Visual Modeling and Programming

with Graph Transformations

VL’98 Tutorial
14th IEEE Symposium on Visual Languages
Halifax, Nova Scotia, Canada, Sept. 1-4, 1998

Dorothea Blostein

Dept. Computing and Information Science
Queen's University, Kingston,

Ontario, Canada K7L 3N6
blostein@qucis.queensu.ca

phone: (613) 545-6537

Andy Schurr

Institute for Software Technology

Department of Computer Science

University of the German Federal Armed Forces
D-85577 Neubiberg, Germany
schuerr@informatik .unibw-muenchen.de

Table of Contents

GO S AT Y 4t tueteeteanetostesssasstostosssrostossssssasstostossstostosssssstostosssassassssssstossossssnsansres iv
1. INtroducCtion cuueeeieiieuieenieeieieieeneseeiesesaseesesesessosssessssstosssssssssassssssssessasasscssnes 1
1.1 Visual Languages and Graph Transformationcveveriiririniiniineiieireree et eneeeeneeeeneeneeeeanenns 1
1.1.1 History of Graph TranSformationsceeeuriuriiiireiieeie e e e e e e e eeneeneenneenns 2
1.2 Software Treatment Of GIaPISc..iuiuieiiiieir ettt ete e et et eaeeaetneenetneenetneeneeasaenns 3
1.3 Introductory Example of A Graph Productionc...ueiiiuiiiiiiiiiiiniiiiiiiiii i 4
1.4 Application Areas Which Use Graph Transformationccoeeeuiiiiiiiiiiiiiiiniiii e eee e 4
1.5 OVerview Of TheSe NOTES....ccuuiuuiii ettt ettt e e e ettt e e e e e eee e e e e eeeanntne e eeeeeennnaaenes 6
2. Notations and Mechanisms for Graph ProductionsS........c.ccieeiiiuecicnecnicicnccessecesrocnes 7
2.1 Terminology and an EXamPIec.uieuiiuiiiiiiiiiie et e et et e e et et e e e e e e e eenns 7
2.2 Steps in the application of a graph ProduCtionc.ceeuureiniieiiriieiir e eeeerreeeaeenreneaneenaens 10
2.3 Overview of Embedding MeChaniSmS......ccciiiiiuiueiriiiiiiuiieeieiiiiieeeeeetriiieeeeeeetaeeeeeeetnneeseesnennneeeaes 11
2.3.1 Hierarchy of Graph Language ClasSes........cccccieiererreriereririrrinenenenrnnrnrereereeeeeererseseenennnnns 12
2.3.2 Unrestricted Embeddings: Expression NOtation...........cccieeiieiieiiiiiieeeeeieriaeniniininreeeeeeeeaaenns 13
2.3.3 Diagrammatic Notations for Unrestricted Embedding: Y, X and A Notation.............c..ccceevennenes 14
2.3.4 Depthl Embeddings: NCEccuiieiiiiiiiiiie e e et e e te e e e e e eaneaan s e aeneennaens 17
2.3.5 Elementary Embeddings: Schneider’s NOtationc..ccuuveuuieuiiiiiiiiiiiiiieeiieeieeeeie e eenens 18
2.3.6 Invariant EMbBeddingsccuiuuiiniiiiiiiiiiiiie ettt e e et e e e e e e e e 18
2.4 Other Aspects of Graph ProduCtiOnsuciiuuiiiiiiiiiiiiiiiiiiii ettt eca e 19
2.4.1 Induced versus Non-induced Subgraph ISOmorphiSm............ceeviiiiiiiiiiiiiniiniiiiiniinieieeieeeanes 19
2.4.2 A Class Hierarchy for Node Labelsccceovieriireiiiiniinie e e e e e et e eae e e eneenaaen 22
2.4.3 Homomorphism versus ISOMOTPRISIM.... ... iiiiieiiiiiiiiiiia e e eeeeiiiie e e e eeeeeneie e e e eeeeeeeenaas 23
2.4 .4 Hierarchical Graphs and Distributed Graph ReWritingcovuiiiiiiiiiiiiiiniiiiniiieirieeecanes 23
2.4.5 Efficiency of Production ApPPliCatiON.............eeererrruremmerremmmmnnennes 23
2.4.6 Tools and Languages for Graph Transformation............cccoveeeiiiiiiiiieeeieiniiiiiicee e eeeieeeeee e 24
2.5. Methods of Controlling the Application of a Set of Graph Productionsc..cccoeeeiuiiiiiiiiineiiniennes 24
2.5.1 Unordered Graph Transformation SYStemScuueeuuieunieuiiiiniieiieiee e e e e e enaens 24
2.5.2 Graph GIaAMMATS ...c.ueuuinienetntenetteet et eieetetaeaetetaetttetnetetaetetanetetnstetneemeneeneenenmeeeranns 25
2.5.3 Ordered Graph TransSformation SYSEIMScuuerurernrernrinneenneeneereeeeeeeeeenreereaneenaaenrenaens 25
2.5.4 Event-driven Graph Transformation SyStemsc.occuieuiiiiiiiiiiiiiiiiei e, 26

