Step 3.

It is important to note that this algorithm does not check for collisions at any point,

as such it allows for edges and rods to pass through each other. This feature allowed the

alternate state presented in section 1.5 to be found, as this con�guration requires 3 elastics

to pass through each other. It is also important in the large scale validation suite presented

in section 5.2.
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The following �owchart provides a summary of the hill climbing algorithm.
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Bellow we show that the hill climbing algorithm given here terminates. A general

discussion about termination of hill climbing algorithms is given by Johnson and Jacobson [5].

Theorem 2. The space we are sampling has the requisite properties for the hill climbing

algorithm to terminate.

Proof. Note �rst that if the algorithm fails to lower the potential energy of the system then

a smaller radius is used for the sampling algorithm (Step 5). When this radius approaches

zero, within the error margin de�ned by the approximation variables, the sampling set is

empty and the algorithm terminates (Step 3). Therefore if the algorithm fails to lower the

potential energy of the system a su�cient number of times it will terminate.

It remains to be proved only that the algorithm cannot continue in�nitely reducing

the potential energy.

Let M be an arbitrary starting con�guration of a tensegrity system. This starting

con�guration has a �nite potential energy. Let EP (M) = c. Each step in the algorithm that

reduces potential energy does so by at least σ; the user provides this accuracy value as input

to the algorithm. Since the user must request �nite accuracy, σ must be greater than zero.

Therefore the maximum number of energy decreasing steps in the algorithm is
c

σ
. Since this

is a �nite number, the algorithm cannot continue in�nitely reducing the potential energy

and so it must terminate.

3.3.1 Complexity Analysis

Bellow we analyze the hill climbing algorithm presented in section 3.3, and ascertain the

complexity of the algorithm.

The �rst step of the algorithm is to set a pointer and as such takes O(1) time. The

second step is to create a sampling of the base state. The complexity of this step depends on

the sampling algorithm, using the rod sampling algorithm we generate (n+ 1) · (n+ 3) + 2n,
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or O(n2), sample positions for each rod, where n is the resolution of the sampling algorithm.

Therefore step 2 of the algorithm takes O(m · n2) time, where m is the number of rods in

the system. Step 3 checks if the sample set created in step 2 is empty, and therefore has

complexity O(1). Step 4 checks the potential energy in each sample state created in step 2.

It does this by summing the potential energy of each edge in the system in each sampled

con�guration. Letting the number of edges in the system be denoted e we have that step 4

runs in O(m·n2 ·e) time. Lastly step 5 makes one comparison and a multiplication operation,

and is therefore of complexity O(1). Overall each iteration of steps 1-5 takes O(m · n2 · e).

Each iteration of steps 1-5 either reduces the potential energy of the system, or reduces

the radius of the sample space. Therefore the hill climbing algorithm runs steps 1-5 at most

c

σ
+
r

µ
times, where c is the starting potential energy of the system, σ is the minimal amount

by which each step reduces the potential energy of the system, r is the starting radius of the

sample space, and µ is the amount by which the radius is reduced each time the sampling

radius is reduced. the �nal complexity of the algorithm is

O

((
c

σ
+
r

µ

)
·m · n2 · e

)
. (3.2)
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Chapter 4

Simulating Adaptation within Tensegrity Systems

Up to this point in this thesis we have described tensegrity systems in which the rigidity

of rigid objects and the elasticity of elastic objects has been �xed. In order to be able to

explore a larger and more varied space of systems, we now de�ne a means to create systems

where these properties change as the system moves through its state space (section 4.1). Our

implementation is described in section 4.2, and examples of are given in section 4.3.

De�nition. The potential energy manifold M(O) of a system O is a weighting of its

state space S(O) by the potential energy of the system at each point.

An example of part of a potential energy manifold can be seen in �gure 4.1. In this

�gure color coding is used to represent the potential energy on a surface in three space.

Because potential energy manifolds are generically space with more than three dimensions,

any visualizations of them will need to be projections into a drawable space.

De�nition. A �xed system is a system in which the potential energy manifold cannot change

during the simulation. Conversely, an adaptive system is one in which the potential energy

manifold can change.
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Figure 4.1: The sample space of an endpoint of a rod. The blue point (point P ) is being
moved and the four white points are connected to the blue point via elastics.
The sphere represents the sample space and is colour coded to show the local
potential energy, derived from the tension in the elastics connecting P to the
four white points.

4.1 Adaptation Rules for Elastics

In this section we de�ne the adaptation rules that allow the elasticity and lengths of elastics

to change. These rules are based on work done by fellow M.Sc. candidate Vyacheslav I.

Jdanov [4]. The set of the adaptation rules can be changed as required by the application.

For each elastic E we de�ne an ideal displacement I(E):

I(E) = N(E) ·K(E), (4.1)

where N(E) and K(E) are the natural length and elasticity of the elastic E respectively.

We then de�ne the ideal displacement di�erence ID(E) value as:

ID(E) = max

(
−1,min

(
1,
L(E)− I(E)

I(E)

))
(4.2)

where L(E) is the length that elastic E has in the current state of the object. The ID(E)

value is bounded in the range [−1, 1], so that the system does not adapt too drastically.
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Informal experimentation showed that allowing ID(E) to be larger than |1| could lead lead

to oscillation in the elasticity of the elastics. Bounding ID(E) in ranges greater than [−10, 10]

led the systems to oscillate between overstretched and under-stretched at each iteration. In

the extreme case, if ID(E) was unbounded, the algorithm would adapt the elastics to be

stable in whatever con�guration the system was currently in.

At each adaptation cycle the elasticity of E is set to

max(0, K(E) + ID(E) ·K(E) · ε) (4.3)

where ε is an external variable that dictates the extent of the adaption. The new elasticity

is bounded below by zero as negative elasticities are not allowed.

Similarly the natural length of E is set to:

max(0, N(E) + ID(E) ·N(E) · ε) (4.4)

with ε as above. The new natural length is similarly bounded below by zero.

4.2 Adaptive Hill Climbing Algorithm

One of the advantages of the �exible implementation described in section 3.1 is that it

makes the integration of adaptation rules a simple matter. As described in chapter 3, our

optimization procedure is broken up into a hill climbing algorithm and a sampling algorithm.

We add an adaptation cycle after each optimization step in the hill climbing algorithm - Step

4 in the algorithm provided in Section 3.3.

The adaptive hill climbing algorithm is:

Step 1 Set the base state to be the starting state.

Step 2 Use the sampling algorithm to generate a single step state space S for the base state.
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Step 3 If S is empty terminate the process.

Step 4 For each state P ∈ S

• If the potential energy at P is lower than the potential energy of the base state

by at least the accuracy parameter σ, set the new base state equal to P .

Step 4a For each elastic E, apply the adaption rules desired by the user. This thesis uses

the rules de�ned in section 4.1.

Step 5 If the base state has not changed in this iteration, reduce the radius of the single step

space by a factor of µ and restart the algorithm. In the next iteration the tested states

are closer to the base state. Note that if the sampling radius is smaller than σ it is

considered to be equal to 0; in this case the sampling algorithm returns an empty set,

so the hill climbing algorithm terminates in Step 3.

