Chapter 1

Introduction

1.1 Visual Languages and Graph Transformation

The origin of visual languages, or more precisely, of executable visual programming languages lies about
30 years in the past. At the beginning, research on visual programming was related to the main topic
of this tutorial: graph grammars or graph transformation (rewriting) systems. Some of the earliest visual
programming languages like AMBIT/G [Chr68] or AMBIT/L [Chr68] of Carlos Christensen and especially
PLAN2D [DFS74] of Denert, Franck, and Streng are indeed graph transformation languages. Furthermore,
Lindenmeyer systems [RS74], which are closely related to graph grammars, were and are still used for
modeling the growth of plants and for picture generation and animation purposes [RS86].

Later on, the graph transformation and the visual language research areas developed more or less inde-
pendently from each other until the end of the eighties. Visual programming research had a main emphasis
on designing and implementing programming languages and environments [VL86, ... , VL97], whereas most
graph grammar researchers spent their time with the formal definition and comparison of various types of
graph grammars [IWGG]. Since the end of the eighties, people are starting to cross the borderlines between
the two communities. On one hand, graph grammars are nowadays used for the definition of the syntax and
semantics of visual languages and for generating syntax-directed editors and parsers from these specifica-
tions. Examples of this kind may be found in [MV95, RS97, ZZ97]. On the other hand, there is a growing
number of visual programming languages and environments, which rely directly on the graph transformation
paradigm. Some examples of this category are the programmed graph rewriting languages PAGG [GGN91]
and PROGRES [SWZ95a] as well as the visual database programming language GOOD [PBA'92] and the
graph manipulation language Ludwigs [P{e95].

To summarize, the relationships between visual (programming) languages and graph transformations are
as follows:

e Graph transformation based languages are a special brand of rule-based visual programming languages
with precisely defined syntax and semantics.

e Various types of graph grammars are used to specify the syntax (and sometimes also the static seman-
tics) of visual languages.

e Finally, graph transformation based meta programming tools support the development of complete
visual programming environments (with syntax-directed editors, parsers, animation tools etc.).

These notes as well as the tutorial itself have the main emphasis on visual programming with graph
transformations (cf. chapters 3 and 4). The related topics of modeling visual languages and generating visual
language environments are briefly addressed in chapters 5 and 6. For the closely related topic of parsing
visual languages based on graph grammars the reader is referred to [RS97].
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2 INTRODUCTION

1.1.1 History of Graph Transformations

Graph grammars and graph transformation systems were invented about 25 years ago as so-called “web
grammars” [Sch70] and “Chomsky systems for partial orders” [PR69]. From the very beginning graph gram-
mars and graph transformation systems have been used to solve real world problems in the field of computer
science, biology, and so forth [CERT79]. In the beginning pure graph transformation systems with rather
simple forms of rules were used. But soon it became obvious that additional concepts were needed to make
the description of complex software engineering tools feasible. One of the most important extensions was
the introduction of new means for controlling the application of graph rewrite rules. This lead to the defi-
nition of PROgrammed Graph REwriting Systems, with PROGRES being one example of this kind. Many
intermediate steps were necessary before the visual graph transformation programming language PROGRES
evolved into the form documented in chapter 3 of these notes.

In the meantime Herbert Gottler developed rather similar graph transformation approaches, so-called Y
and X graph grammars [G6t83, G6t88]. Both Y/X graph grammars and all predecessors of PROGRES use
set theory to define the semantics of their graph transformation rules. Presented definitions state precisely
under what conditions a graph transformation rule’s left-hand side matches a subgraph of the regarded graph
and how the rule rewrites the graph by replacing the matched subgraph with a copy of its right-hand side.
The set-theoretical approach is also called the algorithmic approach due to the constructive flavour of its
definitions. It has a surprisingly large number of variants, which differ mainly with respect to the underlying
data model (e.g. directed graphs versus hypergraphs), the form of the left-hand sides of rules (e.g. a single
node or a whole graph), the way how a copy of a rule’s right-hand side is embedded in the preserved part of
the rewritten graph, and the available means for controlling the application of rules. The most comprehensive
survey of algorithmic graph rewriting approaches based on a data model of directed graphs is [Nag79a], the
most comprehensive monography for the data model of hypergraphs is probably [Hab92].

There are two other main branches of graph transformation systems, beside the algorithmic approach with
its set-theoretic fundament. The more popular one uses category theory as the underlying formalism, the
other one is based on predicate logic. The category-theoretical approach was developed in the early seventies
at the Technical University of Berlin [EPS73]. It is called the algebraic graph transformation approach for
the following reasons: The application of a rule to a given graph is defined by an algebraic construction, the
so-called pushout diagram of category theory [Ehr87]. Its rules are less expressive concerning the treatment
of context edges of to be deleted nodes, but more suitable for the definition of parallel graph transformation
approaches, a subject which is out of the scope of the tutorial. For further details concerning this topic the
reader is referred to [CMR*97].

The predicate logic graph transformation approach exists in two rather distinct forms. The first one,
developed by Courcelle, is based on monadic second order theory and related to the algebraic graph trans-
formation approach [Cou97]. It uses graph grammars for generating graph languages and predicate logic
formulas for the definition of decidable graph-theoretic properties for generated graph languages. The other
logic-based approach uses first order predicate logic only [Sch97b]. It is closely related to the set-theoretical
graph rewriting approach and was developed as the underlying formalism of the language PROGRES.

Nowadays the graph transformation paradigm has reached a certain degreee of maturity. Graph trans-
formation languages(graph grammars) are known or used by a growing number of people in rather different
communities as shown in the following chapters. For further details concerning the foundations and applica-
tions of graph transformations in various fields inside and outside the field of computer science the reader is
referred to the already published first and the forthcoming second volume of the “Handbook on Graph Gram-
mars and Computing by Graph Transformation” [Roz97, Roz99]. Finally, we should mention some serious
efforts to develop a common framework of graph transformation concepts and tools. The project GRACE —
for Graph and Rule Centered Environment — has for instance the long-term goal to offer potential users of
graph transformation languages not one hundred different approaches with undocumented (dis-)advantages
for certain application areas, but one generic adaptable approach instead [AEH96]. The project GRACE as
well as various other activities related to the disemination of graph transformation knowledge were and are
still sponsored by the European Community as part of the two working groups COMPUGRAPH (Computing
by Graph Transformation) and GETGRATS (General Theory of Graph Transformation Systems) as well as
through the TMR network APPLIGRAPH (Applications of Graph Transformation).
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Chapter 3

The Graph Transformation Language
PROGRES !

3.1 Object-Oriented Modeling and Graph Transformation

It is one of the main software engineering research tasks to develop languages, tools, and methods for the
construction of increasingly complex software systems for application areas like computer integrated manufac-
toring, chemical engineering, office automation, project management, hypertext editing, and computer-aided
software engineering itself. Software systems for these application areas have the common characteristics to
store, retrieve, modify, and display complex structured, distributed, but nevertheless to be integrated sources
of information.

The systematic design and realization of appropriate internal data models for these systems and their
accompanying data access operations is a challenging task. It requires languages, tools, and methods for

e the visual design of appropriate graph-like data models, which take objects as well as relationships
between objects into account,

e the high-level visual description of needed queries and update operations on related sets of objects
(graph transformations),

e the validation of once constructed data models and their operation descriptions,

e and the translation of these descriptions in correct and efficiently working as well as portable and
extendible system implementations.

Object-oriented modeling languages and their accompanying CASE tools are nowadays probably the most
popular means for these purposes. They offer class diagrams for the design of graph-like data models, state
transition diagrams for specifying the behavior of single objects, and object interaction diagrams (message
sequence charts) for describing the exchange of messages between different objects.

One of the main drawbacks of the object-oriented modeling paradigm as implemented by the new OMG
standard UML [Rat97, FS97], the Unified Modeling Language, and its predecessors developed by Booch,
Rumbaugh, and Jacobson may be characterized as follows: Almost all types of diagrams, which are used for
modeling the behavior of objects, rely on the notion of methods, i.e. on operations, which are attached to a
single object (class). This approach is appropriate as soon as the concrete architecture of a software system
has to be designed, but causes some problems during software analysis or early software design phases. In
the latter case, one should not be forced to associate regarded global system operations with a often more
or less arbitrarily chosen object class.

The activity diagrams of UML are a first attempt to offer “new” visual means for the definition of bussiness
or software system processes on a higher level. They describe required or permitted sequences of activities

IChapter 3 is an excerpt from the PROGRES chapter in [Roz99].
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28 THE LANGUAGE PROGRES

without translating them into methods of single objects. These activity diagrams belong to the class of
visual (programming) languages which model the flow of control of a regarded system. They do not offer
any (visual) means for describing concrete operations that manipulate sets of related objects.

The object-oriented modeling language (method) Fusion [CAB94] attacks the discussed problem in a
different way by offering so-called system operation schemata. These schemata describe the state of a regarded
subset of objects and their relationships (a subgraph of the whole object graph) before and after the execution
of a system operation with pre- and postconditions. It uses so-called life cycle expressions for modeling
permitted or required sequences of system operation calls. The main drawback of the Fusion approach is the
lack of any visual notation for the definition of pre- and postconditions.

This is the moment where the graph transformation approach comes into play. It offers a visual and
precisely defined notation for the definition of global system operations, which manipulate sets of related
objects (object graphs). A visual language, which combines the object-oriented modeling approach of Fusion
with the graph transformation paradigm should have about the following elements:

o Class diagrams for the object-oriented design of data models.
e Graph transformation rules for the specification of executable system operations.

e Control structures (life cycle expressions) for “programming” complex system operations

The language PROGRES and its programming environment have been designed having these require-
ments in mind. They are based on the data model of directed attributed graphs and offer the concept of
PROgrammed Graph RFEwriting Systems for the description of complex graph transformations. The language
combines rule-based, object-oriented, deductive and active database system as well as imperative program-
ming concepts for this purpose. Its semantics is formally defined based on the rather general formalism of
programmed graph or structure replacement systems [Sch97b].

PROGRES is a hybrid visual language with a mixture of tightly integrated graphical and textual elements:
a constructed graph transformation specification is a running text that contains graphical elements for the
left- and right-hand sides of graph transformation rules, which contain in turn text blocks for the definition
of additional application conditions, and so forth. Furthermore, any language construct with a graphical
representation has a text representation, too. The latter one may be manipulated using plain text editors.

The accompanying programming environment supports syntax-directed editing of graphical and textual
language elements, incremental parsing of manipulated text representations, analysis of several hundreds
of type checking rules, and execution of constructed graph transformations. It was originally designed for
specifying and generating (components of) tightly integrated software engineering tools as explained in
[Nag96]. It is nowadays used at various sites around the world, mainly for specifying and rapid prototyping
interactive tools with graphical user interfaces:

e Our colleagues in Aachen need PROGRES for rapid prototyping configuration management and process
modeling tools [Wes96] as well as for constructing software design and reverse engineering tools [Cre98].

o Software engineers at the University of Leiden have been using PROGRES for the specification of
visual (database query) languages and for prototyping process modeling tools [AE94, Zam96].

e There are also activities at INRIA, Sophia Antopolis, to manipulate Conceptual Graphs [Lap96] and at
Carleton University to develop distributed system analysis algorithms by means of PROGRES [Hri98].

The following section 3.2 starts the presentation of PROGRES with a discussion of its relationships
to well-known executable specification, visual programming, and rapid prototyping languages. Section 3.3
introduces then all language constructs needed for the definition of graph schemata, whereas section 3.4 deals
with all those language constructs needed for the declaration of graph queries and transformations. Section
3.5 changes the focus from “Specification-in-the-Small” activities to “Specification-in-the-Large” activities,
i.e. it introduces a graph transformation module concept that it is not yet an implemented part of the
PROGRES programming environment. The latter one is the main subject of section 3.6. Its intention is
to provide the interested reader with an impression of the “look and feel” of all programming environment
components as well as of the generated prototypes.
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3.2 Related Specification and Programming Languages

Writing a compact comparison of PROGRES with related work is a rather challenging job. There are too
many aspects which have to be taken into account due to the fact that PROGRES is an object-oriented data
modeling language, a formal specification language, a visual programming language, a meta programming
language for generating software engineering tools, and one example of a graph transformation language.
The following subsections are nevertheless an attempt to cover all these aspects.

3.2.1 Semiformal Modeling and Formal Specification Languages

Traditionally used structured analysis and design methods — as for instance those proposed by Hatley and
Pirbai [HP87] or Yourdon [You89] — as well as more recently developed object-oriented analysis and design
methods — like those proposed by the “Three Amigos” Booch [Boo94], Jacobson [Jac94], and Rumbaugh
[RBEL91] or those proposed by Coleman et al. [CAB94] — suffer from the fact that they do not possess
a precisely defined syntax and semantics. They are very useful for describing the requirements and the
architecture of a software system on a semiformal level. But these descriptions cannot be used for verifying
certain properties of the system under construction.

Formal specification languages — as for example CIP-L [Gro85], Larch [GH93], or Z [Dil92] — on the other
hand possess a rigorously defined syntax and semantics. They support the verification of modeled system
properties or rely on property perserving refinement of abstract specifications into concrete implementations.
But their underlying formalisms of heterogeneous algebras, (typed) predicate calculi, or set theory are not
tailored towards the definition of graph-like data structures and the specification of graph transformations.
They rely on more general data models (like relations) and rather low-level data modifying operations (like
insert tuple into relation), on top of which the desired graph data model together with a graph pattern
matching and transformation mechanism has to be “implemented”. As a consequence, serious efforts are
under way to combine the graphical notations of object-oriented modeling languages for data and operation
modeling purposes with subsets of formal specification languages like Z. First results of this kind are Syntropy
[CD94], a combination of Z and Rumbaugh’s method OMT, as well as Catalysis [DW96], a combination of
Z and Coleman’s method Fusion.

The currently developed Unified Modeling Language (UML) [FS97] follows the same trait of thoughts by
offering a so-called Object Constraint Language (OCL) for the definition of derived attributes and relation-
ships, static integrity constraints for certain object classes and associations, or pre- and postconditions of
methods. OCL still suffers from the fact that it has neither a well-defined underlying type concept nor a pre-
cise semantics definition, comparable to the type and semantics definition for attribute and path expressions
in [Sch91]. Furthermore, neither UML nor its predecessors resolve the contradiction between rather high-
level graphical notations for designing data structures and rather low-level text-oriented means for defining
the effects of single object-modifying methods. A first proposal for specifying object behaviors based on
a graphical notation is published in [KHCM98]. The authors of this paper suggest the usage of snapshots
(object diagrams) as pre- and postconditions of operations. Such a pair of pre- and post-snapshots comes
very close to the definition of a graph transformation rule, without having its precisely defined semantics.

3.2.2 Visual Rule-Based Programming Languages

Changing our focus from specification or modeling activities to lower-level programming activities we have
to regard that category of visual programming languages which contains all graph transformation languages
as a special subclass. These are the rule-based visual programming languages.

Disregarding early graph transformation languages such as AMBIT/G or PLAN2D our history of visual
rule-based programming languages starts some years later on with systems like BITPICT [Fur91], ChemTrains
[BL93], KidSim [SCS94], Vampire [McI95], and PictorialJanus [KS90]. All of them, except PictorialJanus,
belong to the category of icon rewriting languages. Their underlying knowledge base is not a set of facts with
a superimposed graphical representation, but a two-dimensional picture, usually called workspace or grid,
with or without an underlying logical interpretation.
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All these languages adhere to the simple recognize-select-execute model of rule-based languages. Despite
their common execution model, visual rule-based languages differ from each other with respect to many
aspects like the structure of their workspace, the details of the pattern matching process, and so on:

e In BITPICT [Fur91] workspaces as well as LHS and RHS of rules are simple pixel grids; a rule matches
an area of the workspace which is identical to its LHS after geometric reflection and rotation operations.
The system does not support modeling of higher-level entities.

e KidSim [SCS94] uses different types of icons instead of a single type of pixel as grid entries. Its match-
ing process does not involve geometric reflection and rotation operations, but supports abstraction
by means of subclassing. A more general icon in a rule’s LHS matches any more specific icon on
the workspace. Icons may possess properties (like size) and rules may query and manipulate these
properties.

e Vampire [McI95] is another step further on from the simple data model of bit matrixes to logical
graph structures. It adds the concept of abstract spatial relationships — like “above” — and logical
connections between icons to the pure icon rewriting concept of KidSim. It is, therefore, no longer
necessary to write n different rules for processing all pairs of icons which are 1 to n grid units above
each other.

e ChemTrains [BL93], finally, is a kind of missing link between pure icon rewriting languages and graph
rewriting languages, which are no longer sensitive to geometric relations of regarded objects. It ma-
nipulates graphical objects like boxes and lines and regards only two types of spatial relationships
between them: connects and contains. It is therefore no longer well-suited for manipulating object
representations.