3. The Graph Transformation Language PROGRES.......ccciciettieecticeciocectocsccsssncsccssse 27

3.1 Object Oriented Modeling and Graph Transformationccceuieiiiiiiiiiiiniiiiein e eeaee. 27
3.2 Related Specification and Programming Languages............uuuuuuuuiiiiiiiriieriieereeneeneeeeeeeeeeeeeeeeeeeeeeeeeenen 29
3.2.1 Semiformal Modeling and Formal Specification Languagesccocuvvvuieineireinreneenennnennns 29
3.2.2 Visual Rule-Based Programming Languagescceeuuiiiiiiiiiiiiiiiiiiiiiiiici e 29
3.2.3 Graph Transformations and Meta Programming ToolS...........cceeiviiiiiiiiiiiiniiiinininineineeanes 30
3.3 Graph Schemata and Derived Graph PrOPEItiesc.uiiuuiiiiuiiiiiiiiiiiiiiiiiii it e enaae 31
3.3.1 The Running Example and DIANE Graphs..........cccceeitiiiiiiimiiininmiiiiiiinniinneneeneeeeeeeeeeeeeeeeenn 31
3.3.2 Node Classes, Node Types, and Edge TYPEeS.....cccceeerreirrrreereieiineeeeeesriineeeeesessennneneessesnenns 32
3.3.3 Standard Attribute Types and FUNCHONScouiiiiiuiiiuiiiiiiiiiiiiiii e 34
3.3.4 External Attribute Types and FUNCLIONScuviuiiuiiiiiiiiiiiiiiiie e ee e eeeanas 34
3.3.5 Intrinsic NOAE AttTIDULESuuuuttunnetiiiiiieiia e e e ee e e e e e e eeeeee e teeeeeeeeeeeeaeeeene et e aaes 35
3.3.6 Derived Node Attributes and CONSIAINEScuuieunieueeeneineeieeaee et et et e eeeeaeeaaeeaaeeeeanes 36
3.4 Graph Queries and Graph TranSformationscveuveurriniiurineer e e e e e e e e e eaneeaneanaennnes 37
3.4.1 Restrictions and Path Declarationsc...c.uieuieuiiuiieiei e e e e eeanes 37
3.4.2 Subgraph Tests and Attribute CONditionSccueureurinriniiiiiiiieieieieereie e eeeeeeeneeaeanns 39
3.4.3 Productions and Attribute ASSIZNMENLSc.uveunieuerenrenneenrerneeeenrereeneenreraenaeeneenennns 40
3.4.4 Advanced Pattern Matching CONCEPLSccuuetuerneeuteieei e e et e et et e e eeaaeeaaeeaaeneeanes 42
3.4.5 Control Structures and TranSaCtioNScuuveuuieuieeuieu et e et eeeeaeeaaeneaanes 44
3.4.6 Consistency Checking with CONSLIAINTSc.uveueieuerenreneerereereerereeneeeerneneeeeennennnes 46
3.5 Modules and Updatable Graph VIEWScuueuiuiuririunieiiiiieieie et eieeanetetaeteeaeeeneeeeneeeeneeaeeasanns 49
3.5.1 PROGRES PACKAZESuevurinniinneieeieeieeieetieetneeaneeaeeneeaneeaneenseanernsenneennernennaennsnnnennnes 50
3.5.2 Specification-in-the-Large with Packagescc.eieuiiuiiiiiiiiiiiiiii e e 52
3.5.3 Graphical Modeling with Updatable Graph VIEWSsccccuviiiniiiiiiiiiiiiiiiieiieieieeieeieeieeeanes 53
3.6 The Programming and Prototyping ENVIronmentcceuiiuuiiuiiiiiiiiiieei e e et e eee e eeanes 54
3.6.1 Basic Components and their Interdependencies........cccceevviiiiiriiiieieriieriiicicieeeeeneeeeeeee 54
3.6.2 Editing and Analyzing SPeCifiCationsc.eveueieureunreneererrereereeeeneenerneneeeeennennnes 56
3.6.3 Executing and Debugging Specifications............cceiiiiiiiiiiiiiiiiiiiiieeie e 58
KI5 (011013 01 01 ¥~ ST PP PR PPPPPPPPPPPPRPPPPPR: 59
3.7 SUIMMATY ..ttt ettt ettt et ettt e et e et e et e et e ee e et e en e enaeaaaean e ennaenaennaennaenneennaennaenaensaennannnns 61
4. Graph Transformation Applied to Document Image AnalysiS......ccccciciieiiaiaiiannacanss 63
4.1 Overview of Document IMage ANALYSIS.....ccccceeeieirirrreririiriererrirsesesssesssesssessessesaseaaeaeeseseeesesaeaeeseneens 63
4.2 Systems Using Graph Rewriting for Document Image AnalysiS.........ccccciuereeeeiiiinierriiiinnnnreeeeeeeeneennn 64
4.2.1 Parsing Images of Neural Networks [Pfal72].......ccccccoimiiiiiimiiiiiiiiiiiiiieee e eeeeee e 65
4.2.2 Analysis of Circuit Diagrams and Flowcharts [Bun82].........cccccciiiiiiiiiiniiiieiiniiieeeeieeeen, 65
4.2.3 Analysis of Dimension Sets in Engineering Drawings [DoPn88]........cccceeevvvriiiiiiiicvneeernnnn. 65
4.2.4 Analysis of Music Notation [FaBI193].......ccccooirieiiiriririeiiiririricsicrcererercere s 66