It is important to note that the way we integrate adaptation rules into our system

a�ects the end result of the adaptation. In particular, the adaptive hill climbing algorithm

de�ned above has the property that the size of the steps in the hill climbing algorithm will

determine the extent of adaptation that will occur before a stable state is found. An example

of this will be given in section 4.3.

In section 3.3 the proof of theorem 2, which states that the hill climbing algorithm

will terminate, relied on the fact that at each hill climbing step the potential energy in the

system is less than at the previous step. With the addition of adaptive rules (Step 4a) this

is no longer true, and thus the proof of theorem 2 requires modi�cation. We leave this

modi�cation as future work. Experimental results have, however, shown termination in all

cases.
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Figure 4.2: A starting state
for a tensegirty
icosahedron in
which a single
rod has been
pulled far from
the rest of the
system

Figure 4.3: The stable
state result-
ing from the
application of
the adaptive
hill climbing
algorithm (sec-
tion 4.2) on the
system in �gure
4.2

Figure 4.4: The stable
state resulting
from the appli-
cation of the
non-adaptive
hill climbing
algorithm (sec-
tion 3.3) on the
system in �gure
4.2

4.3 Examples of Adaptive Results Using Our Algorithm

Our implementation color codes highly overstretched elastics as red, moderately overstretched

as yellow, and ideally stretched as green. Figure 4.2 shows a tensegrity icosahedron in an

unstable state. Here we can see that all the edges are overstretched, but after the system

is optimized with adaptation (�gure 4.3) we see that the edges are green, indicating that

the system is now ideally stretched. This means that for every elastic E in the system,

I(E) = N(E) · K(E) = L(E) as described in equation 4.1. However, without adaptation,

the resultant state after optimization (�gure 4.4) still has the edges as yellow, this coloring

is due to the fact that this state, while stable is not ideally stretched.

Figure 4.5 shows the e�ect that changing the step size in hill climbing has on the �nal

stable state of the system. Figure 4.5b shows the �nal stable state when the hill climbing

algorithm is run with a single step sample radius ten times smaller than that used to obtain

the stable state shown in �gure 4.5c. The stable state in �gure 4.5b has a lower potential
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energy (by 9%) and is more symmetric than the stable state shown in �gure 4.5c. These

di�erences result from the di�erence in size of the single step space radius. Speci�cally if the

single step state space has a large radius as in �gure 4.5c, then there are fewer adaptation

cycles (Step 4a of the adaptive hill climbing algorithm presented in section 4.2) before the

system reaches a near equilibrium state. This means that the elastics have less time to

adapt to their initial con�guration. Conversely, if the single step sample space has a small

radius as in �gure 4.5b, the hill climbing algorithm will make many smaller steps towards

equilibrium allowing for more adaptation cycles while the system is still close to its starting

con�guration.

(a) (b) (c)

Figure 4.5: (a) The starting con�guration of a tensegrity icosahedron in an unstable state.
(b) The adaptive hill climbing algorithm applied to the initial state (a) with a
small single step space radius. (c) The adaptive hill climbing algorithm applied
to the initial state (a) with a single step space radius ten times larger than the
one used in (b).
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Chapter 5

Algorithm Validation

In this chapter we discuss the tests used to validate our implementation of the potential

energy minimization algorithm proposed in chapter 3. These tests involved generating a

base state of a tensegrity system, and then running our hill climbing algorithm (section 3.3)

while using one of the sampling algorithms provided in section 3.2. A small scale test suite

(section 5.1) demonstrates that the rod sampling algorithm (section 3.2.2) is more robust

than the endpoint sampling algorithm (section 3.2.1). The large scale test suite in section

5.2 provides extensive validation of the rod sampling algorithm.

Our implementation was written in Python2.7. The hill climbing algorithm and

sampling algorithms use only the standard math, sys, copy, and import python libraries. A

graphical interface using V Python and wxPython was written to display the results of these

optimizations. This display component does not a�ect the results of our optimizations as it

is separate from the optimization package and only displays the results after the fact.

5.1 Small Scale Tests

The end point and rod sampling algorithms described in section 3.2 were applied to a test

suite of six systems and fractal versions of these systems. These systems are variations on

the tensegrity icosahedron using rods of various lengths. These tests were run both with
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and without adaptation. The results are presented in tabular form in appendices: appendix

A and appendix B provide the detailed results of non-adaptive, and respectively adaptive,

tests. Below we provide a detailed discussion of one of these result tables.

Table 5.1 Small scale validation results using the endpoint sampling algorithm on fractal
adaptive systems. This is a copy of table B.2 in appendix B.

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 21.24 11707.57 Y 181 1% 1% 1% 1%
Test1f 11008.58 7650.38 N 99063 0% 0% 0% 0%
Test2f 12173.88 8093.04 N 93953 0% 0% 0% 0%
Test3f 1241.19 2403.76 N 15459 0% 0% 0% 0%
Test4f 1222.6 558.32 Y 18777 2% 0% 0% 0%
Test5f 180.24 777.77 N 2659 1% 0% 0% 0%

The "Default" test, �gure 5.1a, is a system set up to be stable from initialization, and

should take no steps to optimize (in non-adaptive cases). The other tests are variations on

the same connection set, with di�erent rod lengths and starting positions. The base states

are made into fractals by inserting a smaller version of themselves into one of their edges

(see �gure 5.1c).

(a) The "Default" test case. (b) The "Test5" test case
(c) The "Test5f" test case,

a fractal version of the

"Test5" test case

Figure 5.1: Examples of starting test cases.
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The "Time" column in table 5.1 is a measure of how long the algorithm took to run

in seconds. This was measured using Python2.7's built in time module. "Final EP" gives

the �nal potential energy of the system.

The �Visual Inspection� column in table 5.1 records whether or not the systems looked

as though they reached a correct stable state. A Y means that the sample passed the visual

inspection, and a N means that it failed. The tests were designed to have an optimal state

that approximated an icosahedron and any other state was judged as having failed this visual

inspection. This visual inspection was conducted via the author looking at the output of

the algorithm in a 3D rendered GUI. This method of validation is of course limited as small

variances cannot be detected by the human eye, and as any novel and unexpected results

can not be veri�ed in this fashion. Due to the limitations of this form of validation, visual

inspection was used only as a cursory criterion and a stronger validation methodology was

applied in the large scale test suite (section 5.2). While visual inspection cannot ascertain

that a sistem is in an optimal con�guration, there are scenarios where it can ascertain that

the system is in a suboptimal con�guration. Table 5.1 has four tests which were deemed

to be suboptimal by visual inspection (see �gure 5.2). This poor performance is caused by

the limitations of the endpoint sampling algorithm; this performance improved by using the

rod sampling algorithm (�gure 5.3 shows the output on the rod sampling algorithm on the

starting state used in �gure 5.2).

The "Steps" column in table 5.1 records the number of steps each test case required

to reach a stable state. It was found during these experiments that the majority of the

minimization occurred in the initial steps. To quantify this, the "Rate of Convergence"

column tells us what percentage of the steps were required to reach what percentage of

the energy minimization. In table 5.1, for example, "Test5f" using the endpoint sampling

algorithm with adaptation took less than 0.5% of the total steps for optimization to reach

90% of the energy minimization that occurred, and by 1% of the algorithm 99% of the
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Figure 5.2: Result of the endpoint
sampling algorithm on
"Test5f". This failed the
visual inspection.