Comparing PROGRES with those rule-based visual languages introduced above we have to state that
languages like BITPICT [Fur91] or ChemTrains [BL93] focus on manipulation of data only. Even Vampire
[McI95] with its class hierarchies and icon rewriting rules comes without a rigid type concept and without
any type checking tools. Therefore, all these systems postpone recognition of programming errors to runtime.
With respect to its graph type definition capabilities, PROGRES is more similar to visual database pro-
gramming languages such as GOOD [PBA192]. But these languages have less expressive pattern matching
and replacing constructs. Furthermore, neither the above mentioned languages nor — to the best of our
knowledge — any other visual rule-oriented language offers nondeterministically working control structures
together with the ability to backtrack out of dead-ends of locally failing rule-application steps.

3.2.3 Graph Transformations and Meta Programming Tools

Changing our focus from VHL languages and visual programming languages to formalisms and meta pro-
gramming tools, which are used for the construction of software engineering tools or compilers, we come
across attribute grammars and tree transformation systems. Well-known tools in this area are CPSG [RT88]
and PSG [BS86]. Rather recently a number of software engineering tool or compiler construction projects
abandoned the rather restrictive data model of attributed trees used in these systems and adopted the
graph-based approach of the IPSEN/PROGRES project [Nag96]:

e The hypergraph grammar based system DiaGen (presented in various stages of development at V1’93
through VL’'98), generates complete visual programming environments.

e The system GenGEd is presented for the first time at VL’98 and built on top of the general purpose
graph transformation system AGG. It is a visual editor generator which combines graph transformation
with constraint solving technology for computing the layout of visual sentences.

e Optimix is a program optimizer generator, which relies on restricted classes of graph transformation
systems for generating efficiently working program (data flow) analyzers and program transformation
tools [ABmI6].
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All these systems were designed having rather specific purposes in mind instead of being general purpose
graph transformation languages such as PROGRES (or the just developed system AGG mentioned above).
For further details concerning these graph transformation tools and their comparison with PROGRES the
reader is referred to the forthcoming 2nd volume of the “Handbook on Graph Grammars and Computing
by Graph Transformation” [Roz99] or the WWW-page [URL9S].

3.3 Graph Schemata and Derived Graph Properties

This section introduces the basic elements for defining classes of graphs. It starts with the explanation of the
chapter’s running example in subsection 3.3.1, a modified version of the library information system (LIS)
case study in [EP98]. Graph schemata — in the sense of conceptual database schemata — introduce all
needed types of nodes and edges (cf. subsection 3.3.2) as well as their associated attributes (cf. subsection
3.3.5 and 3.3.6) and static integrity constraints (cf. subsection 3.3.6). The definition of appropriate attribute
data types is outside the scope of PROGRES and delegated to its “host” programming language C (cf.
subsection 3.3.4). PROGRES itself knows only a number of primitive data types and allows the definition
of new functions over these data types and their access operations (cf. subsection 3.3.3).

3.3.1 The Running Example and DIANE Graphs

Modeling the data structures and operations of the LIS database is one of the standard case studies of
the software engineering and the database management literature. Using the UML diagrams of [EP98] as
a starting point, we will use the data structures and the operations of a library database as our running
example, too.

First of all we have to clarify what kind of information has to be stored in a our library database and
how this information has to be encoded using the data model of DIrected, Attributed, Node and Edge labeled
graphs. These graphs are sometimes called DIANE graphs. They contain attributed labeled nodes instead of
classified UML objects and directed labeled edges instead of binary UML associations between objects.

Node identifiers of DIANE graphs allow one to distinguish between nodes which have the same label and
equal attribute values. There is no similar concept of edge identifiers, i.e. edges are treated as triples of the
form (source node identifier, edge label, target node identifier). As a consequence, it is not possible to create
two different edges between two nodes which have the same label and direction.

/ 3: Borrower "\ / 4: Borrower "\
name = “Hannah” name = “Timo” / 5: Series \

id = 001006 id = 001007 title = “Handbook of Graph Grammars”
editors = {“G. Rozenberg”, ... }
borrows borrows authors = {}
/

subtitle | sybtitle
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title = “Vol I: Foundations” 1Y
has | editors = {“G.
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id = 020457
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editors = { } )
ﬁ LendingLibrar;N fReferenceLibr%\ authors = {"Laura Ingalls Wilder", ... }
id = 000001 id = 000002
bookLimit = 5 bookLimit = 0

Figure 3.1: Manipulating precedence networks with graph transformations.
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The graph of figure 3.1 distinguishes — in accordance with [EP98] — between published Book titles on
one hand and available Item instances of these titles on the other hand. The general information about a
certain book title consists of its title text, a possibly empty set of authors, and a possibly empty set of
editors. Additionally needed attribute fields for publisher, ISBN number, and so forth have been omitted
due to lack of space. Associated Item nodes are used to keep track of how many Book title instances are
part of the library and their Borrowers. All Item nodes have a unique identifier id as well as an optional
loanDate attribute. The later one has a well-defined date value, whenever the corresponding Item is lent
out to a certain person. Otherwise, it has the undefined value nil.

The data model suggested in [EP98] has been extended such that we are able to deal with “part of”
relationships between titles. One example of this kind is the displayed subtitle relationship between the
“Handbook of Graph Grammar and Computing by Graph Transformation” Series and its first two volumes.
Furthermore, we are using explicit LendingLibrary and ReferenceLibrary nodes. This allows us to store
information about different (sub-)libraries in one common database.

In the following we will define the (graph) schema of our LIS database and some update and query
operations for adding titles, borrowers etc. to the database as well as for locating book items, which have a
certain keyword in their title.

3.3.2 Node Classes, Node Types, and Edge Types

PROGRES offers the following syntactic constructs for defining the intrinsic structural components of the
corresponding class of LIS graphs and their legal combinations. These are:

1. Node types such as Borrower or Book, which are used as node labels and determine the static properties
of their node instances.

2. FEdge types such as borrows or has, which are used as edge labels and which impose some restrictions
concerning legal edge source and target node types.

A situation that occurs very frequently when defining graph schemata in general is that many node types
and corresponding edge type definitions become very similar. As an example, consider nodes of type Book
or Series in figure 3.1. Nodes of these types possess title, editors, and authors attributes. Therefore,
it was natural to introduce an additional concept which allows us to define common node type properties
once and for all and to inherit them to node types as needed. These are so-called node classes. PROGRES
enables us to build inheritance hierarchies for node classes. As usual in object-oriented languages, the “is a”
notion is used for inheritance relationships. Multiple inheritance may be used to cut down the size of graph
schema definitions considerably. This fact is shown in figure 3.2, which contains a graphical representation
of our LIS graph schema. It has to be read as follows:

e Normal boxes represent node classes, which are connected to their superclasses by means of dashed
edges representing “is a” relationships. LIBRARY is for example a subclass of DB_OBJECT. Node classes
are abstract classes in the sense of object-oriented programming languages. They do not possess any
direct node instances.

e Boxes with round corners represent node types, which are connected to their uniquely defined classes
by means of dashed edges, too. The type Series belongs for example to the class TITLE. Node types
correspond to non-abstract final classes of object-oriented programming languages. They possess direct
node instances, but may not have any subclasses.

e Solid edges between node classes or node types represent edge type definitions. The edge type owns
defines for example a binary relationship between LIBRARY and Item nodes, i.e. any source node of
owns edges has to be an instance of LendingLibrary or ReferenceLibrary, any target node has to be
an Item instance. Directed edges distinguish between source and target nodes, but may nevertheless
be traversed in both directions.
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Figure 3.2: Graphical Representation of LIS Graph Schema.

The remaining elements of figure 3.2, which are used to declare node attributes and integrity constraints,
will be introduced later on in this section and the following section 3.3.6.

To complete the explanation of language features for constructing graph schemata, we have to describe
how edge type cardinalities may be defined. For this purpose we switch from the graphical schema definition
notation of figure 3.2 to the more detailed textual representation of figure 3.3. The figure contains additional
cardinality constraints for edges, which are not expressible using the graphical notation.

node class  DB_OBJECT end;
node class LIBRARY isa DB_OBJECT end;

node type LendingLibrary : LIBRARY end;
edge type owns : LIBRARY [1:1] -> Item [0:n];
edge type has : Item [0:n] -> TITLE [1:1];

node type Borrower : DB_OBJECT end;
edge type borrows : Borrower [0:1] -> Item [0:n];

Figure 3.3: Textual representation of LIS graph schema.

Four different kinds of cardinality constraint qualifiers are available for the definition of edge types:

—_

. A qualifier [0:1] requires the existence of at most one edge of this type.

(V]

. A qualifier [1:1] requires the existence of exactly one edge of this type.

w

. A qualifier [1:n] requires the existence of at least one edge of this type.

=~

. A qualifier [0:n] is the default. It imposes no constraints at all.

A cardinality constraint of the form [min:max] behind the target class or type of an edge type declaration
(following the symbol ->) defines lower and upper boundaries for the bundle of outgoing edges at a single
source node. Such a constraint behind the source class (before the symbol ->) defines lower and upper
boundaries for the bundle of incoming edges at a single target node. The declaration of owns edges allows
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for instance that any LIBRARY node is related to an arbitrary number of Item nodes, and it requires that
any Item node is always related to a single LIBRARY node.

Cardinality constraints are not permanently enforced in order to give a user the freedom to construct the
desired graph step by step. Currently, cardinality constraints are checked as late as possible, i.e. not before
the first attempt to match or traverse an edge of the regarded type.

3.3.3 Standard Attribute Types and Functions

Before introducing node attributes as an essential part of any graph schema definition, we have to explain
what kinds of basic types and functions are available for this purpose. Due to the fact that PROGRES has
its main focus on the specification of graph types, it gives only limited support for handling attribute values.
There are three built-in standard types boolean, integer, and string together with the usual operators
(functions) for values of these types. They are offered together with the predicate logic operators, arithmetic
operators, and string handling operators. Furthermore, it is possible to define new functions over built-in
standard functions, but there are no means for constructing new value types over the three built-in types.

It is a general rule that any important data type should be realized as a graph type, i.e. as a set of related
node and edge type declarations. Needed new data types of minor importance may be implemented in a so-
called host programming language and imported later on. The import of these data types is explained in the
following section 3.3.4. Due to lack of space we are not able to provide the reader with a detailed explanation
of all built-in types and functions as well as the available means for the definition of new functions. These
details may be found in the language reference manual [Sch98].

3.3.4 External Attribute Types and Functions

The previous section introduced the standard attribute types of PROGRES for numeric, character manipu-
lating, and logical expressions. All other types, as for instance the soon needed type Date, must be defined
elsewhere in a so-called host programming language. This is either C or a C compatible programming lan-
guage. Type declarations and procedures written in the selected host programming language have to be
compiled and provided to the PROGRES execution machinery in the form of a dynamic library, which is
loaded at run-time.

Special import clauses are used inside specifications to signal the existence of needed external types and
functions. These import clauses are not just lists of type and function identifiers, but convey necessary
type checking information about the signatures (return value and parameter types) of imported functions.
The following figure 3.4 continues our library example with an import of the above mentioned type Date,
a function to generate the current day’s date and a function to return the difference between two dates
as the number of passed days. Furthermore, the specification fragment imports a unique identifier number
generator, which will be used to initialize the id attributes of created DB_OBJECT nodes in the following
section.

from Time import

types Date;
functions _ currentDate : -> Date,
days : ( Date, Date) -> integer _;
end;
from ID_Generator import
functions _ getUniqueld : -> integer _;
end;

Figure 3.4: Import of external type definitions.
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3.3.5 Intrinsic Node Attributes

Based on previously introduced standard as well as externally defined attribute types we are now prepared
to introduce node attributes. They are an essential part of any graph schema declaration and offer the
appropriate means to model atomic properties of node objects. Please note that edges may not possess
attributes due to the fact that they are just binary relations between nodes without an own identity. As a
consequence, attributed relationships (and n-ary relationships) have to be modeled as nodes of an extra type
or class, which are connected to their associated nodes via separate edges.

There are three different kinds of attributes. There are so-called intrinsic attributes, which have a value of
their own that does not depend on values of other attributes. Later on, we will introduce derived attributes,
which determine their values by means of directed equations from other attributes (cf. section 3.3.6). The
third kind of attributes, so-called meta attributes of node types, offer means to handle node properties,
which have the same value for all instances of a given node type.

node class  DB_OBJECT
intrinsic key id: integer _ := getUniqueld;

end;
node class _ LIBRARY isa DB_OBJECT
intrinsic bookLimit : integer  :=10;
end;
node type LendingLibrary : LIBRARY end;
node type ReferencelLibrary : LIBRARY
redef intrinsic BookLimit := 0;
end;
node class  TITLE
intrinsic index title : string__;
authors : string  [O:n] := nil_;
editors : string  [0:n] := nil_;
end;
node type Item : DB_OBJECT
intrinsic loanDate : Date [0:1];
end;

Figure 3.5: Declarations of simple, set-valued, and optional intrinsic node attributes.

Figure 3.5 shows the textual notation for the declaration of six intrinsic attributes (cf. figure 3.2 for
the corresponding visual representation of the same declarations). The attribute type definitions of these
declarations have the same syntax (and semantics) as type definitions of local variables or formal parameter
of attribute functions or graph transformations. The type expression integer introduces e.g. an attribute
which has a single number as its value. The type definition string [0:n], on the other hand, introduces
an attribute that has a possibly empty set of character sequences as its value. And the type definition Date
[0:1] introduces an attribute which is either undefined or has a single Date value.

The first attribute declaration of figure 3.5 belongs to the class DB_OBJECT. It requires that any DB_OBJECT
node possesses an id attribute (instance) with a single number as value. The initial value for this attribute is
computed by calling the external function getUniqueId. All nodes of the following LIBRARY subclass declara-
tion do not only have an id attribute, but possess the additional attribute bookLimit. This attribute is used
later on to restrict the number of items that may be lent out to a single person simultaneously. Its declaration
defines 10 as the initial value, which is valid for all nodes of type LendingLibrary. The ReferenceLibrary
node type definition, on the other hand, redefines the inherited initial bookLimit value and introduces the
new initial value 0. This is just one straightforward example of how subclasses of node classes and node
types may override inherited attribute value defining expressions. For further details concerning attribute
redefinitions and the resolution of multiple inheritance conflicts the reader is referred to [Sch98].

The bookLimit attribute is one example of an intrinsic attribute, whose initial value should not be
changed during a node’s life time, i.e. which has the same value for all nodes of a given type. Changing
the keywords intrinsic and redef intrinsic to meta and redef meta within the attribute’s declaration
and redefinition would be the proper solution for making this requirement explicit (instead of stating it
implicitely through the absence of any operations which assign a new value to the bookLimit attribute).




36 THE LANGUAGE PROGRES

The example of figure 3.6 also demonstrates that it is possible to build indexes over intrinsic and derived
attributes. These indexes allow graph transformation rules to determine all nodes with a certain attribute
value efficiently. We have to distingush two cases:

1. Indez attributes are ordinary attributes for which the PROGRES run-time system maintains an index.
The index associates an attribute value with an arbitrary number of nodes in the general case. The
attribute title in figure 3.5 is one example of this kind; there may be two different Title nodes which
possess the same title text.

2. Key attributes are a special case of index attributes. Their indexes associate any possible attribute
value with at most one node. The attribute id in figure 3.5 is one example of this kind; different
DB_OBJECT have different id attribute values.

3.3.6 Derived Node Attributes and Constraints

The previous section introduced intrinsic attributes, which have a type-dependent initial value. Such an
initial value may be changed directly by calling an appropriate graph transformation. Furthermore, we
introduced so-called meta attributes, which have constant type-dependent values. Derived attributes, the
main subject of this section, have one common property with meta attributes: They are not legal targets
of explicit assignment statements. Nevertheless, they usually have node instance specific values, which may
change as an indirect consequence of performed graph transformations. Their values are determined by means
of directed equations only. A directed equation defines the value of a given derived attribute as a function
over a number of attributes of the same node or its direct or even indirect neighbors.

The values of derived attributes are automatically kept in a consistent state. For this purpose an in-
crementally working lazy attribute evalution mechanism is used. It is a variant of the two-phase attribute
evaluation algorithm in [Hud87] and an integral part of our DBMS GRAS [KSW95]. It works as follows:

1. A static attribute dependency graph is constructed at compile-time. It records triples of the form
(dependent attribute, defining attribute, path erpression). The path expression components of these
triples determine how the owner node of a dependent attribute is connected to the owner node of a
defining attribute. (cf. section 3.4.1).