4.2.5 Analysis of Music Notation Using Simplified Graph Productions [Pies94] [Baum95]............... 66

4.2.6 Analysis of Mathematical Notation [GrBIOS]........cccoiiiiiiiiiiiiiiii e 67
4.2.7 Analysis of Mathematical Notation [LaP097]c.coeuiinriiiiiiiir e 67
4.2.8 Analysis of Music Notation with Symbol Uncertainty [FaBI98]..........ccccccviiiinniiiiniiininnns 67
4.3 PROGRES Program for Interpreting Images of Mathematical Notation.............ccoieeuuriiniiieiiiieinennneenn. 68
4.3.1 Build, Constrain, Parse..........cccciiiiiiiiiiiiiie et e e et e e aa e e eaas 68
5. Re-Design of Legacy Applications with Graph Transformations.........ccceevvieeecenines 77
5.1 MOBIVALION 1. ctueeii ettt ettt ettt ettt ettt e e e e et et aa e et e e et een e eea e e et e eeaa e et et eenas 77
IV (5 Lol [o] [} PR UPP PR PP PPPRPPPPPRPPR 77
5.3 DESIZN RECOVEIY ..uuiiiiiiiiiiiiiiiiiii ettt e ettt e e e e et b e e e et aaae e eeaaabaaaeeanes 79
5.4 Visualization of the Design Recovery Information...........ccecouemiieeeiiiiiiiiiiiciiiieeeee e seccceneeeee e e 79
PRI 2R 20 1724 00 1TSS 0 1 ¥ SRR P RO P T O R PP PP UPRPPRPPPPPRPR 81
5.5.1 Structural ChANEZESc.uieuveunreneeneeeeeeeereteeteeteets e eaneetneannsantanseneansansennsenneansenneens 81
5.5.2 Source Code AIEIAtIONSeeueeuueeueenet et ettt etaet et eetaeenaeenaeneenaeenaennaeneanaennaens 84
5.6 SUIMMALY ...uirnniiiiieie et et et e et et et et e e e e e e eaneaneeaneanneaneeneensannsannnnsannsanseanstnnsennsensennsenneenn 84
6. Modelling a Visual Language with PROGRESccciitiiiitetninecneressscncressstosscsscsees 85
6.1 Concepts of Modelling a Visual Languagecovuuieiiiiiiiiiiiiiiiiiiieiire e et et e ee e eeeeneeaeeaeanas 85
6.1.1 The HOtVIa LanGUAZEceuuieunieneeeeeeieeeeieeie et et e e et e et e aneaneansanneaneaneannsenneaneennaens 86
6.1.2 The HOtVIa SYNaX.....ccouiiiiiiiiiiiiiiiiie ettt e et e e et e e ettt e eeeena e eeeenaaeeeennnaeeenenn 86
6.2 Generating a HOtVIa EditOr...........ivuiiniiieeiieiieeis e e e e e e e eee e e e e e e e e e aaneennsenneaneennaens 89
6.3 An Analysing Mechanism for HOtVIa.......c.oiuiiniiiiiiiiiiii et e e e e e e eaaes 89
6.4 Executing HotVla in the Generated Prototype...........cvivuiiiuiiiiiiiiiiiiiiiiiiii e 91
6.5 SUIMMALY ...ueiuniiiiieie et et et e et et e et e et e e e eaneaneeaneanneaneaneensannsanrnnsannsanntanseansenneennenneenneens 92
L O 1 110 0 1 1 93
Bibliograp iy iciiiieeiieneeeretioeesieneesssstsessnsssnosrsessesessssssstsssssssssssssesssssssssnserasores 94

iii

Glossary

The following terms and symbols are used in these notes. A more detailed explanation of the relevant concepts is

provided in the notes.

application condition

attribute transfer clause

attributes

context free production

context sensitive production
DIANE graph

edge type

embedding rule

embedding specification

folding

graph grammar

graph production

graph rewriting system

graph schema

graph transformation system

host graph

Defines conditions on LHS", typically testing attribute values or host graph
structure. These conditions must hold for rule application to proceed.

Assigns attribute values to RHS", calculated from attribute values in LHS™*,

The nodes and edges in a graph may be attributed, i.e. have attribute information
associated with them. Attributes may be of any data type. They are used to record
auxiliary information, which is not captured by the structure of the graph.

A production in which LHS consists of exactly one node. (This node has a

nonterminal label.).
A produciton in which a portion of LHS exists as a subgraph of RHS.

DIrected Attributed Node and Edge labeled graph. PROGRES operates on DIANE
graphs.

In PROGRES, the edge type determines the label of the edge, as well as the
permissible types of source and target nodes

Synonym of embedding specification

Calculates post-embedding edges from pre-embedding edges. Embedding information
can be provided using textual or graphical notation.

In PROGRES, when two nodes of a rule's LHS are folded, this means that they are
allowed to match the same host graph node.

A set of productions and an initial graph (the axiom). Node and edge labels are
designated as terminal or non-terminal. A terminal graph is a graph in which all
labels are terminal. The graph language defined by a grammar consists of the set of
terminal graphs that are derivable from the initial graph.

A construct which replaces one subgraph by another subgraph, analogous to the way
that a string-grammar production replaces one substring by another. A graph
production consists of LHS, RHS, an embedding specification, and possibly
application conditions and attribute transfer clauses.

Synonym for graph transformation system.

In PROGRES, the graph schema provides a type definition of a class of graphs.
This includes a declaration of the node and edge types which are used, a declaration of
node attributes, a declaration of which node types can act as source and destination for
each edge type, and additional integrity constraints.

A set of rules which implement the graph inspection and modification operations
needed by an application.

The graph to which graph productions are being applied. The host graph may be
directed or undirected, depending on the needs of the application. In most
applications, the host graph is attributed. The phrase host graph is often shortened to
graph., where the meaning is clear from context.

iv

induced subgraph

labels

LHS
LH Shost

LHS match
LHS occurrence

linear production

monotone production

node class

node denotations

node type

package

path expression
pre-embedding edges
production
post-embedding edges

regular production

RestGraph

restriction

RHS
RHshOSt

rule

Let M be a subgraph of graph N. M is an induced subgraph if it satisfies the
following conditions: if an edge of graph N connects two nodes of M, then that edge
must be part of M.

The nodes and edges in a graph may be labeled, i.e. marked with a specific label
drawn from a finite set of labels.

The Left Hand Side of a graph production. This is an unattributed graph.

A subgraph of the host graph, isomorphic to LHS. This is an attributed (sub)graph.
Some graph transformation mechanisms require that LHS"® is an induced subgraph:
if a host-graph edge connects two nodes of LHS", then that edge must be part of
LHShOSt.

Synonym for LHS"0st
Synonym for LHSst

A context free production where RHS contains any at most one node with a
nonterminal label. (Any number of terminal-labeled nodes are allowed in RHS.)

A production in which the number of nodes in LHS < number of nodes in RHS.

The node class is always an abstract class in PROGRES; its extension is a set of
node types with common properties.

Unique names for the nodes in LHS and RHS. These names are only used within the
production itself (e.g. within the application condition and attribute transfer clause) to
refer to nodes of LHS and RHS. Often, numbers are used for node denotations.
PROGRES node denotations take the form “1,"2,3 ...in LHS,and 17,27, 3" ... in
RHS.

A PROGRES node type determines the properties of a node. Node types are declared
within the graph schema. This declaration includes the name used to label nodes of
this type, the attributes that nodes of this type have, and the permissible types of
incoming and outgoing edges which may connect to nodes of this type. The same
name is used for the node label as for the node type as a whole.