Figure 5.3: Result of the rod sam-
pling algorithm on
"Test5f". This passed
the visual inspection.

minimization had occurred. In general, most tests reached 99% of their total optimization

within the �rst 30% of the steps required for the optimization.

These results show that the end point sampling algorithm worked as well as the rod

sampling algorithm on the regular tensegrity icosahedron (compare table A.1 to A.3, and

also table B.1 to B.3), but on fractal system the rod sampling algorithm reached lower

potential energy levels (compare table A.2 to A.4, and also table B.2 to B.4). Moreover,

visual inspection of the results shows that the rod sampling algorithm always returned states

that appear to be stable, whereas the endpoint sampling algorithm did not do so for fractal

con�gurations. This prompted us to thoroughly test the rod sampling algorithm using a

large scale validation (section 5.2).

5.2 Large Scale Test Suite

One of the major drawbacks of a hill climbing algorithm is that it can get stuck in suboptimal

con�gurations. One of the purposes of this large scale validation suite is to determine whether

local minima are a frequent problem for our hill climbing algorithm. A test suite of 100
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di�erent tensegrity icosahera was created. These were created by randomizing the length

of the rods in the "Default" base case (�gure 5.1a). Each of these test cases was then

started from 1000 di�erent starting positions and allowed to optimize (see �gures 5.4 and

5.5). Fractal tensegrity icosahedra were also tested in this fashion, as described in section

5.2.2. Note that this form of validation requires that rods and elastics can pass through each

other. otherwise suboptimal states could be constructed based on the starting positions of

the rods.

Figure 5.4: A base case
used in the
large scale test
suite.

Figure 5.5: A randomly chosen starting posi-
tion of the base case in �gure 5.4

The aim of this suite was to test how often these di�erent starting positions ended at

comparable energy levels. We judged two systems to have roughly the same energy level if

their potential energies were within 10−5% of each other.

These tests were run without adaptation. Adaptation was avoided because the �nal

potential energy level in an adaptive system is inherently dependent on its starting position;

thus it cannot be used for comparisons across the various test cases.
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5.2.1 Tensegrity Icosahedron: 100, 000 Tests

The full results of this suite are presented in appendix C. Table 5.2 below provides a sample

of the results.

Table 5.2: Validation Results on Non-Fractal Systems (extract of table C.1)

Test Trials
Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseState10 1000 545 21377.57 81 4.61E-06 2.16E-08% 1.98E-05 9.25E-08%

BaseState11 1000 707 35671.42 98 1.14E-05 3.20E-08% 6.06E-05 1.70E-07%

BaseState12 1000 611 36298.89 93 9.50E-06 2.62E-08% 5.26E-05 1.45E-07%

The name of the base case is recorded in the "Test" column, while the number of

trials completed on that base case is stored in the "Trials" column. The "Average Time"

column records the average execution time in seconds per trial. This value was generated

using the time module, built into Python2.7. Each trial ends with a computation of the

deviation between its �nal potential energy and the average potential energy for the base

case, shown in the "Average Final EP" column. The "Average Dev" and "Average Dev %"

column show the average of these deviations as raw numbers and as a percent of the �nal

potential energy respectively. The largest of these deviations is recorded in the "Max Dev"

and Max Dev %" columns.

Of the 100, 000 tests run 99, 999, or 99.999%, of the results had a deviation within

the 10−5% tolerance margin. The one remaining test had a deviation of 10−2%. The global

average deviation over these 100, 000 tests was 4.60 · 10−7%.

These results suggest that regardless of starting position, the hill climbing algorithm
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applied to tensegrity icosahedra rarely gets stuck in suboptimal states, but instead reaches

a global minimum. This test suite was repeated using fractal systems, as discussed in the

following section.

5.2.2 Fractal Tensegrity Icosahedron: 87, 189 Tests

Figure 5.6: The starting case for the fractal
icosahedron test suite.

Full results can be found in appendix D. The results of this suite are tabulated using

the same notation as for the regular icosahedron test suite described in section 5.2.1.

This large scale test suite uses the fractal base shown in �gure 5.6. From this starting

case, we randomized the length of the rods to create the 100 base cases used in this test suite.

Due to limited availability of server time, not all of these tests were run in the intended 1000

various starting positions; the number of trials run is shown in the Trials column of table

D.1.

Of the 87, 189 tests run 87, 181, or 99.990%, of them fell within the goal of having

deviations smaller than 10−5% from the mean �nal potential energy.
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One of the tests which had a higher deviation was "BaseFractal7", shown in �gure

5.7. This base case was run 723 times; two of the trials (i.e. 0.27%), fell outside of the

acceptable deviation range.

(a) The starting state for

"BaseFractal7". Each

trial randomized the posi-

tions of the rods in this

state then ran the hill

climbing algorithm to �nd

a stable state.

(b) The stable state with low-

est potential energy, as

found by 721 of the 723
trials run on randomiza-

tions on (a).

(c) The results of the trial

which had a high devia-

tion from the usual po-

tential energy atained for

"BaseFractal7"

Figure 5.7: An example of a result with higher than desired deviation of potential energy.

Over 99.99% of the trials did not get caught in local minima. This shows that our

hill climbing algorithm, using the rod sampling algorithm, does not frequently get stuck

in suboptimal positions when applied to tensegrity icosahedron and fractal versions of the

tensegrity icosahedron. In future work simulated annealing [11] could be investigated to

further improve these results.
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Chapter 6

Conclusions

This thesis has laid out a �exible simulation framework for modeling and exploring tensegrity

systems.

6.1 Summary of Contributions

This thesis has made the following contributions:

1. A �exible framework for de�ning (chapter 2) and modeling (chapter 3) a wide variety

tensegrity systems. Four components de�ne an object (section 2.1):

• A list of �xed parameters that de�ne the attributes of the object.

• A list of variable parameters that de�ne the state space of the object.

• A potential energy function that uses the �xed and variable parameters to deter-

mine the potential energy of the object in each state.

The �exibility built into the framework allows for easy customization of the simulation,

and allows for scienti�c exploratory research (section 3.1). This ease of customization

is brought about by:
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• State �les contain all information needed to generate objects. This allows for easy

and convenient generation of a variety of models without need to modify the code.

An example of a state �le is given in appendix E.

• There is a clear separation between object de�nition, object sampling, and opti-

mization algorithm. The hill climbing optimization algorithm presented in section

3.3 requires a sampling algorithm. The clear separation between these algorithms

allows the user to easily replace either the sampling algorithm or optimization

algorithm.

This exploration lead to the discovery of an alternate stable state for the tensegrity

icosahedron (�gure 1.11b).

2. An optimization algorithm for �nding the stable states of tensegrity systems (section

3.3), as well as two competing sampling algorithms for the optimization algorithm

(section 3.2). The �exibility of the framework is highlighted by our ability to easily

incorporate adaptivity (chapter 4) to our optimization methods.