2. A run-time mechanism inspects the static attribute dependency graph and monitors all relevant graph
modifications. It invalidates a dependent attribute, whenever one of its defining attributes or a path
to one of its defining attributes is affected.

3. Any read access to an invalid dependent attribute triggers the reevaluation of this attribute and thereby
the reevaluation of all its invalid defining attributes, too. The new computed value is stored and reused
until it is again invalidated by another graph transformation.

Figure 3.6 shows one example of a derived attribute declaration. It defines the fullTitle of a subtitle
node as the composition of three strings with the concatenation operator &. The first string is the title of
its supertitle, the second one the constant ": ", and the third one its own title attribute. The supertitle
of a title is determined by the path expression <-subtitle-, which traverses a subtitle edge against its
direction, starting at the given TITLE node self. The graph schema of figure 3.3 states that the supertitle
of a title is either uniquely defined or does not exist. The evaluation of the subexpression between [ and |
returns, therefore, either the title attribute value of the supertitle with an attached substring ": " or fails.
In the latter case, the attribute computation continues with the evaluation of the subexpression between |
and ] and returns the empty string " as a default value.

Figure 3.6 does not only contain one example of a derived attribute declaration, but it presents also two
examples of node integrity constraints. These constraints are introduced together with derived attributes for
the following reasons: They are similar to declarations of derived boolean attributes, which raise exceptions
whenever their value becomes false. Usually such an exception terminates a graph transformation process
with a run-time error. But we will see later on in section 3.4.6 that PROGRES offers additional means
for the definition of repair actions, which catch these exceptions and transform the erroneous graph until
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node class  TITLE
intrinsic
derived
fullTitle : string =
constraint
NoSubCycle = not ( self in self .(-subtitle->+));
end;

node type Borrower : DB_OBJECT
intrinsic
constraint
BelowBookLimit = for all Lib := elem ( self .usedLib)::
cgrd ( self .hasltem ( Lib)) <= Lib.bookLimit
end;

[ self .<-subtitle-&":"|™]& self title;

end;
Figure 3.6: Declarations of derived attributes and integrity constraints.

all violated constraints are fulfilled. This section introduces also a more complex form of constraints which
belong to the graph as a whole and not to a single node in the graph.

The first constraint NoSubCycle excludes the existence of subtitle edge cycles of arbitrary length in the
graph. It uses the path expression -subtitle-> + to compute the set of all direct and indirect subtitles of a
regarded title and requires that the regarded title self is not an element of this set. The second constraint
guarantees that a Borrower observes the book limits of all used libraries. It requires that the number of
borrowed items (cardinality of the corresponding set of nodes) from a certain library is always below the
value of the bookLimit attribute of this library. It uses a seperately defined path expression usedLib to
determine the set of all relevant libraries and another path expression hasItem to compute for each selected
library Lib all books lent to the regarded Borrower node self (cf. section 3.4.1).

3.4 Graph Queries and Graph Transformations

The graph schema definition part of a specification as introduced in the last section enables us to specify
static properties of a class of DIANE graphs. Using these graphs as the internal representation of a database
implies that all database manipulating operations can be described by subgraph selection and (sub-)graph
transformation steps. Analogously to the use of the term “schema”, in the sense of a database schema, these
operations are called “transactions” in the sense of database transactions. Such a transaction is usually
composed of basic subgraph matching and transformation steps, which are specified by means of so-called
subgraph tests and graph transformation rules.

The following section 3.4.1 starts with the explanation of path expressions (and restrictions), which were
already used for the declaration of derived attributes and which are even more important for the definition
of complex application conditions for subgraph tests and productions. The following section 3.4.2 introduces
our basic means for the definition of parametrized subgraph tests. Section 3.4.3 explains afterwards the basic
concepts of productions. Advanced features for defining optional or repeated subgraph patterns as well as for
(pseudo-)parallel graph transformations are postponed to the following section 3.4.4. The last section 3.4.5
shows how complex transactions may be programmed by combining an imperative style of programming
with the depth-first search and backtracking programming paradigm of Prolog-like languages.

3.4.1 Restrictions and Path Declarations

Restrictions and path declarations — as shown in figure 3.7 — are our basic means for the definition of
derived node sets with certain properties and derived relationships between nodes. They are used within
attribute evaluation rules to determine context nodes with needed attribute values and within tests and
productions as application conditions. The path usedLib defines e.g. a derived directed binary relationship
between Borrower nodes and Library nodes. It relates any Borrower node to all those Library nodes which
are reachable by traversing first a borrows edge from source to target and then an owns edge from target to
source.
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path usedLib : Borrower [0:n] -> LIBRARY [0:n] =
-borrows->
& <-owns-
end;

restriction overdue( DayLimit : integer ) :ltem =
valid _ ( DayLimit < [ days( currentDate, self .loanDate)
10]

)

end;

Figure 3.7: Textually defined paths and restrictions.

The last declaration of figure 3.7 is an example of a rather trivial parametrized restriction. It restricts a set
of Item nodes to those nodes, where the number of days between the currentDate and the node’s loanDate
exceeds the given limit DayLimit. Its definition does not traverse edges (for imposing context restrictions),
but inspects a single attribute of a regarded node. Due to the fact that the inspected attribute loanDate was
defined as an optional attribute (cf. section 3.3.5), it may happen that the subexpression self.loanDate
and, as a direct consequence, its enclosing expression days(currentDate, ... ) has an undefined value.
This is the reason why we had to use the construct [ days(...) | 0 ] to define 0 as a default value, which
is is returned instead of an undefined days result and which is always below the required day limit.

The usedLib path declaration contains a textual path expression which navigates from a given set of
source nodes along certain edges in a graph and returns their target nodes. The notion of such a path
expression within the area of graph grammars was originally introduced to determine and manipulate the
embedding of transformed subgraphs [Nag79b]. They are nowadays more important for defining complex
application conditions, derived graph properties, and integrity constraints.

Basic path expressions were already used in section 3.3.6 for the definition of attribute evaluation rules.
They belong to one of the following categories:

e edge operators of the form -e-> or <-e- allow the traversal of e labeled edges from source to target
or vice versa,

e attribute conditions of the form valid exp, as used within the restriction overdue, require that a
given node on a path has certain attribute values,

e and restrictions of the form instance of X, where X is a node class or type identifier, require that a
node belongs to a certain type or class.

Many path operators are available for composing more complex expressions from basic ones. Often used
operators are the concatenation p1 & p2 for evaluate first p1 and apply then p2 to the result of p1, pl or
p2 for evaluate both p1 and p2 and construct the union of their results, p+ for computing the transitive
closure of p, and so forth. Furthermore, PROGRES offers appropriate means for the definition of conditional
as well iterating path expressions:

e A conditional path expression of the form [ <-owns- | <-subtitle- ] makes first an attempt to
traverse an owns edge in reverse direction. If this attempt fails another attempt is made to traverse a
subtitle edge in reverse direction.

e The iterating expression {not instance of Series :: <-subtitle-}traverses subtitle edges from
target to source as long as all nodes on the path are instances of node type Series. The path expression
returns the end points of the graph traversal, but not their visited predecessors (in contrast to the
transitive closure mentioned above).

Furthermore, all visual constructs available for the definition of subgraph tests and left-hand sides of
productions may be used for the declaration of paths and restrictions. It is, therefore, possible to use graph
patterns for the definition of restrictions and paths, which are used for the definition of more complex graph
patterns, which .. ..
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path hasltem( In: LIBRARY ) : Borrower [0:1] -> Item [0:n] =
1=>2 in_

7777777777777777777777777777777777777777777

borrows

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.8: Graphical (visual) definition of a path.

The path hasItem of figure 3.8 is one example of a parametrized path, which is defined using the probably
more readable graphical instead of the more compact textual notation. It connects a Borrower node x to
all those Item nodes of a given library In which are borrowed by x. Its graphical definition is evaluated as
follows:

1. Determine a start node and bind this node to node (pattern) ‘1 of the depicted graph pattern.

2. Traverse all borrows edges, which have the match (occurrence) of ‘1 as source and bind their target
nodes one by one to node (pattern) ‘2.

3. Check whether the node bound to ‘2 is the target of an owns edge that has the given node ‘3 = In
as source.

4. Return to step (2) and continue with the next possible occurrence of ‘2 if the check of step (3) fails,
continue with step (4) otherwise.

5. Add the occurrence of node ‘2 to the result set and return to step (2).

6. Return the computed result set after all possible occurrences of node (pattern) ‘2 are processed.

3.4.2 Subgraph Tests and Attribute Conditions

Paths and restrictions are the appropriate means to define derived relationships or functions which take a
set of nodes as input and return a set of nodes as output. Subgraph tests have to be used whenever one
has to define a graph query witout any parameters at all or with more than one (main) input or output
parameter of type node set. The test ReliableBorrower of figure 3.9 takes for instance a node of type
Borrower and another node of class LIBRARY as input. It has no output parameter except the implicitely
defined boolean result which signals success or failure of the constructed test. The test checks whether a
given person borrowed an item of a given library more than 100 days ago. It succeeds if such an item does
not exist, it fails otherwise. This behavior was defined using the negative (crossed-out) node (pattern) ‘2
which is related to the positive node (pattern) ‘1 via the path hasItem of figure 3.8.

The node inscription ‘1 = aPerson requires that the source node of the path hasItem is the provided
Borrower node, the path itself restricts the set of possible occurrences of ‘2 to all Item nodes which belong
to the given library aLib. The restriction overdue of figure 3.7 is finally used to select all those borrowed
items with a loanDate more than 100 days ago. Please note that a hollow fat arrow between two nodes
requires the existence of a certain path (derived relationship) between these two nodes, whereas a hollow
fat arrow attached to a single node requires that its target node fulfills a certain restriction (belongs to a
derived node set).

ReliableBorrower is one example of a test whose single purpose is to check for the existence of a certain

graph pattern. It either succeeds or fails. This is indicated by the qualifier [0:1] between its parameter
list and the equals sign. The following test FindItem of figure 3.10 has a different qualifier [0:n] due to
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test _ReliableBorrower( aPerson : Borrower ;
aLib : LIBRARY) [0:1] =

7777777777777777777777777777

‘1 =aPerson ‘

Figure 3.9: A parametrized subgraph test without any output parameters.

the fact that a call of FindItem either fails or returns a nondeterministically chosen result. The test takes
a (nonempty) set of LIBRARY nodes plus a single keyword as input and returns a single node Match as
output. This node is a nondeterministically selected element of the following set of Item nodes: Its elements
belong to a library that is an element of the InLibraries set and they have a title that contains the given
Keyword as a substring. The first condition mentioned above is guaranteed by the node inscription ‘1 =
elem(InLibraries), the second one by the attribute condition after the keyword condition.

test Findltem( InLibraries : LIBRARY [1:n];

Keyword : string ; out Match : Item) [0:n] =
‘ ‘1 = elem (InLibraries) ‘

owns *

‘3 :TITLE
condition exist pos:= elem(1.. length (‘3.title) ) ::
Keyword = substr (‘3.title, pos, pos + length _(Keyword))

end;
return _ Match :=‘2;

end;

Figure 3.10: A subgraph test with nondeterministic behavior.

3.4.3 Productions and Attribute Assignments

Subgraph tests together with path declarations and restrictions are the basic constructs for inspecting already
existing graphs, whereas graph transformations rules — usually called productions — are their counterparts
for creating and modifying schema consistent graphs. Productions have a left- and a right-hand side graph
pattern (LHS and RHS) as their main components, where the LHS may contain the same elements as
the subgraph patterns of already presented tests (or paths and restrictions with graphical definitions). A
production’s RHS has a rather different structure. It may neither contain negative nodes and edges nor
restrictions or paths as application conditions.
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The production AddTitle of figure 3.11 has a rather trivial LHS and RHS, the dashed rectangles above
and below the separator : :=. Its LHS requires the nonexistence of a node which belongs to the abstract class
TITLE and which has a title attribute with the given value TitleText. Its RHS creates a new node of type
TitleType. Permitted actual values for the formal parameter TitleType are all those node types which have
TITLE as a superclass (as e.g. Book or Magazin). The new node’s attributes title, editors, and authors
receive their values from the corresponding formal parameters TitleText, EditorSet, and AuthorSet. Any
call of AddTitle either fails or produces a deterministically defined result. As a consequence, the production
has the qualifier [0:1].

production  AddTitle( TitleType : typein  TITLE;
TitleText : string
EditorSet : string  [0:n];
AuthorSet : string  [0:n] ) [0:1] =
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transfer 1'.title := TitleText;
1'.editors := Editors; 1'.authors := Authors;
end;

Figure 3.11: A node-creating production (graph transformation).

The production AddTitle adds one node to the graph without creating any connections to already existing
nodes. The following production LendItem shows how it is possible to create edges between already existing
nodes or edges between old nodes and new nodes. The production’s RHS contains one node with inscription
n’ = ‘n for any positive LHS node ‘n. Binding LHS nodes to RHS nodes allows one to distinguish the
following three cases:

1. Occurrences of LHS nodes which are not bound to RHS nodes are deleted together with all adjacent
context edges.

2. Occurrences of LHS nodes which are bound to a uniquely defined RHS node are preserved together
with all those attribute values and context edges which are not explicitely manipulated by the regarded
production.

3. Any RHS node without a corresponding LHS node leads to the creation of a new node.

This approach has been adopted from the algebraic graph transformation approach, as presented in
[Roz97]. It allows one to copy or redirect a fixed number of edges, but fails if an a priori unknown number
of context edges has to be manipulated. PROGRES offers for this purpose so-called embedding rules, which
were adopted from the algorithmic approach in [Nag79b] and which allow one to manipulate sets of context
edges. An embedding rule of the form

redirect -borrows-> as <-lost- from ‘1 to 4’ ;

deletes e.g. all borrows edge which have the occurrence of the LHS node ‘1 as source. It creates for any
deleted borrows edge to a context node n a new lost edge which has the context node n as source and
the occurrence of the RHS node 4° as target. These textual embedding rules destroy to a certain extent the
visual flavor of graph transformations. Other graph transformation approaches, as e.g. the X graph grammar
approach, offer a graphical notation for the definition of embedding rules. The advanced set pattern matching
concepts of the following section 3.4.4 gives similar support for the graphical definition of embedding rules.
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Based on these general remarks it is easy to explain the behavior of production LendItem in figure 3.12.
Its LHS matches a subgraph, where the given node parameters ForPerson and ThisItem are bound to LHS
nodes ‘1 and ‘2, respectively. Furthermore, ‘3 is bound to the always existing and uniquely defined LIBRARY
node that owns the regarded Item node, if this node is an instance of the type LendingLibrary. Finally, the
LHS forbids the existence of a borrows edge between the occurrences of ‘1 and ‘2 as well as the existence
of another Borrower node with a borrows edge to the selected ThisItem node. The associated attribute
condition (below the production’s RHS) guarantees that the book limit of the involved library is observed.

production _ Lendltem( ForPerson : Borrower ; Thisltem : Item) [0:1] =

| |
| ‘3 :LendingLibrary ‘L =ForPerson |
| |
| |
! owns ‘ !
| borrows w
| |
| |
| ‘2 =Thisltem ‘4 : Borrower |
| borrows |
| |
T
L o=s |
| |
| owns # |
| |
l borrows l
| 2 =2 el I =1 |
| |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition card (‘l.hasltem (‘3)) <= ‘3.bookLimit;
transfer 2’ .loanDate := currentDate;

end;

Figure 3.12: An edge-creating production (graph transformation).

A call of production LendItem either fails or creates a borrows edge between the occurrence of ‘1 and ‘2
and assigns the result of the external function call currentDate to the attribute loanDate of the occurrence
of ‘2. The production has no accompanying embedding rules, i.e. it preserves all already existing context
edges of the manipulated three node occurrences.