A PROGRES module which contains a number of related declarations, typically
including production rules and type definitions.

A PROGRES procedure which describes a graph traversal.
The set of edges joining LHS"™! to RestGraph

See “graph production”

The set of edges joining RHS™ to RestGraph

A context-free produciton in which RHS has a unique maximum node. All other
RHS nodes are predecessors of the maximum node. The maximum node may have a
terminal or non-terminal label, all other RHS nodes have terminal labels.

The host graph minus LHS", (The “minus” operator removes all nodes and edges
of LHS"*, and all edges with one or both endpoints in LHS"*",)

A PROGRES condition on a single node, restricting its attribute values and/or its
context in the graph.

The Right Hand Side of a graph production. This is an unattributed graph.

A newly-created subgraph isomorphic to RHS; used to replace LHS"*. This is an
attributed graph. The graph structure is copied from RHS, and attribute values are
assigned by the attribute transfer clause.

A synonym for “graph production”.

subgraph isomorphism

subgraph test
transaction

unrestricted production

Formal definitions of subgraph isomorphism can be found in many textbooks, such
as [CoLR90]. Roughly, the structure of the graphs has to match: the nodes are put
into correspondence in such a way that edge connectivity matches. Node and edge
labels must match for isomorphism, but attribute values are often ignored.

A PROGRES construct which checks for the existence of a certain graph pattern
without changing the host graph.

A atomic and consistency-preserving PROGRES construct which defines a
programmed graph transformation.

A produciton with no restriction on LHS or RHS.

vi

1. Introduction

1.1 Visual Languages and Graph Transformation

Andy wrote this

2 INTRODUCTION

1.1.1 History of Graph Transformations

Andy wrote this

INTRODUCTION 3

1.2 Software Treatment of Graphs

Graphs are widespread. Society uses graph-based notations such as organizational charts, circuit diagrams, and flow
charts. Computer programs use graph data structures such as traveling-salesman networks and semantic networks.
Typically, nodes represent objects or concepts and edges represent relationships. Auxiliary information, of any data

type, is stored in node attributes or edge attributes! .

Software treatment of graphs involves the representation, inspection, modification, display, and recognition of
graphs, as illustrated in Figure 1.1. In current undergraduate computer science curricula, graph modification receives
far less attention than graph representation and graph inspection. In existing software, it is common to modify
graphs through pointer-manipulation code for adding and deleting nodes and edges. This is a low-level, error-prone
coding style. Graph productions (also called graph rewrite rules and graph transformation rules) provide a higher-
level interface for graph modifications. The graph productions are clearly delineated from the rest of the code, and can
be conveniently expressed using visual language constructs. Graph productions replace one subgraph by another
subgraph, analogous to the way that string-grammar productions replace one substring by another. Graph
transformation has been intensively studied for several decades [[WGG] [R0z97] [R0z99], but is not widely known in
the general computer science community. As a result, the concept gets reinvented, for example in reference
[ArHW90]. Graph transformation is an intuitive and useful tool for specification and design in many software
applications.

Printer or

Monitor W _ Display Data Structure

“~ Image of .
Representing Represent
4 theGraph — the Graph

. Recognize

Scanner or s
Data Tablet S x
Q o~
2|3
=

Computer Program
Figure 1.1 Five aspects of graph processing. Represent the graph; standard methods include an adjacency list,

adjacency matrix, or incidence matrix. Inspect the graph; standard algorithms include breadth-first or
depth-first search. Modify the graph; graph productions can be used, as illustrated in these notes.
Display the graph, using a graph-layout algorithm. Recognize drawings of graphs, using document-
image analysis techniques.

1Chapters 1 and 2 include excerpts from references [BIFG95], [BIFG96] and [B1Sc98].

4 INTRODUCTION

1.3 Introductory Example of A Graph Production

Figure 1.2 illustrates the definition and use of a graph production. The graph production performs a local update on
a graph, replacing a subgraph that matches LHS (Left Hand Side) by a copy of RHS (Right Hand Side). We use
sequential graph transformations. In contrast, parallel graph transformation simultaneously replaces all matches of
LHS by copies of RHS. Graph transformation is analogous to the string transformation performed by production
rules in string grammars. However, graph transformation has more degrees of freedom. There are various ways of
attaching the copy of RHS to the graph. This is called the embedding of RHS in the graph. Figure 1.2 (c) and (d)
show two possible embeddings when rule (a) is applied to graph (b). On its own, the execution environment cannot
choose the embedding that is most appropriate for the application. The source code for the graph production must
specify the desired embedding.

s s OndON
© - OO ®<@<

o

@ (b)

© @

Figure 1.2 The graph production (a) adds a new node N following node C. This transforms the graph in (b)
into a result such as (c) or (d), depending on how the copy of RHS is embedded in the graph.

1.4 Application Areas Which Use Graph Transformation

Graphs and graph transformations have been used in many application areas. These applications involve the
manipulation of structured data; this data is stored as a graph, and the desired manipulations are carried out by graph
productions. Execution of the productions by an interpreter provides a prototype implementation of the system.
Once the system design is finalized, faster execution can be provided by translating the specifications to an
implementation language. Applications are discussed more extensively in [Roz99].

INTRODUCTION 5

* Define Visual Languages and their Tools [DoTo88] [ArHW90] [G06t92] [ReSc97] [Min97]

Presently, many visual languages are defined informally, through examples; these include class diagrams,
state transition diagrams, object interaction diagrams, and message sequence charts used in object-oriented
software development. The syntax and static semantics of a visual language can be unambiguously defined
using graph transformation. The validity of an abstract syntax graph is defined through static type
declarations and run-time constraints. Graph productions define the syntax of the language and generate a
parser. It can be guaranteed that all editing operations leave the syntax graph in a valid state.