3. An extensive validation suite (described and summarized in chapter 5) showing that

the hill climbing algorithm sampling the state space using the rod sampling algorithm

described in section 3.2.2 �nds an optimal minimized energy state in over 99% of test

cases.

6.2 Future Work

This section discusses some directions for expanding this body of work. Complexity can

be added to the system via more types of atomic objects (Section 6.2.1), and by modeling

hydrostatic pressures (section 6.2.2).
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6.2.1 Expanding the Set of Objects

Currently our implementation of the framework only uses atomic objects which are straight

one dimensional rods and one dimensional elastics. The addition of arbitrarily shaped rods as

well as two and three dimensional elastics and rigid objects would allow for greater �exibility

in exploration and testing tensegrity systems, such as those shown in �gures 6.1 and 6.2.

Figure 6.1: An example of a tenseg-
rity model using 3D
rigid objects. c©Dr. G.
Scarr, reproduced with
permission.
(http://www.tensegrityinbiology.co.uk/)

Figure 6.2: An example of a
tensegrity model us-
ing curved rigid struts.
c©Dr. G. Scarr, repro-
duced with permission.
(http://www.tensegrityinbiology.co.uk/)

To de�ne these new types of atomic objects we must de�ne the four components set

out in section 2.1: the �xed parameters, the state vector along with an associated interpre-

tation, the potential energy of the object as a function of its state vector, and an approach

for minimizing potential energy. In addition, the state �le encoding (Appendix E) must be

extended to include the new types of objects.
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6.2.2 Modeling Hydrostatic Pressures

Hydrostatic pressures play an important role in biological systems [10].There is need to add

the modeling of hydrostatic forces to existing biotensegrity models [22].

Here we outline a method for extending our tensegrity framework to model bags of

hydrostatic pressure:

• Triangulate the surface of the desired hydrostatic bag.

• De�ne a compound object made up of springs that are connected as per the edges in

the above triangulation. We use springs instead of elastics so that edges push back

when compressed.

• De�ne the potential energy function of this object provides a great penalty for devia-

tions between its current volume and a prede�ned desired volume for the hydrostatic

bag. By making this energy penalty large enough we can enforce a �constant volume�

constraint.
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Appendix A

Small Scale Validation with Non-Adaptive Systems

The format and meaning of these tables are described in section 5.1.

Table A.1 Results using the endpoint sampling algorithm on non-adaptive systems. Sample
reading: "Test3" used 4% of the optimization steps to reach 50% of the energy minimization,
by 21% of the optimization steps, the system had reached 99% of the minimization. For full
details on these tables see section 5.1

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 4.84 2772.18 Y 1 100% 100% 100% 100%
Test1 15.13 2656.31 Y 333 21% 11% 5% 2%
Test2 14.9 2656.31 Y 317 21% 12% 5% 2%
Test3 10.44 121.22 Y 177 21% 11% 7% 4%
Test4 9.49 835.59 Y 151 23% 9% 5% 1%
Test5 9.99 121.22 Y 166 8% 52% 4% 2%
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Table A.2 Results using the endpoint sampling algorithm on fractal non-adaptive systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 30.5 3173.43 Y 319 19% 6% 4% 3%
Test1f 126.61 3226.44 N 1862 6% 2% 1% 0%
Test2f 9262.33 3251.07 N 74593 0% 0% 0% 0%
Test3f 48.31 256.04 N 595 10% 5% 2% 1%
Test4f 65.57 975.92 N 860 18% 2% 1% 0%
Test5f 55.64 505.95 N 702 3% 1% 1% 1%

Table A.3 Results using the rod sampling algorithm on non-adaptive systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 9.69 2772.18 Y 1 100% 100% 100% 100%
Test1 55.92 2656.31 Y 554 27% 14% 6% 2%
Test2 58.51 2656.31 Y 586 22% 14% 7% 2%
Test3 28.99 121.22 Y 232 37% 24% 14% 7%
Test4 20.21 835.59 Y 128 20% 2% 2% 2%
Test5 22.71 121.22 Y 154 22% 12% 8% 5%

Table A.4 Results using the rod sampling algorithm on fractal non-adaptive systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 184.38 3169.6 Y 986 7% 0% 0% 0%
Test1f 585.39 3035.2 Y 3354 5% 2% 1% 0%
Test2f 487.27 3035.2 Y 2895 5% 3% 1% 0%
Test3f 181.93 136.82 Y 976 12% 6% 4% 2%
Test4f 112.33 966.77 Y 498 15% 1% 1% 0%
Test5f 181.11 119.65 Y 900 5% 2% 1% 1%
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Appendix B

Small Scale Validation with Adaptive Systems

The format and meaning of these tables are described in section 5.1.

Table B.1 Results using the endpoint sampling algorithm on adaptive systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 5.08 10315.43 Y 1 100% 100% 100% 100%
Test1 282.92 5890.59 Y 8147 1% 1% 0% 0%
Test2 24.56 6657.1 Y 590 16% 7% 6% 4%
Test3 11.09 1094.18 Y 183 15% 10% 9% 7%
Test4 9.75 461.71 Y 143 18% 10% 6% 3%
Test5 10.59 326.83 Y 173 8% 5% 4% 3%

Table B.2 Results using the endpoint sampling algorithm on fractal adaptive systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 21.24 11707.57 Y 181 1% 1% 1% 1%
Test1f 11008.58 7650.38 N 99063 0% 0% 0% 0%
Test2f 12173.88 8093.04 N 93953 0% 0% 0% 0%
Test3f 1241.19 2403.76 N 15459 0% 0% 0% 0%
Test4f 1222.6 558.32 Y 18777 2% 0% 0% 0%
Test5f 180.24 777.77 N 2659 1% 0% 0% 0%



70

Table B.3 Results using the rod sampling algorithm on adaptive systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 1.39 10315.42 Y 1 100% 100% 100% 100%
Test1 10.48 6178.1 Y 740 21% 13% 9% 6%
Test2 10.52 6360.68 Y 743 16% 12% 9% 7%
Test3 4.59 1215.11 Y 261 33% 26% 20% 16%
Test4 3.37 448.77 Y 159 20% 8% 4% 2%
Test5 4.07 488.57 Y 211 16% 12% 9% 8%

Table B.4 Results Using the Rod Sampling Algorithm on Fractal Adaptive Systems

Test Time Final EP Visual Inspection Steps
Rate of Convergence:

99% 90% 75% 50%

Default 120.83 11748.33 Y 599 0% 0% 0% 0%
Test1f 612.63 7058.1 Y 3524 7% 3% 2% 1%
Test2f 714.66 8041.77 Y 4133 5% 3% 2% 1%
Test3f 222.13 1353.27 Y 1208 11% 7% 5% 4%
Test4f 181.54 523.65 Y 962 14% 6% 1% 0%
Test5f 137.19 504.66 Y 704 6% 3% 2% 2%
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Appendix C

Large Scale Validation for Tensegrity Icosahedron

The tables in appendix C and D provide the results of the large scale validation tests de-

scribed in section 5.2. For an explanation of the entries in these tables see section 5.2.