3.4.4 Advanced Pattern Matching Concepts

The production RemoveOverdueBorrower of figure 3.13 selects any Borrower node which did not return a
lent-out Ttem within 100 days. It fails if such a node does not exist, it makes a nondeterministic selection if
more than one node fulfills the condition. The production removes the selected node and returns its name as
well as an always nonempty set of all related Item nodes. This set of LostItems is determined by computing
the union of the occurrence of the regular RHS node 2° = ‘2 with the set of occurrences of the dashed
double rectangle RHS node 3’ = ‘3. The dashed double borders of the LHS node ‘3 and its related RHS
node 3’ indicate that it may not only be bound to a single graph node, but to the maximum set of all
nodes fulfilling all stated requirements. In the same way as we had four different options for edge type and
variable/parameter cardinalities, four different kinds of nodes are available on LHS and RHS of productions:

e Solid simple boxes are mandatory LHS/RHS nodes, which have single graph node instances as occur-
rence,

o dashed simple boxes are optional LHS/RHS nodes, which match a single graph node with the required
properties if existent, but do not cause failure of the overall matching process if such a node does not
exist,
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production  RemoveOverdueBorrower( out Name: string ;
out Lostltems : Item [1:n]) =
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return  Name := ‘l.name; Lostltems := (2’ or 3Y);
end;

Figure 3.13: A node deleting production (graph transformation).

e dashed double boxes are optional LHS/RHS set nodes, which match a possibly empty set of graph
nodes such that any node of the given set fulfills all mentioned requirements, and

e solid double boxes are mandatory LHS/RHS set nodes which are mapped onto a nonempty set of graph
nodes.

Taking all these different kinds of LHS/RHS nodes into account, we have to extend the overall proceeding
for finding matches of a production’s LHS as follows:

1. The first step is to find matches for all obligate LHS nodes, such that all positive LHS requirements are
taken into account and no two LHS nodes match the same graph node (isomorphic subgraph matching).

2. The next step computes maximal matches for all obligate LHS set nodes, such that additional conditions
and the isomorphism requirement are fulfilled.

3. The third step is to find appropriate occurrences for all optional LHS nodes if possible, such that
additional conditions and the isomorphism requirement are fulfilled.

4. The fourth step deals with optional LHS set nodes. They are mapped onto a possibly empty but
maximal set of graph nodes, such that all additional conditions and the isomorphism requirement are
fulfilled, too.

5. Finally, one negative LHS node or edge after the other is handled as follows: the algorithm checks
that the already determined LHS occurrence is not extendible with a match of the regarded negative
node or edge. Again, we have to disregard those graph nodes which are part of the determined LHS
occurrence.

The usage of optional and/or set nodes on a production’s RHS is restricted to the identical replacement
of nodes, i.e. these nodes are always bound to equivalent nodes of the rule’s LHS. It makes no sense to
require the creation of a set of nodes of undetermined size in a production’s RHS. Additional much more
complex mechanisms — such as rule amalgamation in [TB94] — would be necessary to handle situations
like “duplicate all nodes which are occurrences of a LHS set node” within one production.

There are two possibilities how to solve graph transformation problems which require the transformation
of an a priori unknown number of occurrences of a production’s LHS, beside those simple cases which can
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be handled by means of set nodes only. The first solution is based on a restricted form of parallel graph
rewriting. It works if all regarded occurrences of a production’s LHS share only preserved nodes and edges.
The production RemoveOverdueBorrower fulfills this condition and may be applied to all its occurrences in
parallel. A single parallel graph transformation step removes then all unreliable Borrower nodes, returns
the set of their names, and the set of all related Item nodes. The declaration of RemoveOverdueBorrower
has to be changed as follows for this purpose: First of all we have to replace its nondeterministic behavior
qualifier [0:n] with the parallel application qualifier “*”. Furthermore we have to change the declaration
of its output parameter Name such that it returns a set of names instead of a single name of the removed
Borrower node(s).

The second solution for manipulating sets of LHS occurrences is based on iterating control structures. It
is the main subject of the following section.

3.4.5 Control Structures and Transactions

It is often necessary to regard rather complex graph queries or transformations which may not be specified as
a single subgraph test or production. A pure rule-oriented approach forces one to extend the LHS and RHS
of productions in such a way that additional marker nodes guarantee certain sequences of graph transfor-
mation steps (applications of productions). This was the main reason for introducing so-called programmed
graph grammars many years ago, where imperative control structures enforce certain orders of production
applications [Bun79]. This approach leads to more readable and better maintainable specifications.

PROGRES goes one step further on in the following sense: It does not only offer imperative deterministic
control structures for programming complex graph transformations, but allows one to construct them using
a Prolog-like depth-first search and backtracking programming style. It offers for this purpose the following
control flow operators:

e The operator & corresponds to the left/right evaluation of Prolog clauses. It allows one to define
sequences of graph transformation steps.

e Another control structure choose ...else ...end corresponds to the top/down selection of Prolog
clauses with matching heads. It allows one to incorporate conditional branches in the program flow.

e Furthermore, the operator and is available as the nondeterministic version of the operator &. Its ar-
guments are two subprograms which have to be executed in a randomly selected order. Later on
backtracking may cause a permutation of the selected order.

e The operator or is the nondeterministic counterpart of the choose operator. It selects one of its
arguments, a subprogram, randomly and executes it. Later on backtracking may enforce the selection
and execution of another argument.

e Finally, recursion or conditional iteration as a shorthand for tail recursion can be used to program even
more complex graph transformations with the usual risk of nonterminating evaluation processes.

Figure 3.14 contains two examples of transactions. They have the same characteristics as single produc-
tions:

e They are atomic, i.e. any execution attempt either succeeds as a whole or aborts without any graph
modifications.

e They are consistency preserving, i.e. they manipulate schema consistent graphs only which fulfill all
defined integrity constraints.

e They make their own nondeterministic choices and initiate backtracking when a particular decision
leads into a dead-end later on.
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transaction CleanDB [1:1] =
use Name: string ;

Lostltems : Item [1:n] do
loop
RemoveBorrower( out Name, out Lostltems)
& write( Name )
&  forall i= elem ( Lostltems) do
Removeltem( i)
end
end : [1:1] (* loop as a whole is deterministic *)
end
end;
transaction FindAndLend( InLibraries : LendingLibrary [1:n];
Keyword : string__;
ForPerson : Borrower ) [0:n] =
use Match : Item do
choose
Findltem( InLibraries, Keyword, out Match)
& Lendltem( ForPerson, Match )
else
Findltem( InLibraries, Keyword, out Match)
& Reserveltem( ForPerson, Match )
end
en
end;

Figure 3.14: Graph transformations programmed as backtracking transactions.

As a consegence, transactions of this chapter fulfill the well-known ACID properties of database trans-
actions: Atomicity, Consistency, Isolation, and Duration. The underlying database system GRAS [KSW95]
is responsible for guaranteeing atomicity, isolation, and duration of transactions, whereas the PROGRES
run-time system offers appropriate mechanisms for checking a graph’s consistency with respect to all defined
integrity constraints (cf. section 3.4.6).

The first transaction of figure 3.14, CleanDB, defines a never failing graph transformation with a nondeter-
ministic internal behavior but a deterministic result. Its outer loop is repeated until the execution of its body
fails, i.e. until the execution of production RemoveOverdueBorrower fails (cf. figure 3.13). This production
removes a randomly chosen Borrower node from the database, who did not return its loaned items. It fails
if such a node is not part of the database and terminates the surrounding loop.

A successful call of RemoveOverdueBorrower returns the Name of the removed node and the set LostItems
of all its borrowed items. The transaction prints the Name of the removed Borrower node using the external
function write and removes one LostItem after the other from the database, too. Please note that the body
of the loop has a nondeterministic behavior, but the transaction as a whole has a deterministic behavior.
It removes a well-defined set of nodes from the database. It is, therefore, possible to qualify the whole
transaction as well as its main loop with [1:1]. The qualifier [1:1] overrides the default qualifier [0:n]
for nondeterministic partially defined transactions. It provides the reader of a specification as well as the
PROGRES compiler and interpreter with some extra information about a constructed transaction’s behavior.
This information is used for checking a specification’s consistency and for avoiding unnecessary bookkeeping
overhead for backtracking purpose.

The second transaction of figure 3.14, FindAndLend, is one example of a graph transformation, whose im-
plementation relies on depth-first search and backtracking. Its body is a choose construct with two branches.
Both branches contain calls to nondeterministic as well as partially defined productions. The transaction’s
execution starts with the call of FindItem in the choose statement’s first branch. This call either fails and
causes the execution of the choose statement’s second branch or returns an Item node which belongs to one
library in the set InLibraries and which has the given Keyword as a substring in its title. The LendItem
production call takes the selected Match as input. It fails if the selected Match is already lent out to another
person and triggers backtracking. Backtracking returns to the last nondeterministic selection in the flow of
control and restores the manipulated graph’s old state if necessary. In our case we have to reexecute the
test FindItem such that it returns the next matching Item node of the graph. The execution continues with
another call of LendItem if such a node does exist, it aborts the execution of the first choose statement
branch otherwise.
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The second branch of transaction FindAndLend reinspects all matching Ttem nodes and makes a reservation
for the first match. A more realistic implementation of FindAndLend would inspect the set of all matches
and select an element with the earliest loanDate and/or the lowest number of reservations.

3.4.6 Consistency Checking with Constraints

Graph tests may be used in a straight-forward way for supervising the structure and state of a manipulated
graph. They can be embedded in the control flow of transactions in order to check for certain graph patterns
which are considered essential for the consistency of the underlying graph. Depending on existence or non-
existence of these patterns it is possible to proceed with different cases in the specification. The disadvantage
of this approach is that the functional behavior of the specified system gets lost in graph tests and branching
to control flow alternatives.

It depends on the purpose of a given specification whether it is necessary to check the consistency of
the graph structure before or after a certain graph transformation explicitely. These checks allow one to
recognize unexpected or unwanted situations and to initiate backtracking as one possibility to return to a
consistent graph state. Nevertheless, the initiation of backtracking alone does not necessarily indicate an
error situation. It is rather the strength of PROGRES to let its users decide whether a problem is better
modeled adhering to a declarative or imperative programming style.

Furthermore, it is a matter of early specification phases to check the well-definedness of graph state
changes. As long as the complete specification is under construction a debugging facility is useful which helps
to identify and to eliminate errors. At a later time, when the specification has proven to work sufficiently
correct, it should be possible to disable the checking mechanisms for reasons of efficiency. In that case they
can be considered as assertions or extended documentation. Furthermore, they may be used for verifying the
correctness of critical operations.

Integrity constraints have been introduced in database systems as a mechanism to ensure consistency of
their large data sets. In [HW95] the integration of graphical integrity constraints with graph transformation
based on category theory was proposed. We have adopted the proposal for the purpose of checking graph
consistency during the execution of PROGRES specifications.

Node integrity constraints were already introduced in section 3.3.6 because of their close relationships to
node attributes. Node integrity constraints are used to monitor the state of single nodes (and their direct
neighborhood). They are not very helpful for examining the graph as a whole and for stating more complex
consistency conditions. Therefore, PROGRES offers global integrity constraints which can either be defined
using a textual or a graphical notation.

In its simplest form, such a constraint consists of two graphical parts, the for and the ensure part.
The semantics of the constraint is that each pattern which matches the for part in the graph must also be
extendible to match the ensure part. Otherwise the constraint fails and the execution is halted. The for
part of the constraint is optional. In that case the occurrence of the ensure pattern in the graph is checked.
That means the semantics of the constraint changes from “for all” to “exists” quantification.

Integrity constraints are very helpful for monitoring and preserving the internal consistency of a given
specification. They may for instance be used to require that whenever an Item has a Borrower, the Item
has to belong to a LendingLibrary and, furthermore, that there is at most one Borrower at a given time.

Figure 3.15 defines an appropriate integrity constraint. It forbids the existence of more than one Borrower
node associated with the same Item node. Furthermore, the constraint ensures that only LendingLibrary
items are lent out, whereas ReferenceLibrary items must remain present. A consistent LIS specification may
never violate such a constraint. Any attempt to violate the introduced constraint terminates the execution
of the erroneous graph transformation instantly. In early stages of development this kind of constraints is a
useful debugging facility.

In some cases it would be helpful if a specification would not only be able to check whether all defined
constraints are respected (and to stop the execution otherwise), but also to remove detected inconsistencies
on its own.

Active constraints have been invented for this purpose [WC96]. They extend the notion of integrity
conditions by so-called repair actions which are executed if a certain constraint is violated. That means, where
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constraint
for
3 borrows 3
| M ‘2 . Borrower ‘ |
I I
ensure
3 ‘ ‘3 :LendingLibrary ‘ ‘4 : Borrower ﬂ i
3 borrows 3
| owns |
| Y borrows |
: S e |
end;

Figure 3.15: Integrity constraint in the Library Information System.

the internal consistency checking constraint halts execution, the active constraint “repairs” the forbidden
graph state. Note that if the constraint is still violated after the repair action has been executed the execution
halts for this kind of constraints, too.

Figure 3.16 shows a constraint with a repair action which is rather similar to the operation
RemoveOverdueBorrower in figure 3.13. For every pair of borrower and borrowed item that can be matched,
it is checked whether the lent item is overdue. If overdue items are found the operation RemoveThisBorrower
is called, which removes the borrower from the set of library users. The books borrowed by the removed user
are collected in a “lost items” list.

constraint
for
3 borrows 3
! ‘2 :ltem 44— | ‘L : Borrower !
| |
ensure
i not overdue( 100 ) i
: borrows 1
L2 - ‘1 |
| |
else
RemoveThisBorrower (‘1)
end;

Figure 3.16: Constraint with repair action.

As a consequence constraints can be used for two different purposes:

e “Real” integrity constraints are used to detect invalid states of the underlying model with respect to
required invariants. They represent the run-time counterpart of the static type system of PROGRES.
That means, situations which cannot be handled statically need to be noticed and suppressed during
run-time. These constraints do not repair, they merely detect. They are used for debugging purposes
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during development of the specification and can be turned off for tested correct specifications without
changing the behavior of the system.

e Constraints with repair action are used to automatically call operations that react to an explicitely
modeled trigger. The trigger describes a forbidden graph state that demands reaction as soon as it is
detected. It is a matter of the model whether it must be handled immediately, or not. Repair actions can
be regarded as comfortable means to let the specification handle tasks automatically which otherwise
would have to be included as “test and repair” in the control flow at many places in the specification.
These constraints can be seen as coupling mechanism between states and operations. Of course, these
constraints cannot be turned off without affecting the functionality of the system.

Sometimes it is a matter of taste whether a regarded consistency condition is treated as a real integrity
constraint or as an active constraint with a repair action. One might for instance argue that an Item instance
associated with two Borrower nodes constitutes a severe integrity constraint violation, which should even
be respected by any intermediate and temporarily existing graph state of a complex transformation process.
This point of view was adopted in figure 3.3, where the edge type borrower was declared together with
the cardinality constraint [0:1] for its Borrower target nodes. In this case the LIS specification has to
be debugged whenever the constraint is violated, until we have identified the graph transformation which
associated a second Borrower node with one Item node.

On the other hand one might argue that the LIS graph specification should be able to handle such an
inconsistent situation on its own. In this case, an active constraint might be useful, which calls a Borrower
node removing repair action as a kind of exception handling routine. Active constraints in this sense are
closely related to the concept of ECA rules in active databases [WC96]. They are Event-Condition-Action
triples, where an action is triggered if the condition holds after the occurrence of a specified event. In
our terms events are implicitely given by calling a certain operation. Conditions might either be graphical
patterns in global constraints or boolean evaluation functions in schema constraints. If they are violated
optional repair actions might be invoked.

To summarize PROGRES provides means to ensure the correctness of specifications on different levels.

e Using DIANE graphs as the data model avoids problems with pointers, which are a typical source of
errors in imperative programming languages.

e The context-free syntax of specifications is enforced by the editors of the PROGRES environment (cf.
section 3.6).

e Hundreds of static semantics rules guarantee that graph elements are only combined in a correct way
with respect to the language’s type system. To check these rules at compile time is the task of the
PROGRES analyzer (cf. section 3.6).

e Edge type cardinalities offer a smooth transition from compile-time type checks to run-time checks.
Some productions which violate defined cardinality constraints can be detected at compile-time, but
most of them have to be caught at run-time.

e Pre- and postconditions (not presented here) are assertions for graph transformations, which check the
well-formedness of a graph before a transformation takes place in order to guarantee its well-formedness
after its end. The violation of pre- and postconditions terminates an execution immediately.

e Integrity constraints are able to enforce the overall consistency of a manipulated graph. They have to
be checked at run-time, too. Some of them halt the execution if violated, others trigger an appropriate
repair action.

At the end of this section we have to admit that we did not discuss the problem, when defined integrity
constraints have to be checked. It is obviously impractical to check all constraints after every graph trans-
formation step. On the contrary it must be possible to associate a given constraint with a set of graph
transformations. These transformations may produce inconsistent intermediate graph states, but they may
not return an inconsistent graph as their final result. This topic is closely related to the main topic of the
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following section, the PROGRES module concept. These modules (packages) offer the appropriate means
to associate a set of integrity constraints with a set of exported graph transformations that have to respect
their constraints.