An editor for the visual language can be defined using a similar approach. The editor shows the visual-
language program as a diagram on the screen, but represents it internally by an abstract syntax graph.
Graph productions specify the semantics of each editing operation. Execution of these rules provides a
prototype editor for the visual language.

e Create a Software Development Environment [Nag96] [ELNSS92]

A graph represents all of the files associated with a software development effort, including the requirements
specification, design, source code, and documentation. Each file gives rise to nodes and edges that represent
that file and its internal relationships. Edges between files support cross-referencing and version
management. Graph productions implement coarse-grained operations such as configuration management as
well as fine-grained operations used within editors, interpreters, and integration tools.

* Define Constraint Programming Algorithms [MoR093] [KKS97]

A graph represents a constraint network, using a node for each variable and an edge for each binary
constraint. The possible values for each variable are stored as node attributes. Constraint-solving
algorithms are defined via graph productions. Rules can modify the structure of the constraint network or
update the node attributes storing the possible values for variables.

* Model Distributed Systems of Processes [Bart96] [Hri98]

A graph models the state of a distributed system, using a node for each process or message. Edges define
communication channels as well as sender and recipient for individual messages. Graph productions model
message passing among processes. Various types of execution models can be treated, including
performance models, interaction diagrams, and distributed tracing features.

® Reconfigure an Array of Processors [DeDe96]

The goal is to design and analyze reconfiguration algorithms. A graph represents a processor array, with
one node per processor and an edge for each active communication line between processors. Graph
productions activate and deactivate communication lines to replace faulty processors with spares.

o Implement Functional Languages [PeJo87]

The abstract syntax tree of a functional language program becomes a Directed Acyclic Graph (DAG) due to
sharing of subexpressions. Graph productions reduce the DAG to a single node. This has the effect of
evaluating the program represented by the DAG.

® Build a Neural Network [Grua95]

Design of neural networks is a difficult problem, attacked here by searching the space of possible neural
networks. The system starts with an initial network consisting of a single neuron. This network is stored
as a graph. Graph productions cause growth of the neural network. A set of trees directs which graph
productions to apply next. Genetic algorithms are applied to the set of trees, to evolve to a situation in
which a desirable neural network is produced.

6 INTRODUCTION

* Model Plant Growth [PrLi90]

Biologists and mathematicians have long been interested in modeling the growth of plants. Fascinating
developmental processes determine the shape of leaves, pine cones, flowers, and so on. Parallel graph
transformations are one of the tools that have been used. A graph represents the arrangement of cells in a
plant. Graph productions model the various types of cell division that occur in plant growth. These graph
productions are applied in parallel to all parts of the host graph.

1.5 Overview of These Notes

Chapter 2 provides a more detailed discussion of graph transformation. This includes notations and mechanisms for
describing graph productions, as well as methods of controlling the application of a set of graph productions.

Next, Chapter 3 provides an introduction to the language PROGRES and its tools. PROGRES uses a
mixture of textual and visual constructs to support computation via graph transformation. PROGRES tools include
a syntax directed editor, an interpreter, a debugger, and a facility for translating PROGRES code to C and Tcl/Tk.
PROGRES constructs are introduced using the development of a library database as a running example. A different
running example is used in the oral tutorial presentation: the development of a process management tool based on
precedence diagrams.

The final chapters discuss the use of graph transformation to solve problems in particular application areas.
Chapter 4 discusses pattern recognition applications, particularly the recognition of mathematical notation in
document images. Chapter 5 describes the redesign of legacy applications with graph transformations. Chapter 6
discusses the modeling of a visual dataflow language. PROGRES source code is available for these applications and
running examples.

Chapter 2

Notations and Mechanisms for Graph Productions

This chapter provides an overview of notations and mechanisms used for graph transformation. We begin by
defining terminology and describing the steps typically involved in application of a graph production. this is
followed by a presentation of embedding mechanisms of varying power and generality. Both textual and
diagrammatic notations can be used for these. Various classes of graph languages can be generated by graph
grammars that use these embedding mechanisms.

2.1 Terminology and an Example

The following terminology is used to describe graph productions.

host graph

LHS

RHS

LHshost

RHshost

Graph Production

e LHS and RHS

* Embedding information

* Application condition

the graph to which graph productions are being applied

the Left Hand Side of a graph production

the Right Hand Side of a graph production

the part of the host graph which matches LHS (i.e. which is isomorphic to LHS)
the copy of RHS which is inserted into the host graph, in place of LHS™*

A rule specified by:

LHS and RHS are unattributed graphs. A subgraph isomorphic to LHS is to be
replaced by one isomorphic to RHS

A textual or graphical description of the embedding. This describes how pre-
embedding edges are converted to post-embedding edges. Algebraic graph rewriting

(Section 1.1.1) uses a gluing isomorphism in place of embedding information.

Restrictions on rule application. Optional.
These can include restrictions on the existence of host-graph nodes and edges, as well

as restrictions on attribute values.

¢ Attribute Transfer Function Assigns attribute values. Optional.

LHshOSt

RestGraph

RHshOSt

Attribute values for RHS™ are computed from attribute values of LHSMt

A subgraph of the host graph g, isomorphic to LHS. In some models, LHS"' must
be an induced subgraph: if an edge of g connects two nodes of LHS™, then that edge
must be part of LHS"t,

The host graph minus LHS", (The “minus” operator removes all nodes and edges
of LHS™, and all edges with one or both endpoints in LHS"*.)

A subgraph isomorphic to RHS; used to replace LHS"*,

7

8 NOTATIONS AND MECHANISMS

Pre-embedding edges the set of edges joining LHS™! to RestGraph. (These edges “embed” LHS™* in g.)
Post-embedding edges the set of edges joining RHS"*" to RestGraph.

This terminology is illustrated by the graph production in Figure 2.1. This production is part of a graph
transformation system for understanding music notation [FaB193]. Starting with a scanned image of music notation,
a symbol recognizer provides a list of music symbols and their location on the page. (The symbol recognizer is
assumed to operate perfectly, to make the subsequent recognition easier.) The list of music symbols is converted to
an initial graph. The production shown in Figure 2.1 handles music notation where one notehead symbol needs to
be interpreted as two separate notes.