Table C.1: Validation Results on Non-Fractal Systems

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseState0 1000 1880 26577.51 173 2.81E-05 1.06E-07% 1.05E-04 3.96E-07%

BaseState1 1000 2050 24330.58 274 1.48E-05 6.10E-08% 6.67E-05 2.74E-07%

BaseState10 1000 545 21377.57 81 4.61E-06 2.16E-08% 1.98E-05 9.25E-08%

BaseState11 1000 707 35671.42 98 1.14E-05 3.20E-08% 6.06E-05 1.70E-07%

BaseState12 1000 611 36298.89 93 9.50E-06 2.62E-08% 5.26E-05 1.45E-07%

BaseState13 1000 714 42896.95 105 1.27E-05 2.96E-08% 5.15E-05 1.20E-07%

BaseState14 1000 753 32528.06 109 9.80E-06 3.01E-08% 4.32E-05 1.33E-07%

BaseState15 1000 597 16978.87 89 2.70E-06 1.59E-08% 3.22E-05 1.90E-07%

BaseState16 1000 570 24361.19 85 6.56E-06 2.69E-08% 2.82E-05 1.16E-07%

BaseState17 1000 744 55123.24 109 1.56E-05 2.82E-08% 6.47E-05 1.17E-07%
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Validation Results on Non-Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseState18 1000 581 36651.26 89 8.10E-06 2.21E-08% 3.77E-05 1.03E-07%

BaseState19 1000 688 26463.51 100 8.36E-06 3.16E-08% 5.26E-05 1.99E-07%

BaseState2 1000 1042 32305.32 146 9.05E-06 2.80E-08% 4.27E-05 1.32E-07%

BaseState20 1000 551 29042.57 84 6.46E-06 2.23E-08% 3.56E-05 1.22E-07%

BaseState21 1000 499 24650.45 76 5.16E-06 2.09E-08% 2.80E-05 1.14E-07%

BaseState22 1000 725 25107.08 102 7.07E-06 2.82E-08% 3.04E-05 1.21E-07%

BaseState23 1000 878 47250.13 118 2.38E-05 5.04E-08% 1.06E-04 2.25E-07%

BaseState24 1000 1441 23609.89 159 2.11E-05 8.94E-08% 8.23E-05 3.49E-07%

BaseState25 1000 1348 34413.78 150 2.74E-05 7.96E-08% 1.18E-04 3.43E-07%

BaseState26 1000 853 27999.54 117 8.02E-06 2.86E-08% 5.33E-05 1.91E-07%

BaseState27 1000 675 34915.52 96 8.44E-06 2.42E-08% 4.74E-05 1.36E-07%

BaseState28 1000 1211 23489.88 149 6.01E-06 2.56E-08% 4.23E-05 1.80E-07%

BaseState29 1000 1164 22769.68 144 7.38E-06 3.24E-08% 4.73E-05 2.08E-07%

BaseState3 1000 624 45100.10 93 8.23E-06 1.82E-08% 4.59E-05 1.02E-07%

BaseState30 1000 564 29132.59 80 7.43E-06 2.55E-08% 3.44E-05 1.18E-07%

BaseState31 1000 742 18202.35 106 4.82E-06 2.65E-08% 1.85E-05 1.02E-07%

BaseState32 1000 804 30235.32 110 1.01E-05 3.33E-08% 4.43E-05 1.47E-07%

BaseState33 1000 764 45277.11 105 1.51E-05 3.33E-08% 7.45E-05 1.65E-07%

BaseState34 1000 1427 31154.72 158 1.36E-05 4.35E-08% 6.50E-05 2.09E-07%

BaseState35 1000 877 36128.96 111 1.71E-05 4.72E-08% 8.17E-05 2.26E-07%

BaseState36 1000 1017 27848.24 126 2.12E-05 7.61E-08% 8.87E-05 3.19E-07%

BaseState37 1000 707 26440.39 96 5.86E-06 2.22E-08% 3.75E-05 1.42E-07%

BaseState38 1000 738 59875.50 102 1.55E-05 2.59E-08% 6.05E-05 1.01E-07%

BaseState39 1000 725 23794.05 103 5.48E-06 2.30E-08% 3.60E-05 1.51E-07%

BaseState4 1000 1221 33720.88 172 3.31E-05 9.83E-08% 1.29E-04 3.82E-07%
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Validation Results on Non-Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseState40 1000 1332 39046.10 154 4.32E-05 1.11E-07% 1.58E-04 4.06E-07%

BaseState41 1000 915 45048.19 128 1.74E-05 3.87E-08% 7.33E-05 1.63E-07%

BaseState42 1000 1074 52068.12 130 2.06E-05 3.95E-08% 1.18E-04 2.27E-07%

BaseState43 1000 330 6152.54 55 7.32E-07 1.19E-08% 3.43E-06 5.57E-08%

BaseState44 1000 516 22486.22 78 4.63E-06 2.06E-08% 2.41E-05 1.07E-07%

BaseState45 1000 1081 33526.71 138 2.04E-05 6.09E-08% 8.52E-05 2.54E-07%

BaseState46 1000 652 41187.12 91 1.15E-05 2.79E-08% 4.98E-05 1.21E-07%

BaseState47 1000 525 25007.88 76 5.45E-06 2.18E-08% 2.61E-05 1.04E-07%

BaseState48 1000 851 40968.81 114 1.98E-05 4.84E-08% 9.20E-05 2.25E-07%

BaseState49 1000 826 47069.61 118 1.76E-05 3.74E-08% 6.73E-05 1.43E-07%

BaseState5 1000 673 30231.13 102 1.03E-05 3.40E-08% 4.36E-05 1.44E-07%

BaseState50 1000 1074 16036.84 135 6.07E-06 3.78E-08% 2.94E-05 1.84E-07%

BaseState51 1000 990 51960.79 134 2.58E-05 4.97E-08% 1.18E-04 2.27E-07%

BaseState52 1000 1513 30834.82 162 4.25E-05 1.38E-07% 1.67E-04 5.40E-07%

BaseState53 1000 811 38401.50 113 1.07E-05 2.77E-08% 5.18E-05 1.35E-07%

BaseState54 1000 1278 25349.70 153 9.28E-06 3.66E-08% 4.73E-05 1.87E-07%

BaseState55 1000 1044 28616.64 133 1.16E-05 4.05E-08% 5.71E-05 1.99E-07%

BaseState56 1000 782 44173.01 112 1.45E-05 3.28E-08% 7.17E-05 1.62E-07%

BaseState57 1000 310 6483.36 53 8.50E-07 1.31E-08% 3.82E-06 5.90E-08%

BaseState58 1000 1264 47732.87 146 3.51E-05 7.35E-08% 1.52E-04 3.18E-07%

BaseState59 1000 502 17653.65 76 4.89E-06 2.77E-08% 2.98E-05 1.69E-07%

BaseState6 1000 988 46041.42 143 1.80E-05 3.90E-08% 1.06E-04 2.31E-07%

BaseState60 1000 550 31015.94 77 8.28E-06 2.67E-08% 3.83E-05 1.24E-07%

BaseState61 1000 480 13259.16 44 3.06E-06 2.31E-08% 1.39E-05 1.05E-07%

BaseState62 1000 591 16270.32 53 3.69E-06 2.27E-08% 1.86E-05 1.14E-07%
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Validation Results on Non-Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseState63 1000 647 41703.98 56 1.05E-05 2.53E-08% 5.57E-05 1.33E-07%