3.5 Modules and Updatable Graph Views

So far, the rule-based, object-oriented, and imperative programming constructs of PROGRES have been
introduced. The specification which we have used as a running example is still rather small. Serious speci-
fications have a size of more than 100 pages. Keeping these specifications in a consistent state and reusing
generic parts of one specification within another specification is a nightmare without the existence of any
module concept. Thus the lack of any implemented module concepts for graph transformation systems is
one of the main hindrances for a wider distribution of graph transformation specification or programming
languages in general and the language PROGRES in particular.

This problem should be familiar for software developers of the late 60ies or expert system developers of the
late 70ies. Well-known software engineering concepts like “abstract data types” [Par72] and “Programming—
in-the-Large” [DKT76] have been invented to overcome this problem. Later on, these concepts have led to
the development of modular programming languages like Modula-2 and Ada [WS84], the development of
software design languages like HOOD [Rob92], and to the development of module concepts for knowledge
base representation languages like PROTOS-L [Bei95].

It is a common goal of the graph grammar community to introduce modular programming and refinement
concepts. Therefore, a variety of publications have been presented concerning this issue. They concentrate
on different issues of abstraction and structuring of specifications:

e The journal paper [KKS97] introduces functional abstraction with graph transformation units.

e A view concept, which allows merging specifications with a common specification basis, is discussed in
[EHTE9T].

o A first survey of possible graph transformation module concepts is given in [EE96]. It deals with precise
semantic definitions based on module concepts for algebraic specification languages.

To a large degree the problems found in the area of object-oriented modeling are quite similar to the ones
experienced with graph transformation systems. We have taken the joint efforts of the best-known object-
oriented modeling forces, the “Unified Modeling Language (UML)” [FS97], as a source of inspiration. UML
which has become standard provides the concept of packages. Packages, i.e. their contents, can be used,
nested, and refined. They seem to be a suitable modularization approach which can also be transferred to
graph transformation systems. Because of the lacking formal foundation of the semantics of packages and
their different relationships, we have precisely reformulated the definitions and restrictions in about a dozen
predicate logic formulas [SW97].

Taking together the experiences with modular programming languages, which have been the basis for our
first proposal for a PROGRES module concept [WS97], the influences from the graph grammar community,
and the package concept proposal of the industrial-strength OO modeling languages, we present a module
concept which fulfils the following requirements:

o A package constitutes a static, logical unit of data together with operations of a certain complexity. It
has no effects at runtime.

e A dependency between packages reveals some of the server’s resources while others remain inaccessible
to the client.

e A package can be developed, compiled, and tested independently from other packages and is replacable
by a package with the same export interface.

Adopting the basic properties of UML packages was possible due to the fact that the concept of establishing
a name space for a collection of declarations and visibility rules for clients accessing other packages are
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independent of their contents. Furthermore, with UML being a graphical language, its packages do not
separate interface and body. This is an important advantage for PROGRES because even if considered
as implementation details, the body of a production is a comprehensive documentation of its behavior.
Nevertheless some resources are public while others remain private. Public elements are accessible in client
packages by an import dependency from the client to the server package. Private resources are not accessible
from outside, at all.

Packages are intended to be used for quite different purposes, varying from the realization of encapsulated
abstract data types to the definition of open graph database (sub-)schemata. Together with pre-, post-, and
global integrity conditions a package builds a unit with a set of exported resources and semantic properties
of the specified graph type. Following the concept of “Design-By-Contract” [Mey97] a package can be reused
in different contexts.

3.5.1 PROGRES Packages

The simplicity of the running example and the fact that all working areas are concerned with “doing some-
thing with books” makes it possible to cover the structure of the whole example in one single schema. In
order to demonstrate how packages can be used in PROGRES specifications the LIS example is extended.
So far the schema in figure 3.2 comprises different working areas which are rather independent of each other.

1. The library administrator is responsible for purchasing new books and entering them into the library
catalogue.

2. The book database manager keeps the information about books and magazines up-to-date in the central
database.

3. The user adminstrator issues and revokes library user cards, and handles the lending and returning of
books or magazines.

We will now look further into the area of library adminstration. Let us assume that the library adminis-
trator has made bad experience with the return reliability of the library’s users. Too often books are returned
too late. The operation RemoveOverdueBorrower in figure 3.13 filters out the borrowers which have lent out
books longer than 100 days and kicks them out of the library. Unfortunately, together with the borrower the
books are also considered lost. In order not to rebuy non-returned books over and over, it seems promising to
kindly remind the borrower to return a book after the permissible borrow time of 30 days. For that purpose,
the library administrator needs a list of book items which are in fact borrowed for more than 30 and less
than 100 days.

test FindLentltemsIinDayRange( ThisLib : LendingLibrary ;
out Theseltems : Item [0:n]) =

‘ ‘
| |
| |
I I
| ‘
| |
| |
| |
| 1

I
| owns |
| |
I I
| ‘
I I
| |
| |
I I
| ‘
I I
| |
| |

return  Theseltems := ‘2;
end;
Figure 3.17: Test determining all books lent for a given range of days.

Test FindLentItemsInDayRange in figure 3.17 is rather similar to the LHS of figure 3.13. It returns all
books of the currently regarded library and filters out all borrowed books by requiring the existence of an
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incoming borrows edge. The resulting set of books is further reduced by applying the restriction overdue
in figure 3.7 with different values.

Since the loan date is not maintained by an index there is no efficient access to book items with a given
loan date. Even if an index is maintained, the underlying run-time system does usually not support range
queries efficiently. That means, to yield all elements matching the values in a range, we have to iterate
through the set of all possible candidates and to check whether their values lie in the given range. In order
to support range queries directly and to find all items lent out for more than 30 days for the “reminder”
list effectively, it is necessary to implement the loan date management by a tailored data structure on the
underlying graph.

The management of loan dates can be performed by a binary search tree implementation. The arrangement
of data in binary search trees allows the efficient access within a given range of values. A complete specification
of binary search trees with PROGRES is rather complex, if the tree is required to be balanced throughout
its life time. In this description we do not care about implementation details for the sake of brevity and
simplicity 2.

BINTREES

toRoot

rightSon

leftSon schema

transaction BinTreeCreate( out B:BinTree)=... end; .
operations
transaction BinTreeDelete( B : BinTree) = ... end;

query BinTreelsEmpty( B : BinTree) = ... end;

transaction BinTreelnsertitem( B : BinTree ;| : Item) = ... end;

=%

transaction BinTreeRemoveltem(B : BinTree ;| : Item) = ... en

query BinTreeltemExists( B : BinTree ; | : Item) = ... end;

|
=}
=%

restriction BinTreelteminRange(B : BinTree ; Ib, ub : integer ) :ltem=...

Figure 3.18: The interface of the binary search tree package.

Applying the principle of data abstraction in the classical sense to the binary search tree package BINTREES
results in figure 3.18. Recall that we actually do not distinguish interface and body of packages. Instead,
we distinguish public and private resources. In figure 3.18 the bold elements represent public elements, the
others represent private elements. Public resources, correspond to a package’s interface, whereas private
resources correspond to its body. Public resources are visible via an import dependency, private ones are
not. Nevertheless we will also use the terms interface and body in the following.

The internal binary tree implementation in figure 3.18 need not be visible for the library adminstrator
operations. Therefore, only the “anchor type” BinTree of the package and the entry type Item is exported
at the interface of the schema part. The type of the internal tree nodes remains hidden together with the tree
edges. The operations part provides the typical operations of an abstract binary tree type for creating and
deleting trees, for inserting and removing values from a tree, for retrieving values from the tree or testing
its emptiness, and, finally, for restricting items to those within a given range of values. These operations
are equipped with formal parameters corresponding to the current tree and item for which the operation is
invoked. Technically, the types of the formal parameters — BinTree and Item — must be visible for every
operation.

We will now answer the question how to handle different parts of a specification and their mutual depen-
dencies from an architectural point-of-view.

2In [Sch94] we have presented a complete specification of balanced binary search trees, so-called red/black trees.
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3.5.2 Specification-in-the-Large with Packages

Having the binary tree package with an efficient implementation, on the one hand, and the range query in
FindLentItemsInDayRange, on the other hand, we have to set the packages LIBRARY_ADMINISTRATION and
BINTREES in relation.

LIBRARY_ADMINISTRATION ‘ ITEMS
lentitems
LIBRARY BINTREES:BinTree _ v o
lostitems e loanDate : Date [0:1]
owns < imports
function GetLoanDate(l:Item) : Date = sse

h
(ITEMS:Item )£>[ TITLE_DB:TITLE )

~ \l\mpons | imports

‘| N BINTREES L

! imports wn
TITLE_DB Y

—— “(TEMS:item)
TITLE o <ting o:
title : string . H authors : string [0:n] rightSon )
. contains
leftSon

Figure 3.19: PROGRES packages and their dependencies.

Figure 3.19 roughly sketches the dependencies in the LIS specification. Obviously, the package
LIBRARY_ADMINISTRATION, which comprises all the functionality sketched above, uses the binary tree pack-
age. This use dependency from LIBRARY ADMINISTRATION to BinTree is established with an import. The
concrete dependency on node instance level is realized by introducing two new edge types lentItems and
lostItems from nodes of the class LIBRARY to nodes of the class BinTree. Both, the set of lent books and
the set of borrowed books are maintained using the binary tree implementation. In order to avoid cyclic
import dependencies, the node type Item is extracted from LIBRARY ADMINISTRATION and is exported by an
own package ITEMS for both clients. Furthermore, the package TITLE DB is a central component responsible
for maintaining the database of all sort of publications. It is used by the package LIBRARY ADMINISTRATION,
too. Apart from not being complete, the contents of the packages is identical to the graphical schema in
figure 3.2. Additionally, we have used the possibility to hide private resources from external use. Only public
resources represented by bold graph elements are visible via the import dependency.

The small “architecture” in figure 3.19 does only illustrate the static dependencies on schema level. The
concrete access from the LIBRARY_ADMINISTRATION to the BINTREES package is established by replacing
the overdue restriction by a new restriction which makes use of the range query facility imported from
the BINTREES interface. In this restriction the parameters are directly passed — after evaluating the dates
corresponding to the range of days — to the binary tree implementation.

In this special case it seems very natural to use specifications with total data abstraction. This is true
because in the test FindLentItemsInDayRange in figure 3.17 we have pretended a visual specification with
graph transformation rules but, in fact, we have cheated by making the transition to textual procedure
calls by using the restriction overdue. This might appear adequate for queries, where complex evaluation
functions can be hidden in paths, restrictions, and derived attributes within graphical patterns. In general it
is the purpose of rules to manipulate the graph structure even of imported packages directly by circumventing
their procedural interfaces. The notion of visual programming with graph transformation rules is based on
the description of transformations on the level of nodes and edges directly [SWZ95a]. Of course, information
hiding and abstraction from internal realizations has proven to be useful in order to ensure that the overall
graph structure remains in a consistent state during the execution of specifications.

Going back to rule LendItemin figure 3.12 the dilemma of visual programming with graph transformation
and data abstraction becomes more obvious. LendItem is an intuitive description of the changes in the graph
structure during its application. In that way rules are an ideal means to show the effect of an operation
using almost the same notation and the same elements as in the graph schema. Therefore, schema and rules
fit perfectly together. But, how should a client ensure consistency of the manipulated graph structure with
respect to the server’s requirements without completely reimplementing its behavior, anyway?
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If a book is lent out, it must be inserted as an element of the 1ent Items set maintained by the binary search
tree. The LIBRARY_ADMINISTRATION client is only interested in creating the borrows edge (cf. LendItem in
figure 3.12). There is no connection between LendItem and BinTreeInsertItem. How will the insertion
be propagated to the binary search tree without knowing the internal realization with e.g. BinNode? If we
can not give a satisfying answer to this question, we can either forget about data abstraction for graph
transformation systems, or we have to dictate interface operations for each access to the graph structure.

This problem has nothing to do with internal consistency of abstract graph types, it has a closer relation
to the view update problem well-known from databases. That means, abstract graph type packages can be
regarded as views on the internal graph structure. The overlapping parts of different views correspond to
imported schema elements. Consequently these parts are difficult to handle concerning creations or deletions
of graph elements. Updates performed “through” a certain view on the graph, which abstracts from the
detailed graph structure, will potentially risk to destroy the global consistency of the common graph structure.

There are two obvious possibilities to make the operation LendItem use the binary tree interface.

1. The graphical transformation rule is called within a transaction together with the call of the insertion
operation in the binary tree specification.

2. The binary tree specification gives up the data abstraction principle and reveals its internal structure
to the outside world. In that case the rule would create internal binary tree nodes and edges on its
own preserving the search tree property.

Both solutions are not satisfying. In the first case, we have to sacrifice the intuitive character of graph
transformation rules. In the second case, rules are blown up with specific implementation details which
establish a very tight dependency to the concrete realization because they have to preserve the internal
graph consistency. This makes it impossible to exchange the underlying realization by another one, which
is one major aspect of the motivation for any module concept. The compromise solution would need to
provide means for, on the one hand, preserving the visual specification style with rules, and, on the other
hand, allowing data abstraction from implementation details by using interfaces which hide the realization
of complex data structures internally. That means, a solution seems promising, where graph transformations
are described visually in one package and are mapped on an efficient implementation in another package
automatically.

3.5.3 Graphical Modeling with Updatable Graph Views

In section 3.4.6 we have learnt how constraints can be used to keep the underlying graph structure in a
consistent state. For packages the idea of consistency and invariants gets a new significance. Considering a
package as an abstract graph type with total information hiding, the semantics of the specified graph type
should be transparent for the clients. An abstract graph type is more than just a list of available operations. Its
semantical properties are essential to capture the true nature of the type’s instances. In studying constraints
for detecting inconsistencies we have not yet related the notion of integrity to the concept of data abstraction.
We consider constraints to be an appropriate means to enforce a certain behavior of packages. In that way,
packages “promise” to leave the underlying graph in a consistent state after having invoked its interface
resources on a hitherto consistent graph structure. This concept is known as Design by Contract [Mey97].
We will now extend this concept in order to resolve the “graph transformation dilemma”.

For “Specification-in-the-Small” purposes we have identified two kinds of constraints. We have classified
them as integrity constraints (invariants) signaling inconsistency and as active constraints (triggers) invoking
repair action automatically. This characterization can be applied for the purpose of data abstraction with
packages as well. We have seen that the interface of another package can be invoked either by calling interface
operations or by accessing schema resources. It is the decision of the server whether it allows its clients to
access its exported graph elements directly or forces them to call exported operations only.

A package insisting on total data abstraction can be sure that its internal view on the common graph
remains consistent as far as it is responsible. But, recall that invoking procedure calls contradicts the visual
character of graph transformation. Packages with a revealed schema have to ensure actively that their
underlying structure is not destroyed if the graph is manipulated directly.
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ensure
BinTreeltemExists ( ‘4, ‘2)
else
BinTreelnsertltem ( ‘4, ‘2)
end;

Figure 3.20: Restriction Using the Interface of the Binary Search Tree Specification.

In figure 3.20 we present the coupling between the Library_Administration operations and its internal
realization with binary trees. Note that the BINTREE package is constructed as an abstract graph type
following the principle of data abstraction. The active constraint in figure 3.20 checks for every book item
that has been lent out. The for part is similar to the RHS of the production LendItem. Additionally,
the relationship to the binary tree package is present in the constraint. According to the semantics of active
constraints we demand that for every pattern matching the for part the ensure part must not fail. Otherwise
the repair action in the else part is invoked. Note that in this example the ensure part contains the call of
the interface operation BinTreeItemExists. This query checks whether the borrowed item matched in the
for part is already present in the set of lent out items maintained by BINTREES. If this is not the case, the
book item is inserted into the binary tree by invoking the repair action BinTreeInsertItem. Assuming a
correct implementation of BinTreeInsertItem, the ensure part will not fail again after inserting the item.

Besides the constraint that controls lending out items, there is also the symmetric counterpart for returning
items or declaring items lost, resp. which is not shown here.

3.6 The Programming and Prototyping Environment

In the last sections the PROGRES language has been introduced. Having graphs as data model, the expres-
siveness as a visual programming language has been emphasized. We will now sketch the tool support of the
PROGRES environment for modifying, analyzing, and executing graph transformations.

The next subsection gives first a survey of the most important tools and their underlying main data
structures. It shows that all these tools are connected with each other such that they form an integrated
environment. The following three subsections present available tools from a user’s perspective.

Finally, we have to emphasize that PROGRES tools form another instance of an integrated (meta) pro-
gramming environment and are implemented using IPSEN graph technology. They use the same basic com-
ponents and have the same design as all other tools of the software engineering environment IPSEN. For
further details concerning the architecture and the realization process of the PROGRES environment the
reader is, therefore, referred to [Nag96].