4

Application Condition: StemDir(2) = Up & StemDir(3) = Down
Embedding: {(1, 1), (2,29, (3, 3, (1,4")}
Attribute Transfer: All(1") = All(1); AllI(2") = All(2); All(3") = AlI(3); All(4") = All(1)

@ (b)

(o).

-
.-
-

'
Notehead

Flat

~
2
a
2

_
jos}
8
=

Stem

e E
o
0Q

© @

Figure 2.1 Notation (a) uses one notehead symbol to indicate two notes, one belonging to the voice printing
with downward stems, the other belonging to the voice printing with upward stems. Production
(b) handles this by splitting one Notehead node into two. When production (b) is applied to host
graph (c), the result is graph (d). The production matches a Notehead node that has two associated
stems. The application condition states that node 2 must have a StemDir attribute with value Up,
and node 3 a StemDir attribute with value Down. The embedding clause (1, 1) specifies that any
pre-embedding edges connected to LHS"* node 1 give rise to post-embedding edges connected to
RHS"! node 1°. The other three clauses are similar. In (c), LHS" is drawn bold, and the five
pre-embedding edges are drawn dashed. RestGraph has 7 nodes. In (d), RHS"* is bold, and the
seven post-embedding edges are drawn dashed.

NOTATIONS AND MECHANISMS 9

2.2 Steps in the application of a graph production

The following steps are used to apply a graph production. Details vary depending on which graph transformation
mechanism is used.

1. Locate LHS™® | a subgraph of the host graph that is isomorphic to LHS.
If no isomorphic subgraph can be found, report failure of rule application.

If there are several isomorphic subgraphs, choose any one of them.

2. Test the application condition. If it fails, this LHS" cannot be used for production application. Try a
different LHS"* (choosing among the isomorphic subgraphs in step 1). If all LHS™* locations fail the

application condition, then report failure of rule application.

3. Remove LHS™ from the host graph. Keep track of the set of pre-embedding edges (i.e. edges that
connected RHS™ to RestGraph).
Sometimes only part of LHS"™! is removed. Removal does not occur for nodes and edges which are
common to both LHS and RHS. Examples of this include algebraic graph rewriting (the gluing points are
not removed) and PROGRES (where preserved nodes, notated as n” = “n in RHS, are not removed). This is

explained in detail later.

4. Create RHS™' by making a copy of RHS.
If step 3 involved leaving part of LHS™! in the host graph, then that part of RHS does not need to be
copied in step 4.

5. Embed RHS™* into RestGraph, using the embedding information supplied with the production. Typical
embedding information might take the form: if a pre-embedding edge connected LHS™! node X to some
RestGraph node, then construct a post-embedding edge connecting RHS™ node Z to that same RestGraph
node.

6. Compute attribute values for RHS", using the attribute transfer function supplied with the production.

10 NOTATIONS AND MECHANISMS

2.3 Overview of Embedding Mechanisms

A graph production implicitly or explicitly provides embedding information. Embedding mechanisms vary in
complexity and power, allowing a varying amount of computation to be performed in converting the pre-embedding
edges to post-embedding edges.

A pre-embedding edge is converted into zero, one or more post-embedding edges. Thus, the embedding
mechanism specifies, for each possible pre-embedding edge,

¢ the direction of the post-embedding edges (if directed edges are used)

e the label of the post-embedding edges (if edge labels are used)

« the endpoints of the post-embedding edges. One endpoint is a node in RHS"!, The other endpoint is a

RestGraph node, designated by a path that starts with a pre-embedding edge, and sometimes continues with
a sequence of RestGraph edges.

Some embedding mechanisms permit unrestricted specification of post-embedding edges in terms of pre-embedding
edges and RestGraph. Other mechanisms impose some restrictions, as discussed below. The choice of an embedding
mechanism can involve a tradeoff between using fewer, but complex, productions, versus using a larger number of
simpler rules.

Embedding mechanisms can be classified as follows [Nag79b] [Nag87]. This classification is central to the
study of the generative power of graph grammars. For a more extensive and rigorous presentation, see [Roz97].
Examples of these embedding mechanisms follow this overview. From most to least powerful, an embedding
mechanism can be:

Unrestricted Each LHS"*! node has embedding paths specified for it. Each path starts at the
LHS" and follows a sequence of edges (starting with a pre-embedding edge), where
each edge has a prescribed orientation and edge label. Following every such path that
is present in this graph produces a set of RestGraph nodes. A subset of these nodes
is chosen (based on node label) to act as endpoints for post-embedding edges. The
directions and edge-labels of the post-embedding edges can be chosen freely. Textual
and diagrammatic notations for unrestricted embeddings are presented below.

Orientation and Label Preserving (olp) As in the unrestricted case, but when we begin by following a pre-
embedding edge with a certain orientation and edge-label, then all post-embedding
edges we construct must have this same orientation and label. In the expression
notation of Figure 2.2 below, the set In; has to begin by following an I; edge; the set
Out; has to begin by following an O; edge.

Depthl As in the unrestricted case, except that the RestGraph endpoints for post-embedding
edges are restricted to the direct neighbors of LHS™*,

Simple Depthl, and Orientation and Label Preserving.

Elementary Simple, with the additional restriction that the embedding cannot depend on the labels

of nodes in RestGraph. A pre-embedding edge can be identified only by its
orientation, edge label, and the LHS™t node it connects to; if there are several such
pre-embedding edges, they must all be transformed the same way, independent of the
node label of the RestGraph nodes they connect to.

Analogous Elementary, and the embedding transformation is independent of the orientations and
labels of the pre-embedding edges.

NOTATIONS AND MECHANISMS 11

Invariant There is a mapping between nodes of LHS and RHS such that RHS™* directly takes
over the pre-embedding edges of LHS"™. This is the only type of embedding that
does not allow the splitting and contracting of edges: the number of post-embedding
edges equals the number of pre-embedding edges.

Algebraic graph rewriting provides an important use of invariant embedding. It has a
strong mathematical basis, with useful theorems concerning order-independence and
parallelism in rule application.