BaseState64 1000 621 21604.24 55 5.90E-06 2.73E-08% 2.47E-05 1.14E-07%

BaseState65 1000 786 24613.30 65 5.32E-06 2.16E-08% 4.11E-05 1.67E-07%

BaseState66 1000 736 39451.21 62 1.21E-05 3.06E-08% 7.56E-05 1.92E-07%

BaseState67 1000 446 9464.27 42 2.18E-06 2.31E-08% 1.05E-05 1.11E-07%

BaseState68 1000 462 20448.40 44 3.23E-06 1.58E-08% 1.40E-05 6.85E-08%

BaseState69 1000 671 35896.46 58 1.18E-05 3.30E-08% 6.47E-05 1.80E-07%

BaseState7 1000 1132 20082.79 119 5.83E-06 2.90E-08% 2.71E-05 1.35E-07%

BaseState70 1000 585 22078.62 67 2.91E-06 1.32E-08% 1.97E-05 8.91E-08%

BaseState71 1000 755 26076.10 81 8.60E-06 3.30E-08% 4.47E-05 1.72E-07%

BaseState72 1000 1033 32379.99 108 1.58E-05 4.89E-08% 6.39E-05 1.97E-07%

BaseState73 1000 602 23867.98 66 7.34E-06 3.08E-08% 4.30E-05 1.80E-07%

BaseState74 1000 1980 28831.21 148 5.52E-05 1.92E-07% 1.85E-04 6.43E-07%

BaseState75 1000 2813 34540.44 226 8.65E-05 2.51E-07% 3.60E-04 1.04E-06%

BaseState76 1000 784 21143.66 71 4.92E-06 2.33E-08% 2.01E-05 9.50E-08%

BaseState77 1000 516 22818.94 68 4.31E-06 1.89E-08% 2.66E-05 1.17E-07%

BaseState78 1000 1057 35780.55 96 2.44E-05 6.83E-08% 1.01E-04 2.83E-07%

BaseState79 1000 1706 26899.11 141 2.75E-05 1.02E-07% 1.22E-04 4.55E-07%

BaseState8 1000 840 40623.94 120 1.75E-05 4.31E-08% 7.89E-05 1.94E-07%

BaseState80 1000 1293 35603.11 126 1.82E-05 5.11E-08% 8.79E-05 2.47E-07%

BaseState81 1000 482 22783.34 66 3.90E-06 1.71E-08% 1.94E-05 8.49E-08%

BaseState82 1000 706 15224.74 86 3.68E-06 2.41E-08% 1.68E-05 1.10E-07%

BaseState83 1000 1014 33741.11 99 1.42E-02 4.20E-05% 7.08E+00 2.10E-02%

BaseState84 1000 823 36746.26 88 1.94E-05 5.28E-08% 8.34E-05 2.27E-07%

BaseState85 1000 650 36293.59 57 1.00E-05 2.77E-08% 4.73E-05 1.30E-07%
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Validation Results on Non-Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseState86 1000 899 42851.81 92 1.74E-05 4.06E-08% 7.08E-05 1.65E-07%

BaseState87 1000 867 35914.97 78 1.11E-05 3.09E-08% 5.02E-05 1.40E-07%

BaseState88 1000 651 44660.97 66 9.76E-06 2.19E-08% 7.54E-05 1.69E-07%

BaseState89 1000 440 20963.68 52 3.00E-06 1.43E-08% 1.25E-05 5.95E-08%

BaseState9 1000 430 18363.56 67 2.81E-06 1.53E-08% 1.49E-05 8.11E-08%

BaseState90 1000 777 22766.52 87 8.03E-06 3.53E-08% 4.28E-05 1.88E-07%

BaseState91 1000 688 41812.45 79 1.19E-05 2.84E-08% 4.61E-05 1.10E-07%

BaseState92 1000 631 42370.68 74 8.05E-06 1.90E-08% 3.83E-05 9.04E-08%

BaseState93 1000 792 30119.26 72 9.74E-06 3.23E-08% 5.41E-05 1.80E-07%

BaseState94 1000 1122 24416.70 107 8.19E-06 3.35E-08% 6.87E-05 2.81E-07%

BaseState95 1000 1380 40295.31 124 2.91E-05 7.23E-08% 9.84E-05 2.44E-07%

BaseState96 1000 797 28321.81 83 8.01E-06 2.83E-08% 5.57E-05 1.97E-07%

BaseState97 1000 869 25325.37 73 1.16E-05 4.56E-08% 4.54E-05 1.79E-07%

BaseState98 1000 546 21108.11 65 6.01E-06 2.85E-08% 3.12E-05 1.48E-07%

BaseState99 1000 757 50529.46 76 1.37E-05 2.71E-08% 7.89E-05 1.56E-07%
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Appendix D

Large Scale Validation for Fractal Tensegrity Icosahedron

The tables in appendix C and D provide the results of the large scale validation tests de-

scribed in section 5.2. For an explanation of the entries in these tables see section 5.2.

Table D.1: Validation Results on Fractal Systems

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseStateFractal0 1001 5495 70376.72 1438 2.55E-04 3.62E-07 1.08E-03 1.54E-06

BaseStateFractal1 1001 4783 37097.71 1215 1.07E-04 2.87E-07 7.27E-04 1.96E-06

BaseStateFractal10 1001 1912 57921.69 503 3.03E-05 5.22E-08 1.27E-04 2.19E-07

BaseStateFractal11 1001 6537 52206.01 1707 1.10E-04 2.10E-07 3.53E-04 6.76E-07

BaseStateFractal12 1001 4451 74916.36 1165 2.09E-04 2.79E-07 1.01E-03 1.35E-06

BaseStateFractal13 1001 4316 66078.34 1102 2.14E-04 3.24E-07 6.13E-04 9.28E-07

BaseStateFractal14 1001 4099 41108.85 1096 1.23E-04 3.00E-07 4.26E-04 1.04E-06

BaseStateFractal15 1001 2337 33449.70 625 4.65E-05 1.39E-07 2.01E-04 6.01E-07

BaseStateFractal16 1001 5376 63446.01 1374 9.82E-05 1.55E-07 3.28E-04 5.18E-07

BaseStateFractal17 1001 3445 80869.58 883 1.50E-04 1.85E-07 5.98E-04 7.40E-07
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Validation Results on Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseStateFractal18 1001 7399 57952.35 1925 4.97E-02 8.58E-05 6.65E+00 1.15E-02