3.6.1 Basic Components and their Interdependencies

Equipped with some knowledge about the language PROGRES, the reader probably can imagine the diffi-
culties we had to face during the development of its programming environment. It consists of the following
tools:

e a mixed textual/graphical syntax-directed editor together with an incrementally working unparser and
a layout editor for graph schemata, productions, etc.,
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e an integrated (micro-)emacs like editor for entering textually represented language constructs together
with an incrementally working LALR-parser,

e an incrementally working analyzer which detects and explains all inconsistencies with respect to the
language’s static semantics,

e an import/export interface to plain text editors and text-processing systems (currently for FrameMaker
from Adobe only),

e a hybrid interpreter /compiler which translates first a specification into byte code of an abstract graph
transformation machine and interprets the code afterwards,

e an instantiation of the generic ffgraph browser library developed at the University of Passau with
simple view definition facilities for monitoring graphs during an interpreter session,

e two compiler backends which translate the graph machine byte code into plain Modula-2 or C code,
¢ another backend which produces code fragments for the user interface toolkit tcl/tk [Ous94], and finally

e tools for version management and three-way merging of different versions of one specification document.

The most important basic component of the PROGRES environment is the database system GRAS
[KSW95]. It supports efficient manipulation of persistent graph structures, incremental evaluation of derived
graph properties, nested transactions, undo&redo of arbitrarily long sequences of already committed trans-
actions, recovery from system crashes, and has various options of how to control access of multiple clients to
their data structures. In this way, persistency of tool activities including undo&redo and recovery comes for
free. Furthermore, integration of tools is facilitated by storing all data within a GRAS database as a set of
related graphs.

The editor and analyzer are those tools of our environment that assist its users when creating and
modifying specifications. Both tools are tightly coupled and they are even integrated with the interpreter
tool. In this way, the tedious edit/compile/link /debug cycle is avoided and the environment’s user is allowed
to switch back and forth between editing, analyzing, and debugging activities. The editor itself is not a
monolithic tool, but consists of a number of integrated subtools. These subtools support syntax-directed
editing as well as text-oriented editing of specifications, pretty-printing, manual rearrangement of text and
graphic elements as well as browsing and searching activities.

Figure 3.21 displays the major data structures of the environment and the transformation processes
between them. Its right-hand side deals with compiling and executing specifications and is, therefore, specific
for the PROGRES environment. Its left-hand side, on the other hand, deals with editing and analyzing
activities which are part of any integrated set of IPSEN tools. It shows that specifications are stored in the
form of two closely related documents which are internally realized as graphs. The logical document contains
a specification’s abstract syntax tree and all inferred type checking results. The accompanying representation
document captures all concrete syntax information, including the chosen layout of (nested) text and graphic
fragments.

An incrementally working unparser propagates updates of the logical document into its representation
document. The unparser’s counterpart is a parser which propagates changes in the reverse direction. It takes
a line/column oriented text buffer and not a hierarchically structured representation document as input.
Currently, “free” editing of graphical specification fragments with a micro-emacs like text editor is only
supported via such a textual representation. In [Nag96] the reader will find a more in-depth explanation of
the left-hand side of figure 3.21 and the realization of its components. The right-hand side of figure 3.21
reveals that there are two alternatives how to execute a given specification. The first one is based on direct
interpretation. It is mainly used for debugging purposes, when intertwining of editing, analysis, and execution
activities is advantageous. The second one is to translate a specification into equivalent Modula-2 or C code
for rapid prototyping purposes.

The diagram in figure 3.21 shows that the editor and analyzer play the role of a conventional compiler’s
front-end and provide all information about a specification’s underlying abstract syntax tree and its static
semantics. An incrementally working compiler takes this information as input and translates executable
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Figure 3.21: Data structures and transformation processes in the PROGRES environment.

increments (on demand) into byte code for an abstract graph transformation machine. The compiler is the
most important component of the whole execution machine and determines its efficiency to a great extent.
This is especially true in the case of productions, where we have to choose between a large number of different
byte code sequences. Any of these code sequences perform the required subgraph matching, but they may
differ with respect to runtime efficiency considerably (for further details cf. [Ziin96]).

The produced abstract graph code may be executed directly or serves as input for two compiler backends,
which produce equivalent Modula-2 or C code. The underlying abstract graph transformation machine
combines the functionality of a conventional stack machine with backtracking capabilities. Furthermore, its
main component offers facilities for manipulating persistent graphs.

The translation of abstract graph code into readable Modula-2 or C source code is rather straightforward
with the exception of backtracking, which requires reversing a program’s flow of control, restoring old variable
values, and undoing graph modifications. Using undo&redo services of GRAS, the main problem is to reverse
a conventional program’s flow of control without having access to the internal details of its compiler and
runtime system. A description of the problem’s solution is beyond the scope of this book, but may be found
in [Ziin96].

Following the Graph Grammar Engineering approach in [SWZ95b], we will now present the tools of the
PROGRES environment and their support for various phases of specification development.

3.6.2 Editing and Analyzing Specifications

A specification for a certain system is initiated by considering different scenarios. They help to identify
node objects, their relationships, and the operations which perform structural changes on the graph during
run-time. The static structure of well-formed graphs is established in the graph schema. The graph schema
for the LIS example has been introduced in section 3.3.2.

The PROGRES environment provides two views on the graph schema, the textual and the graphical
view. The two views in figure 3.22 present the schema as shown in figure 3.2 and 3.3. The graphical schema
editor allows to define the node class hierarchy, to assign attributes to node classes, and to add relationship
edges between them. The presentation is known from ER diagrams. The textual view is used for attaching
evaluation functions to node attributes and constraints, which is outside the scope of the graphical view.

Specifying visually is not only restricted to the graphical view of the schema. Graphical elements are also
the basis of the operational part of PROGRES. In contrast to textual languages, structural or syntaz-directed
editing is a useful means for writing graphical patterns in graph transformation rules. Nevertheless, since
PROGRES is a hybrid textual/visual language it is also necessary to provide means for writing several lines
of text with a comfortable text editor. The common basis for both, textual and graphical representation is
the abstract syntax tree. The syntax-directed editor allows to expand the nonterminals of the language step
by step until concrete terminal symbols of the language are reached. The textual fragments are parsed and
presented as if they would have been expanded with the syntax-directed editor itself. All graphical language
elements do also have a textual counterpart which is e.g. used for writing specifications in a file.
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Figure 3.22: Graphical and textual view on the graph schema.

PROGRES is a statically typed language. To avoid type errors as soon as possible the incremental analysis
tool is integrated into the editor. Analysis of PROGRES specification comprises hundreds of static semantics
rule. They check the consistency of a specification among other things with respect to

o identifier binding rules: every applied occurrence of an identifier must be bound to a visible proper
declaration, any identifier declaration should have at least one applied occurrence

e inheritance rules: multiple inheritance requires the hierarchy to form a lattice and to search for un-

resovable inheritance conflicts

o type checking rules: actual operation parameters are checked against their formal counterparts, assign-
ments are checked for type equivalence, graph patterns and path expressions are checked against graph

schemata, etc.

o cardinality qualifier rules: defined graph patterns should not contain obvious violations of edge cardi-
nality constraints, deterministic graph transformations should not call nondeterministic graph trans-

formations, ... .

Figure 3.23 shows a screen dump of the PROGRES editor with the analysis tool activated. All black marks
in the production RemoveOverdueBorrower (cf. section 3.13) indicate static semantics errors, the grey mark
is a warning. The displayed error message belongs to the restriction overdue. It is declared to restrict sets of
Item nodes in figure 3.7, but is applied on nodes having the type TITLE. The same is true for the erroneous
borrows edge that has node ‘1 as source. The production’s return clause does also contain two errors.
The first one indicates the non-existence of an attribute named borrowerName for the node ‘1 of the class
Borrower. The second one is caused by the attempt to assign a value to the input parameter LostItems.
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Figure 3.23: Error message analyzing a specification.

Furthermore, the two nodes in the production’s right-hand side are marked. They are related to the same
node in the left-hand side. Last but not least the formal parameter list contains one error and one warning.
The type identifier item has a upper case I as the first letter and not a lower case i. The warning results
from the fact that the production does not make use of the input parameter LostItems.

3.6.3 Executing and Debugging Specifications

The main advantage of the PROGRES environment stems from the fact that it supports more than just
“drawing nice pictures”. The ability to execute specifications is the most important feature for a visual
programming language.

Two different possibilites exist to execute a specification:

e the interpreter allows to step through the specification and to make changes in the specification which
are instantly executable

o the generated prototype provides a user-friendly interface which allows to invoke the specified operations
without the interpreter overhead.

The interpreter is very useful for validating the operational behavior of the specified graph transfor-
mations directly and interactively. The incremental compiler translates the specification’s operations into
code/commands of an abstract graph machine on demand. This PROGRES graph machine code can be
executed by the interpreter. At the same time C and Modula-2 code can be generated for the machine code
(cf. next section). During interpretation the state of the current graph and the effects of the executed trans-
formation can be displayed with a graph browser, as shown in figure 3.24. This allows the user to validate
the specification.

The screen dump of the interpreter session in figure 3.24 demonstrates the debugging facilities during
interpreting a specification. The visible operation in the editor is LendItem which we have visited before in
figure 3.12. It has just been invoked with actual parameter values which are visible in the variable window on
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Figure 3.24: Monitoring a specification’s behavior during run-time.

the left. Together with the displayed graph numbers of the graph browser we can deduce that the operation is
about to fail. The current item with node number 47 is already borrowed by the user with node number 25.
Therefore, after matching all three positive nodes in the LHS of the rule (cf. variable window), the negative
node ‘4 will match the node 25 and, consequently, the application of the rule will fail.

Editor, analyzer, compiler, interpreter, and graph browser are intertwined components of the environment.
If the user notices unexpected effects after applying a complex graph transformation, he may undo&redo
single steps in order to find the erroneous operation. Together with debugging facilities like trace and step,
the location of the error can be identified. Even without leaving the interpreter session, the specificator
is able to edit and repair the specification error. The changed operation/statement can be analyzed and
compiled incrementally. The interpreter is able to execute the resulting machine code immediately. That
means the interrupted interpreter session can be resumed and the corrected operation can be tested directly.
This allows very short turn-around times during development and error correction.

3.6.4 Prototyping

Outside the environment a PROGRES specification can be executed in a stand-alone prototype. It is based
on the C code which is generated from the abstract code of the PROGRES abstract machine. The generated
C code represents the operational behavior of the specification, which is accessible through a Tcl/Tk user
interface. The user interface was built on top of the ffgraph library, which is one of the results of the META
Frame project at the University of Passau.
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The obvious advantage of the prototype compared to execution in the environment is that interpreting
the specification is much less efficient than executing compiled C code. But, both the interpreted and the
compiled code manipulate graphs which are stored in the database system GRAS, i.e. we have to pay the
price for persistency of and multiple user access to manipulated graphs even for generated prototypes.

The main differences between the interpretation of a specification and the interaction with a generated
prototype are (beside a speedup of factor 10):

e A prototype user is not aware of the existence of programmed graph rewriting systems as the underlying
specification language.

e The execution of a graph transformation is triggered by selecting a corresponding menu entry with a
meaningful name for the end user (it may be different from the specification name of the activated
transaction).

e The prototype offers various means to enter needed transaction parameters (mouse selections, default
values, text editor).

e View definition mechanisms may be used to tailor the visible portion of the manipulated graph such
that it fulfills the needs of the end user.

e Multiple users may manipulate the same graph concurrently via prototype instances with maybe dif-
ferent views and different sets of commands.
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Figure 3.25: Prototype for the library information system (LIS).

A prototype offers an interface to the specification’s functionality which is tailored to the end-user’s needs
(cf. figure 3.25. In contrast to the interpreter the prototype allows to define menus for grouping the available
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operations logically. Internal operations can be hidden, i.e. made inacessible to the prototype user. This
allows to provide different user groups with different access rights to a constructed graph database.

Having provided a comfortable user interface for invoking operations, it is also desirable to provide different
graph views corresponding to the expectations of the user. In this context the term “view” refers to the ability
to

e hide parts of the graph in its display (representation),
e compute a layout which represents the semantics of the graph, and

e create application specific graph representations ranging from diagrammatic to structured text and
table representations.

The coupling between the user interface and the logical functionality in terms of graph transformations
deserves a detailed explanation. First of all it has to be mentioned that graph modifications are only invoked
by calling specified operations. That means it is not possible to create or delete nodes if there is not a
transformation which specifies this behavior. But, compared to the interpreter session a graph transformation
is encapsulated in a dialog where the actual parameters can be entered either by filling in text fields or by
selecting the corresponding graph element. Any invoked transformation may have graph modifying effects
which in turn have to be propagated to the interfaces of all currently active prototypes.

Figure 3.25 shows the user interface of the prototype for the user administrator. In contrast to the library
administrator he must not see in every detail how a new title is inserted into the library catalogue and how
key words are assigned. Instead, he is interested in the information which item is borrowed by which library
user. Besides the user management operation shown in the open menu, he needs operations (offered in the
remaining three menus) for fulfilling the following tasks: adding and removing users, lending out titles and
taking them back, making book reservations, and querying the database for items corresponding to given
authors or book titles.

3.7 Summary

The language PROGRES and its tools are the results of many years of application-oriented graph transforma-
tion (grammar) research activities with contributions from too many programmers, master thesis students,
and Ph.D. students to list them all here. Nowadays, they are used at various sites for specifying and proto-
typing software, database, and knowledge engineering tools.

The language PROGRES may be classified as

e an object-oriented database definition language with graphical as well as textual constructs for the
declaration of graph database schemata,

e a relational (logic-oriented) executable specification language with various means for the definition of
derived graph properties,

e a hybrid visual/textual database query language with support for the construction of parametrized
graph transformations, and

e an imperative programming language with deterministic and nondeterministic control structures for
programming graph transformations.

The language’s implementation uses demand-driven and incrementally working algorithms to materialize
and update read-only graph views, it offers the concept of active constraints (ECA-rules) to realize updatable
graph views. Backtracking is used to escape out of dead-ends of graph transformation processes, which are
caused by wrong nondeterministic selections of executable graph transformation rules and their matches.
The most important difference between PROGRES and most rule-oriented languages is its very elaborate
type checking system. Experience shows that especially novice users need some time to remove all reported
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analysis errors from their specifications. But afterwards, the chance is very high that the specification does
what it is expected to do.

The PROGRES environment offers assistance for creating, analyzing (type checking), compiling, and
debugging graph transformation specifications. Being an integrated set of tools with support for intertwining
these activities, it combines the flexibility of interpreted languages with the safeness of compiled and statically
typed languages.

A novice user finds the syntax-directed editor very helpful for creating specifications that are correct with
respect to the language’s context-free syntax. Later on she or he may deactivate syntax-directed editing for
selected (textually represented) language constructs and use a plain text editor for entering these constructs
as a whole. The built-in incrementally working analyzer offers valuable assistance for eliminating many
inadvertantly made errors, which pass the checks for context-free correctness. Almost all “typos” and many
kinds of usual specification errors, which have more subtle reasons, are caught this way.

The interpreter offers further means to validate an entered specification interactively and to repair incor-
rect implementations of graph transformations on the fly. Especially its built-in integrity constraint checking
facilities and the possibility for undo and replay of execution steps is useful for tracing back erroneous graph
states to the faulty piece of code. Finally, a compiler backend is available that translates specified graph
transformations into C-code and generates a tcl/tk-based user interface for calling graph transformations
and displaying manipulated graphs. The generated code is more or less human-readable and relies on the
services of the nonstandard database management system GRAS [KSW95] and the (generic) graph editor
ffgraphs. It was designed for throw away prototyping purposes.

Version 9 of the PROGRES environment is available for the operating systems Sun Solaris and Linux
(alpha version) as free software. It comprises about 800 000 lines of Modula-3, C, C++, and tcl/tk code 3.
Current research activities and future development plans have a main focus on

e the refinement and implementation of the module/package concept presented here with appropriate
support for specializing packages and for defining abstract graph types with updatable graph views,

¢ the integration of graph transformation concepts with the world of object-oriented analysis and design
languages, especially with the Unified Modeling Language UML, and

e the realization of new compiler backends for rapid prototyping interactive graph-manipulating tools
(in Java on top of the commercial toolkit JViews from ILOG) and object-oriented database system
applications (in Java or C++ on top of the commercial OODB O2 from Ardent Software)

For further details concerning ongoing development efforts, forthcoming language and tool versions, and
published papers the reader is referred to the following world wide web resource:

http://www-1i3.informatik.rwth-aachen.de/research/progres/

3PROGRES version 9 implements all explained language constructs except for the package concept discussed in section 3.5.
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Chapter 5

Re-Design of Legacy Applications
with Graph Transformations

5.1 Motivation

The success of companies and administrations heavily depends on the quality of their information systems.
Existing systems are often many years old and have become very reliable over the years, but they are too
inflexible to respond to changing business demands. One solution is to build a new system with the same
functionality from scratch, but this is often not possible and has many unpredictable risks. Another solution
is to take an existing system, to change it or parts of it with respect to the existing demands and to reuse it.