2.3.1 Hierarchy of Graph Language Classes

The Chomsky hierarchy for string grammars is well-known [HoU179]. String productions can be unrestricted,
context sensitive, context free, or regular. Each successive restriction reduces the set of string languages that can be
generated. An analogous situation exists for graph grammars. The set of generatable graph languages depends both
on the allowed complexity of LHS in production rules, as well as on the power of the embedding specification
[Roz97]. The most powerful embedding mechanisms allow search of the whole graph, attaching the RHS copy to
any nodes in the graph. In this case, descriptive power is the same whether production rules are context sensitive or
context free. This is described further below.

The power of a graph grammar depends on two factors:

(1) the type of embedding. The embedding can be unrestricted, olp, depthl, simple, elementary, analogous or
invariant.

(2) the type of production.
unrestricted production: no restriction on LHS or RHS.
monotone production: number of nodes in LHS < number of nodes in RHS.
context sensitive production: a portion of LHS exists as a subgraph of RHS.
context free production: LHS consists of exactly one node. (This node has a nonterminal label.).

linear production: context free, and RHS contains at most one node with a nonterminal label.
(Any number of terminal-labeled nodes are allowed in RHS.)

regular production: context-free, and RHS has a unique maximum node. All other RHS nodes are
predecessors of the maximum node. The maximum node may have a terminal
or non-terminal label, all other RHS nodes have terminal labels.

Only the second factor has a counterpart in the Chomsky hierarchy.

Let T be a particular production type (unrestricted, monotone, context-sensitive, context-free, linear, regular).
Once T is fixed, a hierarchy of graph language classes arise based on the embedding mechanism [Nag87]:

unrestricted-T 2 olp-T, depthl-T 2 simple-T 2O elementary-T 2 analogous-T 2 invariant-T.

The equalities hold when the productions are of type unrestricted. An interesting hierarchy of graph language classes
arises when the embedding is fixed to be unrestricted, and the production type is allowed to vary. This is discussed
in the next section.

Other types of graph grammars have been invented for parsing purposes. Precedence graph grammars are a
subclass of context free graph grammars with rather restricted embedding specifications. They are closely related to
precedence grammars and may be parsed in linear time [Kau83]. Layered graph grammars and reserved graph
grammars on the other hand are subclasses of unrestricted graph grammars, which replace the requirement ILHSI <=
[RHSI of monotonic graph grammars by a more elaborated alphabetic ordering criterion on LHS/RHS graphs. The
language of layered graph grammars is decidable but requires an exponential parsing algorithm [ReSc97]. Reserved
graph grammars (layered graph grammars with an additional local confluence criterion) have a parsing algorithm with
polynomial time and space requirements [ZZ97].

12

NOTATIONS AND MECHANISMS

2.3.2 Unrestricted Embeddings: Expression Notation

Nagl formalizes and generalizes embedding specifications using an expression notation [Nag79b] [Nag87].

Expression graph transformation operates on an (un)directed, edge-(un)labeled, node-labeled graph, with LH

Shosl

required to be an induced subgraph. An embedding specification consists of 2n expressions, where each post-
embedding edge has one of n edge labels, and one of two edge directions. The symbol In, represents the incoming
edges of label i, and Out; represents the outgoing edges of label i. The notation is illustrated in Figure 2.2. This
notation is quite difficult to read. Visual notations can be used instead, as discussed in Section 2.3.3.

Figure 2.2

Embedding: Inj=(D Ik 0j (1); 34); Outj = (3; O; C Ik Ik (1,2)); etc.
@

(®)

Production (a) uses the expression embedding notation defined by [Nag79b]. When this production
is applied to host graph (b), the result is (c). Edge labels are written next to the edge. Node labels
are written inside the node, and node denotations are outside. Clause In; describes the construction
of incoming post-embedding edges that have label i. The set of nodes “D Ik Oj (1)” are source
nodes of i-labeled edges ending in nodes 3 and 4 of RHS"!. The expression “D Ik 05 (1)”
describes the following set of nodes: starting from node 1 of LHS™, follow an outgoing edge
with label j Oy and then an incoming edge with label k (Ik); include those nodes that have the
label D.

Similarly, clause Out; describes outgoing post-embedding edges that have label j. The set of nodes
“0j C Ik Ik (1,2)” are target nodes of j-labeled edges originating in node 3 of RHS™S, The
expression “Oj C Ik Ix (1,2)” describes the following set of nodes: starting from nodes 1 or 2 of
LHS™, follow a chain of two incoming edges with label k or one outgoing edge with label j.

Expression graph grammars have the following language hierarchy. (The language of a graph grammar is defined to
be the set of all terminally labeled graphs that can be derived from the initial graph S.)

(A) The set of recursively enumerable graphs is generated by unrestricted productions with expression
embedding.

(B) All of the following generate the same set of graphs (a strict subset of the graphs generated by (A), and a
strict superset of the graphs generated by (C)):

— monotone productions with expression embedding

NOTATIONS AND MECHANISMS 13

— context sensitive productions with expression embedding

— context free productions with expression embedding

(C) Both of the following generated the same set of graphs
— linear productions with expression embedding
— regular productions with expression embedding

Interestingly, whether LHS is restricted to be monotone, context sensitive, or context free does not affect the set of
generatable graph languages. Certainly the Chomsky hierarchy for string languages leads us to expect a difference
between context sensitive and context free productions. This does not occur here, because the expression mechanism
provide a means of using context through the embedding, not just through complex forms for LHS.

It is difficult to understand the effect of an embedding expression. This motivated the development of visual
notations for embeddings. Examples are the X, Y and A notations shown next.

2.3.3 Diagrammatic Notations for Unrestricted Embedding: Y, X and A Notation

Several diagrammatic notations for embedding have been developed. Gottler’s Y and X notation [G0t92] have been
used in specifying and implementing diagram editors. Kaplan’s A notation [KalLG91] [LoKa92] has been used for
concurrent system specification. These diagrammatic notations can describe unrestricted embeddings, since they
allow the following of paths within RestGraph to determine the source and target nodes of post-embedding edges.
(However, some of the set operators that are available in expression notation are not available in the diagrammatic
notations.)