BaseStateFractal19 1001 4560 53644.48 1178 8.50E-05 1.58E-07 3.65E-04 6.81E-07

BaseStateFractal2 1001 5557 51183.29 1437 2.01E-04 3.92E-07 8.25E-04 1.61E-06

BaseStateFractal20 1001 2461 55392.51 629 5.10E-05 9.21E-08 2.71E-04 4.90E-07

BaseStateFractal21 1001 4733 39102.36 1224 1.57E-04 4.02E-07 7.64E-04 1.95E-06

BaseStateFractal22 1001 7504 82884.95 1949 4.64E-04 5.60E-07 1.84E-03 2.22E-06

BaseStateFractal23 1001 4523 36632.17 1138 5.66E-05 1.55E-07 1.08E-03 2.96E-06

BaseStateFractal24 1001 4959 54269.12 1266 1.67E-04 3.07E-07 5.17E-04 9.53E-07

BaseStateFractal25 1001 3371 52805.19 900 6.33E-05 1.20E-07 2.42E-04 4.59E-07

BaseStateFractal26 1001 4247 62431.49 1114 1.54E-04 2.47E-07 9.38E-04 1.50E-06

BaseStateFractal27 1001 3441 51648.18 911 5.60E-05 1.09E-07 2.51E-04 4.86E-07

BaseStateFractal28 928 12917 65632.65 3339 5.45E-04 8.31E-07 2.72E-03 4.15E-06

BaseStateFractal29 1001 3712 43022.57 958 5.59E-05 1.30E-07 2.65E-04 6.15E-07

BaseStateFractal3 1001 2743 38333.67 715 3.49E-05 9.12E-08 1.25E-04 3.25E-07

BaseStateFractal30 1001 3631 72303.60 956 1.38E-04 1.91E-07 2.19E-03 3.02E-06

BaseStateFractal31 1001 5015 71086.72 1276 2.89E-04 4.06E-07 1.50E-03 2.11E-06

BaseStateFractal32 1001 2706 17065.87 731 7.84E-05 4.60E-07 3.15E-04 1.85E-06

BaseStateFractal33 1001 2475 43863.54 649 4.32E-05 9.85E-08 2.46E-04 5.60E-07

BaseStateFractal34 1001 2464 37200.21 652 5.27E-05 1.42E-07 1.90E-04 5.11E-07

BaseStateFractal35 1001 4048 56154.90 1063 1.30E-04 2.32E-07 7.60E-04 1.35E-06

BaseStateFractal36 1001 8231 48794.67 2119 1.67E-04 3.43E-07 6.82E-04 1.40E-06

BaseStateFractal37 867 14112 60374.10 3582 1.72E-04 2.84E-07 6.86E-04 1.14E-06

BaseStateFractal38 1001 6799 51718.55 1769 1.47E-04 2.84E-07 6.10E-04 1.18E-06

BaseStateFractal39 1001 6296 91268.91 1631 4.52E-04 4.95E-07 1.64E-03 1.80E-06

BaseStateFractal4 960 12612 37558.08 3234 7.30E-04 1.94E-06 2.72E-03 7.23E-06



78

Validation Results on Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseStateFractal40 1001 5461 63593.25 1443 3.02E-04 4.75E-07 1.23E-03 1.93E-06

BaseStateFractal41 1001 7875 63437.71 2047 2.13E-04 3.35E-07 7.05E-04 1.11E-06

BaseStateFractal42 1001 4456 40730.68 1187 7.73E-05 1.90E-07 3.17E-04 7.79E-07

BaseStateFractal43 1001 5533 45941.42 1438 1.44E-04 3.14E-07 5.85E-04 1.27E-06

BaseStateFractal44 1001 6019 57473.70 1554 1.66E-04 2.89E-07 1.00E-03 1.75E-06

BaseStateFractal45 1001 4216 55017.02 1087 1.82E-04 3.31E-07 6.71E-04 1.22E-06

BaseStateFractal46 1001 5224 55136.91 1372 9.60E-05 1.74E-07 4.02E-04 7.30E-07

BaseStateFractal47 806 10654 71633.62 2755 2.37E-02 3.31E-05 8.04E+00 1.12E-02

BaseStateFractal48 1001 2986 62650.51 772 7.90E-05 1.26E-07 3.38E-04 5.40E-07

BaseStateFractal49 1001 3822 78532.60 985 1.75E-04 2.23E-07 5.39E-04 6.86E-07

BaseStateFractal5 1001 5941 76856.73 1549 1.91E-04 2.49E-07 7.12E-04 9.26E-07

BaseStateFractal50 1001 3793 78251.41 968 1.68E-04 2.15E-07 5.79E-04 7.40E-07

BaseStateFractal51 1001 6457 73655.22 1692 2.56E-04 3.48E-07 7.97E-04 1.08E-06

BaseStateFractal52 505 15506 57380.24 4035 1.84E-04 3.20E-07 6.74E-04 1.17E-06

BaseStateFractal53 1001 7229 44906.27 1924 1.11E-04 2.48E-07 4.54E-04 1.01E-06

BaseStateFractal54 748 10397 70611.64 2676 3.94E-04 5.58E-07 7.54E-03 1.07E-05

BaseStateFractal55 1001 3786 39322.89 1002 6.47E-05 1.65E-07 2.82E-04 7.16E-07

BaseStateFractal56 1001 4863 58980.65 1215 6.25E-05 1.06E-07 2.81E-04 4.77E-07

BaseStateFractal57 1001 2731 60493.23 716 5.27E-05 8.72E-08 2.02E-04 3.34E-07

BaseStateFractal58 1001 1374 25677.16 364 9.44E-06 3.68E-08 4.01E-05 1.56E-07

BaseStateFractal59 932 7933 64814.22 2028 1.80E-04 2.78E-07 7.90E-04 1.22E-06

BaseStateFractal6 617 19711 95194.98 5031 5.45E-04 5.72E-07 2.57E-03 2.70E-06

BaseStateFractal60 1001 3732 42766.37 959 4.68E-05 1.09E-07 1.95E-04 4.57E-07

BaseStateFractal61 1001 5568 57198.96 1461 1.20E-04 2.09E-07 6.92E-04 1.21E-06

BaseStateFractal62 1001 2734 49783.30 699 4.61E-05 9.26E-08 1.92E-04 3.85E-07
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Validation Results on Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseStateFractal63 1001 4692 57496.70 1227 1.59E-04 2.77E-07 5.25E-04 9.13E-07