Many companies have the requirement to migrate their existing legacy applications into a distributed
environment. Some parts of the existing applications have to remain on a central server because of security
aspects. Other parts should be placed on local client computers which are connected by middleware [Tre96]
with the server. The main task is to divide the existing applications into portions which are able to interact
as client and server parts. In many cases we have to deal with COBOL programs, the data handling and
technical computing should remain on a server, the user interface and local checks should be placed on client
computers. Not all parts of the application can be reused. Some portions like the character-oriented user
interface have to be replaced completely.

As first step of a migration process we have to reverse engineer an application to get a description on a
higher level of abstraction than the source code. The acquired information is stored in form of graphs (call
graphs, control flow graphs etc.). The necessary structural changes are performed on the reverse engineering
graphs with the help of graph transformation rules. The transformations on the graphs are connected with
source code transformations to couple changes on the abstract graph level with changes on the concrete
source code level.

In the next sections we discuss the problems occurring during the re-engineering of existing applications
towards a distributed one. In the following sections we present a methodology and a prototype supporting
the methodology.

5.2 Methodology

To understand the problems which appear while distributing existing legacy applications we will take a short
look onto the ‘normal’ forward engineering process for developing new distributed applications.

The first step is the development of a software architecture of the planned application. Then we have to
consider which parts of the software architecture are distributed. The considerations result in the concrete
cutting lines of an application. We have to determine interface definitions for the particular parts, which
describe the exported resources. To use middleware conforming to the CORBA [Gro95] standard we have

IThis chapter is an excerpt of [Cre99] written by Katja Cremer

7
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Figure 5.1: Outline of the methodology

to define the interfaces in IDL (Interface Definition Language). With the help of IDL compilers we generate
skeletons in a concrete programming language. The skeletons have to be filled with an implementation realiz-
ing the exported resources. Language mappings form IDL interfaces to interfaces in a concrete programming
language are defined by the Object Management Group (OMG).

Figure 5.1 shows the necessary activities to migrate a existing legacy system into a distributed environ-
ment.

There is often no structural description of a legacy application as base for a decision how to distribute
an application. In this case the first necessary step towards distributed applications is a reverse engineering
activity [CC90] to get a description on a higher level of abstraction than the source code level (cf. fig. 5.1
- transition from the lower left to the upper left quadrant). The result of this step is a kind of structural
overview. We hopefully can identify components of the regarded system like files, programs, subprograms,
data structures etc. and relations between the components like part-of, uses, call, access etc.

In most cases the structure we recognize is unsuitable for distribution because of the lack of a clean
separation of different aspects of the program system. For distribution purposes the separation in different
layers is suggested in the literature. For example [Gei95] proposes the three-tier model with a separation
between the presentation, the technical functionality and the data handling of an application. The separated
parts can use each other by interfaces.

The next step towards a distributed system is the re-engineering of the structure of a legacy system to get
a separation of certain parts of the legacy application connected by interfaces (cf. fig 5.1 - transition from the
upper left to the upper right quadrant). We aspire a recycling of particular parts of legacy applications by
cutting them out and wrapping them with interfaces. Candidates for recycling are the parts of an application
which deal with the technical functionality and the data handling. We try to create a structure of objects
communicating by methods call. If we have achieved this structure we can use the objects as logical units
for distribution. The concrete distribution task is described in [Rad97].

Based on the structural description we decide which parts of the application are reused in a distributed
environment. For every re-engineering step on the structural level we have to define a corresponding re-
engineering step on the source code level to maintain the conformance of source code with the structure
description (cf. fig. 5.1 - transition from the lower left to the lower right quadrant).

We support the described methodology with a tool prototype. The prototype is mainly based on graph
technology [Roz97], i.e. the reverse engineering information (cf. fig. 5.1 - upper left quadrant) is stored in
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Figure 5.2: Design recovery with TXL

form of a graph. The necessary structural changes are performed on the reverse engineering graphs with the
help of graph transformation rules. The several steps of the methodology and their technical realization are
described in detail in the following sections.

5.3 Design Recovery

In this section tool support for the recovery of structural properties of a regarded legacy application is
described. We start with plenty of source code files written in COBOL-85. What we are searching for are
components and relations between the components establishing the structure of an application. Useful com-
ponents are files, programs (one or more contained in a file in COBOL-85), subprograms (SECTION in
COBOL-85) and data structures (contained in the DATA DIVISION), useful relationships are the calls
between different programs, the subprogram calls inside a program, the data accesses and organizing rela-
tionships like a subprogram is contained in a program (for a description of COBOL see [Ste94]).

For the design recovery purposes we use the specification language TXL [CCH95]. With the help of TXL
we define transformations, which extracts facts about source code artifacts. For example, TXL transforma-
tions search for specific keywords in the source code like COBOL CALL oder PERFORM statements. The
transformations preserve the fact that one part of the program uses another program or subprogram in a
prolog-like repository by generating facts in a dedicated target format. The left part of fig. 5.2 shows an
example of a COBOL source code transformation with the help of TXL.

In the TXL distribution a design recovery specification is contained for a Pascal-like programming lan-
guage. We have adapted this specification to the programming language COBOL. In the future we will
enhance the specification to include external information like documentation reports or knowledge of users
in the repository of facts.

5.4 Visualization of the Design Recovery Information

The repository of facts is interpreted as textual graph representation and is presented in visual form as a
graph (shown at the right hand side of figure 5.2). For the visualization of facts and for the specification of
the necessary structural transformations we use the specification language PROGRES [SWZ95a, SWZ95D]
that is based on the concept of programmed graph transformation systems.

First of all we have to write a specification determining the behavior of the aspired tool. A PROGRES
specification mainly consists of the definition of a graph schema and graph transformation rules (explained
later in more detail). With the help of a generator contained in the PROGRES environment the specification
is translated in C source code. A stand alone prototype arises by compiling the generated source code. The
prototype has a function to read the prolog-like repository and visualizes the textual representation as graph.
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Figure 5.3: Graph schema of the design recovery document

Graphs play an important role within the area of Software Development Environments (SDEs) [Nag96].
The re-engineering prototype is a special kind of SDE supporting the software maintenance activities of an
existing system. The internal documents SDEs are working on are often special kinds of graphs, for example
the architecture graph of a design environment or the abstract syntax graph of a source code editor. We also
model the internal structure of the design recovery document as a directed attributed graph (cf. 5.1 - upper
left quadrant). Such a graph consists of labeled nodes and directed labeled edges. Attributes are needed to
store additional information that need not be represented in the graph structure as, for example, the name
of programs and subprograms as well as the line number of a presented artifact.

To determine the structure of the design recovery graph we have to analyze it and to identify the types
of nodes, their common properties, dependencies and the relations between them. This will lead to some
kind of multiple inheritance node class hierarchy called graph schema. The graph schema also includes the
definition of attributes and relationships. The term graph schema is used in the same sense as the term
database schema is used in database design. The acquired repository of facts is mapped onto a graph which
is a concrete instance of the defined graph schema. Fig. 5.3 shows the graph schema of the design recovery
document.

The root class of our inheritance hierarchy is positioned at the bottom of fig. 5.3. It has the name UNIT.
It possesses two string-valued attributes namely File and Name as well as two integer-valued attributes
Start and End. All nodes within the design recovery graph are instances of node types which belong to the
class UNIT. As a consequence, they are owners of all of the attributes. The rest of the graph represents the
different kinds of artifacts that COBOL source code may contain.

The rectangular boxes are node classes, which are from a theoretical point of view types of node types.
This additional concept allow us to define common node type properties once and for all and to inherit them
to node types as needed. They are connected to their super classes by means of dotted edges representing
a ‘is-a’ relationship. The boxes with rounded corners represent node types which are connected to their
uniquely defined classes by means of dashed edges representing ‘type is instance of class’ relationships. Solid
edges between node classes represent edge type definitions, e.g, the edge type contains f is a relationship
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between a SYSTEM node and a set of FILE nodes, representing the fact that a program system contains a set
of source code files. Circles attached to node classes represent attributes with their names above or below
the connection line and their type definition nearby the circle.

The graph schema is an important part of a PROGRES specification because it defines the structure of
the underlying graph. By means of generators and the PROGRES compiler, the specificator is now able to
create a prototype of the modeled system. The generated prototype consists of several display components
and the user can interactively work with the system and can observe the current state of the graph with a
graph browser.

The following fig. 5.4 shows the generated prototype with two different graph views.

The first view a) shows nodes of the type System, File and PROGRAM. The files a system is composed of
are connected by contains_f (ile)-edges with a System-node. The contains_p(rogram)-edges connect the
certain programs with the files they are contained in. With the help of this view the user can get a first
coarse-grained overview and a survey how many parts belong to the overall system. The main goal of this
view is the identification of the programs and data inventories which belongs to an application.

The second view b) shows the internal structure of a single COBOL program. With the help of this
view you can recognize certain parts of a single program. The important structural components of a single
program are the data definitions (in the DATA DIVISION) and the blocks of statements (SECTIONs in the
PROCEDURE DIVISION). Data accesses are represented by access-edges. SECTIONs in COBOL are a kind of
subprograms without parameters. The call of SECTIONs is done by COBOL PERFORM statements, they
are represented by the call_int-edges.

The two views help the maintenance engineer to get a top-down understanding of a regarded system.
Beginning with an overview of the affected system components, she/he can get a more fine-grained view of
the relations between the components until she/he reaches a level on which she/he may have a detailed look
into the components of a single program. With the support of the generated PROGRES prototype you can
view an existing system on a more abstract level than the source code documents. Generating views of the
graph gives you the possibility to concentrate on certain aspects of the given system and to consider the
top-down nature of the reverse engineering process.

5.5 Re-Engineering

Until now we have only considered tool support for the reverse engineering activities of the described method-
ology. Thus, we have reached the upper left quadrant in fig. 5.1.

But we have the aim to migrate an existing system into a distributed environment and for this purpose we
probably have to change the structure of the application. One goal of our prototype is the continuous support
of the reverse and re-engineering activities. In many tools the reverse engineering process is supported well
(like [Arn92, MOTU93, MWT94]), but the connection to the re-engineering activities on an abstract level
misses. Reverse engineering activities supply application knowledge on the design level. On this level we
want to specify the structural changes necessary for distribution purposes. But we have to connect abstract
structural changes with source code transformation to couple the design with the implementation level.

In subsection 5.5.1 we describe the necessary structural changes to re-design existing applications towards
distributed ones. The source code transformations are explained in subsection 5.5.2.

5.5.1 Structural Changes

The structural changes for re-designing existing applications are manifold. One of the main problem in
migrating legacy applications is their monolithic character. Breaking down an application into smaller pieces
and wrapping these pieces with interfaces is the main goal of the structural transformations. We describe
these structural transformations in terms of graph transformation rules. The identification and specification
of such rules in the PROGRES language is the main working area of the project. Most rules are used to
cut some pieces out of an application and fit the separated parts together to object-like structures. In the
following we present an example of an easy transformation rule.
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production Map_To_Class ( sec_node : Section ) =
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Figure 5.5: Mapping of a program to a class

In fig. 5.4 b) there is a section Processing which accesses the data group Contract Data. There are
no other sections which use this data group. In the object-based sense we have to decide between two
possibilities. On the one hand we could decide that the data group is an important data structure for the
application and should be used as abstract data object. In this case the data group is separated and we have
to define methods which handle the access onto the data structure.

On the other hand we could group the two pieces together interpreting the data group as attributes and
the procedural part as methods of a class. Fig. 5.5 shows the corresponding graph transformation rule.

On the left hand side of fig. 5.5 (the part above the ‘::=’) we define the graph structure we are searching
for (a subprogram (in COBOL SECTIONS) accessing a DATA_ELEMENT) and we want to reuse in an object-based
scenario. Because of the inheritance hierarchy different concrete types of data elements are possible (cf. fig.
5.3).

On the right hand side we define the replacing graph structure. There are some node and edge types
(grey underlayed) which you don’t find in the schema definition of fig. 5.3. These are part of an architectural
definition language (ADL), which we use to define the desired object based structure. An example of a design
document using such a kind of notation you find in fig. 5.1 in the upper right quadrant.

The notation x’ = ‘x stands for the identical replacement of nodes. This means that the original nodes
and edges of the left hand side remains, additionally a Class-node is introduced and the original nodes (1 and
2) are mapped onto it. This mapping has the semantics of reusing the original parts in a new object-based
structure.

Furthermore a Module-node and a LangSpecInterface-node are added. The Module-node is connected via
contains-edges with the Class- and LangSpecInterface-node. This expresses that a module is composed
of two parts. In fig. 5.1 modules are symbolized by boxes, where the upper open part of a box is the interface
and the closed lower part represent the implementation of the interface. This relation between the interface
and its realization is expressed by the implements-edge in fig 5.1.
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This graph transformation rule realizes the reengineering on the design level by assigning existing parts
of an application to components of an architecture description language expressing the desired structure.

Fig. 5.5 shows the specification of the transformation rules. With the help of the PROGRES source code
generator you can create executable code. The transformations can be invoked in the PROGRES prototype
environment on selected graph nodes.

5.5.2 Source Code Alterations

Every node in the graph points to some piece of source code. In fig. 5.3 the root class of the inheritance
hierarchy possesses two string-valued attributes namely File and Name as well as two integer-valued
attributes Start and End. These attributes pick up the name of the COBOL file artifacts are contained in and
the start and end position of artifacts in a file as well as the name of artifacts. Every structural transformation
specified by a graph transformation rule must have a corresponding source code transformation to incorporate
the re-design into the implementation level. The source code transformations are under development. We
will implement source code transformation rules from ANSI COBOL-85 to Object COBOL. For example
you can reuse parts of the Working-Storage-Section as attribute definition in the OBJECT-part of a class
definition. The main goal of the source code alterations is the suitability for the use of the CORBA COBOL
language mapping.

The transformations of the source code are also defined with the help of TXL. The coupling with a graph
transformation rule is done by external C functions which are offered in the PROGRES language. C functions
call the necessary TXL transformations rules responsible for the source code transformation. Every graph
transformation rule has a corresponding textual source code transformation and every application of a graph
transformation rule entails a source code transformations by calling external C functions.

5.6 Summary

In this paper we have presented a tool prototype for the re-design of existing applications. The aim of the ap-
proach is the migration of existing applications into a distributed environment of components communicating
by middleware products conforming to the CORBA Standard.

The underlying methodology provides as first step the extensive reverse engineering of the regarded
application. This is done with the help of the specification language TXL. The recovered design information
is visualized as a special type of graph. The type of the design recovery graph is defined in the PROGRES
language and the acquired prolog-like facts are mapped onto graphs of this type. The design recovery graph
presents information on higher level of abstraction than the source code. With the help of graph views the
maintenance engineer can get a understanding of an application.

The graph is not only used for reverse engineering purposes, but also as base for the re-design of an
application. The re-design transformations are defined as graph transformation rules. One problem of existing
applications is their monolithic character. The re-design tries to break down an application into smaller pieces
and put the fitting parts together in an object-like structure.

Every transformation on the structural level must have corresponding transformations on the source
code level. The transformations are performed such that CORBA can be used for distributing the resulting
program.

We are working on a wide spectrum of transformations on the design level with corresponding transfor-

mation rules on the source code level. Future work is done in the area of flexibility for other programming
languages and other re-design goals than distribution.



Chapter 6

Modelling a Visual Language with
PROGRES!

Graph grammars are often used for the definition of the syntax and semantics of visual languages like e.g.
in DiaGen [MV95]. Beyond that there are a still growing number of visual languages that rely directly on
the graph rewriting paradigm, such as Ludwig2 [Pfe95], GOOD [PBA*92] or PROGRES [SWZ95a)].

The development of a visual language with graph transformations presumes that this language has a
diagrammatic representation or its abstract syntax can be represented by a graph. A popular class of visual
languages, dataflow languages, fulfils these requirements. Dataflow languages can be understood as a sort of
functional programming languages with a visual representation of the functions. One of the successful visual
dataflow languages is Prograph [CGP95]. Prograph is an object-oriented programming language which is
intended for commercial application development. Dataflow languages in general have a big commercial
potential. The success of Prograph and also LabVIEW [VW86] which is a visual dataflow language used in
laboratories in the industry as well as in the academic context shows that.