BaseStateFractal64 870 7252 70203.28 1913 4.37E-04 6.22E-07 1.56E-03 2.22E-06

BaseStateFractal65 1001 6179 71061.32 1619 2.15E-04 3.03E-07 1.29E-03 1.81E-06

BaseStateFractal66 1001 3948 49857.22 1018 4.98E-05 9.99E-08 1.92E-04 3.86E-07

BaseStateFractal67 955 6140 77611.42 1623 3.97E-04 5.11E-07 2.35E-03 3.03E-06

BaseStateFractal68 1001 4085 67515.09 1069 1.30E-04 1.93E-07 5.26E-04 7.79E-07

BaseStateFractal69 1001 4367 76614.92 1151 2.22E-04 2.89E-07 8.92E-04 1.16E-06

BaseStateFractal7 723 16493 68967.84 4293 1.43E-02 2.08E-05 3.18E+00 4.62E-03

BaseStateFractal70 946 5539 46717.60 1409 6.31E-05 1.35E-07 2.22E-04 4.75E-07

BaseStateFractal71 455 10981 46715.56 2815 8.71E-04 1.87E-06 2.99E-03 6.40E-06

BaseStateFractal72 1001 4739 52077.16 1224 1.46E-04 2.81E-07 6.23E-04 1.20E-06

BaseStateFractal73 1001 1781 37795.36 468 1.36E-05 3.60E-08 5.34E-05 1.41E-07

BaseStateFractal74 824 5468 67022.16 1462 2.92E-04 4.36E-07 1.11E-03 1.66E-06

BaseStateFractal75 878 5245 63327.76 1342 2.44E-04 3.85E-07 1.61E-03 2.55E-06

BaseStateFractal76 954 4868 46291.18 1229 5.77E-05 1.25E-07 2.38E-04 5.13E-07

BaseStateFractal77 1001 3507 45002.52 928 8.72E-05 1.94E-07 3.50E-04 7.77E-07

BaseStateFractal78 1001 4002 58680.72 1025 8.65E-05 1.47E-07 3.57E-04 6.09E-07

BaseStateFractal79 578 7560 29611.76 1947 1.23E-04 4.14E-07 7.98E-04 2.69E-06

BaseStateFractal8 1001 3482 30002.22 875 3.02E-05 1.01E-07 1.39E-04 4.63E-07

BaseStateFractal80 1001 2734 64619.76 714 5.89E-05 9.12E-08 1.99E-04 3.08E-07

BaseStateFractal81 649 6161 45722.79 1556 1.25E-04 2.74E-07 6.63E-04 1.45E-06

BaseStateFractal82 1001 3602 68832.69 928 8.75E-05 1.27E-07 4.43E-04 6.44E-07

BaseStateFractal83 242 15456 37187.14 4050 8.04E-04 2.16E-06 3.53E-03 9.49E-06

BaseStateFractal84 1001 3400 59242.30 891 8.16E-05 1.38E-07 3.41E-04 5.75E-07

BaseStateFractal85 718 5025 47514.35 1278 1.06E-04 2.22E-07 3.87E-04 8.15E-07
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Validation Results on Fractal Systems - continued

Test
Number

of Trials

Average

Steps

Average

Final EP

Average

Time

Average

Dev

Average Dev

%

Max

Dev

Max

Dev %

BaseStateFractal86 375 8588 57918.92 2273 2.31E-04 3.98E-07 9.68E-04 1.67E-06

BaseStateFractal87 891 3652 48145.09 935 6.06E-05 1.26E-07 2.48E-04 5.16E-07

BaseStateFractal88 574 5006 63272.30 1307 1.72E-04 2.72E-07 8.76E-04 1.38E-06

BaseStateFractal89 553 5391 63498.25 1343 1.53E-04 2.41E-07 6.06E-04 9.55E-07

BaseStateFractal9 1001 7526 64229.57 1929 4.21E-04 6.55E-07 1.32E-03 2.06E-06

BaseStateFractal90 483 4319 80405.17 1111 1.35E-04 1.67E-07 5.73E-04 7.12E-07

BaseStateFractal91 376 5281 55739.43 1335 9.25E-05 1.66E-07 5.45E-04 9.78E-07

BaseStateFractal92 883 1970 32787.19 511 3.40E-05 1.04E-07 1.44E-04 4.39E-07

BaseStateFractal93 486 3447 80738.26 873 1.25E-04 1.54E-07 4.54E-04 5.63E-07

BaseStateFractal94 286 5036 72859.21 1302 3.12E-04 4.29E-07 1.77E-03 2.42E-06

BaseStateFractal95 166 8208 45933.07 2140 2.95E-04 6.42E-07 1.51E-03 3.28E-06

BaseStateFractal96 525 2364 32124.86 598 4.27E-05 1.33E-07 1.43E-04 4.44E-07

BaseStateFractal97 144 6649 66926.20 1663 2.98E-04 4.45E-07 1.78E-03 2.66E-06

BaseStateFractal98 127 7529 50732.52 1896 3.25E-04 6.41E-07 1.50E-03 2.95E-06

BaseStateFractal99 99 5431 49955.53 1292 4.80E-05 9.61E-08 1.91E-04 3.83E-07
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Appendix E

State File

The next page shows a sample of a state �le. This is a .py �le that our implementation uses

as input to generate a rod and elastic model. This �le also contains some display information,

such as rod colours.
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C:\TensegirtyOptimizer\States\Test5.py Tuesday, July 08, 2014 1:24 AM

#Lengths of the rods
L = [20,20,20,20,20,20]

#Starting point of the rods
P = [[50,50,50],[-5,0,10],[10,5,0],[10,-5,0],[0,10,5],[0,10,-5]]

#Directions of the rods
D = [[0,0,-1],[0,0,-1],[-1,0,0],[-1,0,0],[0,-1,0],[0,-1,0]]

#Colours of the rods
C = [[0.6,0.6,0.6],[0.6,0.6,0.6],[0.6,0.6,0.6],[0.6,0.6,0.6],[0.6,0.6,0.6],[0.6,0.6,0.6]]

# Lengths of the ellastic edges.
N = [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]

# Elasticity of the ellastic edges
E = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

# Setting up the connections
def ConnectRods(rods):

edge_lst = []
edge_lst.append([rods[0].p_1,rods[4].p_1,E[0],N[0]])
edge_lst.append([rods[0].p_1,rods[4].p_2,E[1],N[1]])
edge_lst.append([rods[0].p_1,rods[2].p_1,E[2],N[2]])
edge_lst.append([rods[0].p_1,rods[3].p_1,E[3],N[3]])
edge_lst.append([rods[0].p_2,rods[5].p_1,E[4],N[4]])
edge_lst.append([rods[0].p_2,rods[5].p_2,E[5],N[5]])
edge_lst.append([rods[0].p_2,rods[2].p_1,E[6],N[6]])
edge_lst.append([rods[0].p_2,rods[3].p_1,E[7],N[7]])
edge_lst.append([rods[1].p_1,rods[4].p_1,E[8],N[8]])
edge_lst.append([rods[1].p_1,rods[4].p_2,E[9],N[9]])
edge_lst.append([rods[1].p_1,rods[2].p_2,E[10],N[10]])
edge_lst.append([rods[1].p_1,rods[3].p_2,E[11],N[11]])
edge_lst.append([rods[1].p_2,rods[5].p_1,E[12],N[12]])
edge_lst.append([rods[1].p_2,rods[5].p_2,E[13],N[13]])
edge_lst.append([rods[1].p_2,rods[2].p_2,E[14],N[14]])
edge_lst.append([rods[1].p_2,rods[3].p_2,E[15],N[15]])
edge_lst.append([rods[2].p_1,rods[4].p_1,E[16],N[16]])
edge_lst.append([rods[2].p_1,rods[5].p_1,E[17],N[17]])
edge_lst.append([rods[2].p_2,rods[4].p_1,E[18],N[18]])
edge_lst.append([rods[2].p_2,rods[5].p_1,E[19],N[19]])
edge_lst.append([rods[3].p_1,rods[4].p_2,E[20],N[20]])
edge_lst.append([rods[3].p_1,rods[5].p_2,E[21],N[21]])
edge_lst.append([rods[3].p_2,rods[4].p_2,E[22],N[22]])
edge_lst.append([rods[3].p_2,rods[5].p_2,E[23],N[23]])
return edge_lst