A visual graph-based language can be described by using a graph grammar. From this graph grammar
a syntax-directed editor, a parser etc. can be generated. However, in this chapter we will concentrate on
the modelling process of a visual dataflow language with a graph transformation system which describes
the operations of a programming environment for visual (dataflow) languages like editing, analyzing and
executing programs specified in this visual language. We will show how to specify those operations and how
to generate a prototype of such a programming environment.

For this reason we introduce a small example language HotV1a? which is a simple dataflow language.
For the purpose of this tutorial other dataflow languages such as Show & Tell [KCM90], Prograph [CGP95],
or BDL [Sch97a] are too complex. However, it is also possible to model (parts of) these languages with
PROGRES.

The next section describes the syntax of HotVla briefly. The scheme of the graph describes the interde-
pendencies of language constructs and expresses some integrity conditions regarding well-formedness of a
specified program in this language as well. Section 6.2 presents some productions specified in PROGRES
that describe editing operations in the generated prototype. Section 6.3 points out an idea how to implement
a type inference system for visual dataflow languages with PROGRES. Finally, section 6.4 shows how a
HotVla program will be executed using the generated prototype.

6.1 Concepts of Modelling a Visual Language

In this section we introduce the concepts of modelling a visual programming language with PROGRES. For
this purpose we introduce a language called HotVla. We will show how this language has been defined in

IExcerpts from a forthcoming technical report written by Manfred Miinch.
2HotVla is an acronym for Higher Order Typed Visual LAnguage
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PROGRES. More precisely, PROGRESwas used to specify the operations of an editing tool, an analyzer, an
animation tool and to generate a programming environment prototype for HotVla.

6.1.1 The HotVla language

One of the main reasons for the lack of a model for a visual programming language is the variety of approaches
researchers have developed. Within similar areas there are still differences in the approach taken to develop a
language. Most languages are only special purpose languages which makes it even more difficult to compare
one language to another and find common elements.

To be able to develop a basic language which is simple, yet powerful enough to have the same expressiveness
as e.g. primitive functional languages we have decided to base our language on already existing calculi. The
central theory behind our dataflow language HotVla is the A-calculus, enriched by the concept of higher
order dataflows (see [Tyu91]). However, details about the theory of that language are not discussed here.

The HotVla language is designed for being the core of a visual dataflow language definition kit. Existing
dataflow languages should be definable by or reducable to HotVla programs. To develop mechanisms and to
build up a library for this purpose is left to future work. In this chapter the HotVla language serves as an
example which is not too complex.

A main goal for the language design was to keep the number of different language constructs minimal.
Because of the extension of common dataflow concepts (where the values are either of a primitive type or a
tuple of primitive types) to a higher order dataflow concept, i.e. dataflows may also have functions as values,
it is possible to define a general purpose language with only two control elements besides a set of atomic
functions like +’, =", ’<’, =" etc. and constant values.

The next subsection demonstrates how we specify the syntax of HotVla in PROGRES. After that we
present how to build a very simple editor for our language.

6.1.2 The HotVla Syntax

The syntax of HotVla is kept minimal. Next to the already mentioned arithmetic operations we have only
two control structures. The first one is a simulation of an if-then-else-construct, the second is a function call
element. For a proper data handling we need an operator pair which constructs a tuple out of two (ordered)
inputs, and the functions fst and snd which extract the values again. With that we can restrict ourselves
to unary functions only. Beyond that we are already able to specify any mathematical function.

The first control element we introduce is the function call. This enables the language to express repetitions
by using recursion. We use the notation for a function call given in fig. 6.1. In this example we call the
function p with an argument carried by the dataflow a. The result of that call will be carried by the dataflow
b. Informally, we can write b = p(a). How we model functions in HotVla will be described later in this
subsection.

Figure 6.1: Notation of a call of function p with input a, producing output b

All arithmetic functions are actually nothing else than a function call with a tuple as argument. However,
we have added some syntactic sugar so that it is allowed to write an expression like shown in fig. 6.2 as long
as they are commutative. Furthermore we omit the dotted lines for those standard functions.

—

+

Figure 6.2: Intuitive notation of an arithmetic function as long as the order of the input is insignificant

The second control element we introduce is the simulated if-then-else-construct, which we call a Switch.
The appearance of that node is shown in fig.6.3. Although the three dataflows are labeled we do not differ
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between any kind of dataflow. The labels can be understood as the names of the ports (the two input
dataflows of a Switch-node are not interchangable). The dataflow leading to port C'mp carries a boolean
value which is used for deciding which function will be called, tc (like then-case) if that dataflow carries
the True-value, ec (like else-case) otherwise. The value of the dataflow leading to port Data is used as an
argument to either of these functions. The result of that conditional function call will be carried by the
outgoing dataflow.

lData
Cmp
tc ec
l Out

Figure 6.3: Switch node: modelling of an if-then-else-construct

Function declarations consist of two nodes: the FunctionDecl node defines the name of the function and
serves as “port” for the value given to the function. The Qutput node serves as “sink” for the data to be
returned to the calling function. Fig. 6.4 shows an example of a HotVla program implementing the factorial
function. (Note that the ports of the Cmp and the — operation are labeled 1 and 2 for the first and the
second operator, CF is the port for the compare function). The Cmp function is an example for the aspect
of HotVla being a higher order dataflow language. Those ideas can be extended even further but this is
beyond the scope of this tutorial.

Funlf:tiolrllDecI FunctionDecl
fac' nec”

Data

tc ec
Output Output Output

Figure 6.4: The factorial function modelled in HotVla

Until now we have specified the syntax of the HotVla language informally. A formal definition of HotVla’s
syntax is not provided in the form of a graph grammar but (in our example) in the form of a PROGRES
graph schema definition with associated integrity constraints. First, we define a node class with all common
properties any language construct should have. We have called this class HotVia_ ELEM (see fig. 6.5).
Classes are represented by rectangulars. Now all refinements of the class HotVia_ELEM can inherit the
properties like Representation of type string which will contain some text describing the node, e.g. '+’ for
one of the arithmetic operators. The refines-relationship is modelled by the dotted arrow, e.g. from DECL
to HotVia_ELEM . The rectangulars with round edges represent node types, the actual instances of node
classes thus. Some of these node types and classes define additional attributes (although for the sake of
readability only a few are shown in fig. 6.5). The node type FunctionDecl e.g. is an instance of the node
class DECL and defines the string attribute FunctionName in addition to the already inherited attributes.
This attribute stores the name of the function which can be called by the Call construct. For this reason
the string attribute Function must contain the function’s name, of course.
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The representation of the Switch-node in the scheme is slightly more abstract than shown in fig. 6.3.
We have to use the word “Switch” for the representation since PROGRES does not support to define the
language elements graphically as we have chosen in fig. 6.3.
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Figure 6.5: A part of the language definition of HotVla

Furthermore we have defined two edge types. The edge df may connect any node with any other node and
will be a general dataflow in our language. The edge ApplToDecl connects a Call node or a Switch node
with a FunctionDecl node. A required integrity constraint is to make sure that the function calls of either
the Call-nodes or the Switch-nodes are indeed declared by the function declaration the ApplToDecl-edge
points to. We will need this for type checking in section 6.3.

Dataflows can be modelled in two different ways. The simple solution which we have chosen is depicted in
fig. 6.5. A dataflow is modelled by an edge which can connect two arbitrary nodes, i.e. language constructs,
of our language. Eventually some constraints are needed to ensure the integrity of a program (an Qutput
node may not have any outgoing dataflow etc.). The second possibility is to define a dataflow by an extra
node which is connected to the actual source and target by the use of derived attributes. Then we can also
model data consuming and non-consuming functions. For the sake of simplicity we have not chosen this
second solution although it is the more powerful one.

However, this scheme definition contains some more problems. The ApplToDecl edge e.g. may not connect
a Cmp node with any instance of the DECL node class. The scheme allows this connection but it does not
make any sense. Beyond that it is allowed to have more than two input dataflow at the Switch node although
this does not make any sense either. This can be prevented in three different ways:

e integrity conditions built into the scheme make sure that those erronous situations do not occur
e appropriate editing operations prevent an erronous specification (see section 6.2)
¢ additional analyses make sure that a specified program fulfils the syntactical correctness.

The next section describes how we can specify editor operations in PROGRES. We will also demonstrate
how to implement context-sensitive operations to prevent erroneous editing. Finally we show an example of
the editing process in the generated prototype of the programming environment.
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6.2 Generating a HotVla Editor

After having shown how to define the structure of a visual language with PROGRES we demonstrate how to
build an editor for this language. This editor does not only create one node after the other which have to be
combined by the user manually. We show how to develop an editor that has a bit more intelligence. Having
a look at our language it is straightforward that a function must have the node FunctionDecl and the node
Output. If we specify a PROGRES production creating these two nodes and connecting them by a dataflow
edge df we can make other productions dependent on the created context. That means that another node
can only be inserted if it finds the context it needs. Fig. 6.6 shows examples of two productions implementing
the editor.

production CreateFunctionDecl({ FuncHName : string) = production CreateSwitchHode( root : HotVla_ELEHM ;
CompareOp : type in CHP_OPS ;
te, ec @ string) =

' H
E |1' : FunctionbDecl | H E df :
H H ' H
: : : :
df H H |‘2 : HotVla_ ELEM | H
H : H

Y

H H H
|2' : output | - A |

transfer 1’.FunctionName := FuncHame; E 17 =1
end; : I 5’ : CompareOp I
af
. df
' Y ‘:l'
3 Cmp 4" : Switch
df
Y
20 = 2

transfer 4’.ThenBranch := tc;
4’ .ElseBranch := ec;
end;

Figure 6.6: Productions implementing CreateFunctionDecl and CreateSwitchN ode

The usage of these productions in the final generated programming environment is depicted in fig. 6.7. In
the shown situation the context for applying CreateSwitchN ode has already been created and the operation
is called. The user is asked to provide the system with some necessary information like the father-node where
the input data comes from (root), the compare operation associated with the Switch and the function names
for the ThenBranch and ElseBranch.

The other productions which are needed to realize an editor for our language look very similar. We do not
need any more complicated operations. These productions cover already some context-sensitive analyses. In
the next chapter we will discuss other analyses we can apply to a specified program. Beyond that we will
present some ideas how to realize a simple type checker with PROGRES for the HotVla language.

6.3 An Analysing Mechanism for HotVla

In fig. 6.6 in section 6.2 we have seen that many context-sensitive analyses can be omitted if the editor
is specified with a little knowledge about the language. If this is not the case (e.g. the user wants to be
able to leave a program in an inconsistent state temporarily) it is not very difficult to specify some tests in
PROGRES which will check the syntactical correctness of a HotVla program as an alternative to parsing
the program based on the grammar. These tests look very much similar to the productions shown in fig. 6.6.
Therefore we omit them here.
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Figure 6.7: Usage of the productions shown in fig. 6.6 in the final generated programming environment. Left:
Input of the necessary parameters, Right: After the insertion of a Swich-node

An interesting check an analyzer could perform on a specified HotVlaprogram is a type check. The idea
is to add some type information to every node in the way it is known from e.g. functional languages. With
these information it is possible to implement a type inference system.

E.g. arithmetic operations shown in fig. 6.5 will all get the type e.g. Plus :: int — int — int. This
type information will be modelled by a set of nodes describing the in- and output data types. The edges at
ports in_t_info and out_t_info (in fig. 6.8 the port identifiers are annotated at the edges) connect the type
information nodes to the function nodes. Generic types like a, 8,7, ... (Or *, %%, % % x,...) are also allowed.
Then we try to match the types of two successing functions as follows: from every predecessing output data
type we draw an edge to every input data type. Fig. 6.8 illustrates that. We can treat function calls or
switches, which call one of two functions implicitly, equally. Their input and output data type is determined
by the 1-context. However, the principle of type matching is the same.

Figure 6.8: Every output data type is connected to every input data type of the following function

A simple production can identify all edges with similar types at both ends and delete this edge including
both type nodes. The other type information nodes should be embedded properly so that each node has
still a syntactically correct type information chain. Fig. 6.9 shows such a production inserting the edges for
matching types and another production that eliminates these matching types.

Finally only non-matching pairs of type information are left in the enriched program. There are two
possible cases:

e At least one of the type information is a generic data type. Then a unification of these two will do and
we can delete them.

e Both data types cannot be unified. Then we have a type clash which indicates a wrongly typed program.
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production HatehTypelInfo * = production RemoveMatches * =
. df H H daf H
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Figure 6.9: Production that inserts the match edges (left) and the production that eliminates these matching
types (right)

The only problem left is if it is possible (or allowed) to unify two different generic data types or if this is
a type clash. We are currently investigating on this topic.

6.4 Executing HotVla in the Generated Prototype

After editing and analysing a program in our visual language we also want to execute the specified program.
In this section we show how the execution machinery of our HotVla language works. It is possible to generate a
rapid prototype of the specified language to have a standalone application, i.e. editor, analyzer, and animator,
of the language. We will demonstrate the animation with the help of this generated prototype. However, the
process of generating this application is not the topic of this section.

The execution of HotVla is demand driven, i.e. beginning at the Output node the machine tries to compute
this node. For this reason it computes its predecessors. If they have no computed value yet this process will
continue recursively until all values are available. Analyses of the specified program could make sure that
there is always a possible way of execution. The termination problem cannot be solved, of course.

The animation machinery is realized as an interpreter with a program stack. All values of functions are
stored in attributes to the nodes. The dataflows connect the functions but do not have values themselves. A
way of realizing edges carrying values is to introduce an intermediate node between the source- and target-
node of the edge. This subsidiary node has the only task to store the value of the dataflow. The former
source- and target-node of the original edge are connected to this intermediate node. With that it is also
possible to realize a data-consuming or non-consuming machinery, depending on whether the node will be
deleted when the value has been read or not.

The semantics of the arithmetic and the compare operations is straightforward. With that the way of
executing those rather primitive functions is very clear. The administrative nodes in our language call
externally defined functions for user interaction. User_Input e.g. calls a C-function that prompts for an input.
Furthermore the DEC'L nodes need no explanation because they do not have any operational semantics.

The interesting part of the language definition is the part defining control elements. Cmp e.g. takes three
inputs, i.e. two values of the same type and a compare function valid for this type, and combines them. The
result is of type boolean.

A little bit more complex is the semantics for the C'all node. To simulate the way an operational semantics
is defined we have decided that the execution does not perform a jump to the function but unrolls the
definition and replaces the Call node by an instance of the function. For this purpose, every node of the
called function will be duplicated and properly embedded so that the function is copied. We store the nodes
connected to the FunctionDecl-node of that copy and connect these to the predecessor of the original Call
node. Then the FunctionDecl-node of the copied function can be deleted. The Qutput-node will be deleted
in a similar way.
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The semantics of the Switch-node is very similar. The only difference is that the node itself will not be
deleted like the Call-node but stays in the graph (we are aware that this is not consistent and might be
changed in future versions of HotVla). The copied function, which was selected by the Switch previously,
will be embedded behind the Switch-node and the input value of the Switch-node will be led through to
the embedded function.

Fig. 6.10 shows the execution of the factorial function in our generated programming environment. The
left picture is divided into two parts: the three graphs of the function definition of the factorial function
are shown in the left part of the figure, the program execution is the right graph. There we have already
executed the Switch-node and inserted the FacT hen-function behind that node. The next step is to execute
the function call. The result is shown in the right window.
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Figure 6.10: Left: The factorial function after executing the Switch-node (rightmost graph). The three
leftmost graphs define the factorial function. Right: The function call has been executed and another copy
of the fac-function has been inserted.

By implementing an animation tool with PROGRES in the way demonstrated here it is not difficult
anymore to deduct the operational semantics of the specified visual language. The machinery simulates
already the unrolling of function calls (which may also be recursive) and works demand driven, which can
also be mapped to the bottom-up development process of an operational semantics to a specified program.

6.5 Summary

In this chapter we have shown how to develop a visual language with PROGRES. First we have defined
the structure of the language with the help of the visual object-based PROGRES Scheme Editor. The next
section has demonstrated how a context-sensitive editor for a visual language can be built that saves a lot
of analyses on a specified program regarding the syntactical correctness. Nevertheless, additional analyses
can be specified. We have presented a possible implementation of a type inference system for our simple
dataflow language. Finally we have shown that PROGRES not only gives its user the opportunity to build
an interpreter for his language.

The example throughout this chapter was a first version of the HotVla language. This language is still
under development. Papers about the theoretical background of HotVla are on their way. We have designed
this language as the core of a development kit for visual dataflow languages. In the future we want to define
a library of generic modules and specialisations of these to define several classes of visual languages.
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