An overview of Y, X and A notations is given in Figures 2.3, 2.4, 2.5 and 2.6. The latter example shows
that diagrammatic notations for embedding are not always preferable to textual ones.

Briefly, Y notation contains a complete, separate drawing of LHS and RHS. This is found to be wasteful
when graph productions have parts that are common to LHS and RHS. (These graph parts act as context for the
production, but do not get altered by application of the production.) In contrast, X and A notations depict the
common parts just once, in a separate area called the required context. The required context must exist for production
application to occur, but it is left unchanged by the production.

In A notation the required and optional contexts are in the middle of the A (with a * next to each node of the
optional context) The area below the A contains a new field, the prohibited context. This is a subgraph connected
to LHS. If it can be matched to the host-graph area surrounding LHS"®, then rule application is forbidden. Thus A
notation gives the application condition in two portions: graph-related restrictions are shown diagrammatically as the
required and prohibited context, whereas attribute-related restrictions are given textually.

14

NOTATIONS AND MECHANISMS

Application Condition
(the "guard")

. Optional Context
O ebedding, (Embedding) unique part of LHS unique part of RHS
g (the "retraction") (the "insertion")
unique part of LHS unique part of RHS Required
(to be deleted) (to be added) Context
LHS RHS

Required Context Prohibited Context
(parts common to LHS and RHS) (the "restriction")
(a) Y notation (b) X notation (c) A notation

Figure 2.3

Three diagrammatic notations for graph productions. In Y and X notations, the embedding is
shown as optional context: these diagrammatic depictions of embedding are used if they match in
the host graph. The required context must match in order for the production to be applied. In A
notation, the center of the A is used both for required and optional context, with a * placed next to
the optional parts. (Elements of a * group may occur zero, one or more times.) The prohibited
context depicts host-graph structure that must not be present; restrictions on labels and attributes
are expressed textually in the guard.

Figure 2.4

(a) Y notation (b) X notation (c) A notation

Three diagrammatic notations for a graph production which adds a second edge between an A-
labeled node and a B-labeled node. Avoiding duplication of graph-parts common to LHS and RHS
shrinks the drawing of LHS and RHS, and greatly reduces the graphical depiction of the
embedding. Using Y notation, LHS and RHS are represented separately, with eight edges and four
nodes used to show the embedding. Using X notation, the common parts of LHS and RHS are
shown as required context, the additional edge is indicated with a + sign, and no embedding
depiction is required. The A notation is similar, but depicts the added edge as looping to the right
of the triangle, into the insertion region. (This Y notation rule appears in [G6t92, Fig. 14].)

NOTATIONS AND MECHANISMS 15

Figure 2.5

Diagrammatic depiction of a complicated embedding, using Y notation. Production (a) is applied
to graph (b), resulting in graph (c). In (a), the embedding specification is shown in the top of the
Y. Edges between LHS and the embedding specification match a subset of pre-embedding edges.
Edges between RHS and the embedding specification show the post-embedding edges which are
created as a result. (Edges directly between LHS and RHS are not permitted in this notation.) The
embedding specification is an optional context -- after LHS" has been located, the embedding
specification is matched to the surrounding RestGraph. If node n’ of the embedding specification
finds a match in RestGraph, then any edge between n’ and RHS causes the formation of a post-
embedding edge. An optional-context node must have a connection to RHS in order to have an
effect on the graph production. For example, node C and its i-labeled edge (in (a)) emphasize that
the i-labeled edge is deleted (if present), but the production’s effect would be the same without their
inclusion in the embedding specification. The readability of this diagrammatic depiction of
embedding can be compared to the textual expression notation of Figure 2.2a.

16 NOTATIONS AND MECHANISMS

Application Condition: (4,v = any node label)
Above Above & (m(2) = undetermined)
I & 2 N
Gine — @@ (Default) Embedding: {(1,1),(2.2),3.3)}
y
i Below Below Attribute Transfer: m(2") ="/'

Figure 2.6 Specifying a straightforward embedding. In this case, a textual description of the embedding (a)
can be simpler than a diagrammatic description (b) or (c). All three notations describe a graph
production which replaces a Line-labeled node by a Fraction-labeled node, in the context of
incoming Above and Below edges. (This production is used in [GrB195], for recognition of
mathematical notation.) In (a), the analogous embedding is easy to perceive, due to the
correspondence in the placement of LHS nodes and RHS nodes. The embedding is formally
specified by the textual description “{(1,1°), (2,2°), (3,3’)}”. The X notation in (b) conveys the
embedding using the optional context region (top part of the X). A node correspondence is
indicated via two edges and a filled-in node (which matches a node with any label). Since directed
edges are used, this notation is repeated for incoming and outgoing edges. (c) In A notation, the
embedding is conveyed similarly, using *-groups to indicate O or more occurrences of the starred
structures. The subscripts on the ? node labels indicate that these two nodes can optionally match
the same host graph node, handling the situation where a context node is related to the Line node
via two edges, one incoming and one outgoing.

2.3.4 Depthl Embeddings: NCE

In [JaR082], Janssens and Rozenberg define graph transformation with neighborhood controlled embedding (NCE).
This is a Depth1l embedding mechanism -- a post-embedding edge can only connect to RestGraph nodes that used to
be connected to a pre-embedding edge. Edge labels may change, but edge-orientation is preserved in the
transformation from pre-embedding edges to post-embedding edges. An embedding consists of two sets, In and Out.
The set In applies to incoming edges (i.e., pre-embedding edges which terminate in LHS"®), while the set Out
applies to outgoing edges. Each set contains quintuplets, as in this example:

In ={(1,3,ab,E), (1,5b,b,F)}

Here (1,3,a,b,E) applies to any pre-embedding edge that has label “a”, and connects a RestGraph node with label E to
LHS™ node 1. Such an edge causes formation of a post-embedding edge with label “b”, connecting that same
RestGraph node to RHS"™' node 3.

NOTATIONS AND MECHANISMS 17

2.3.5 Elementary Embeddings: Schneider’s Notation

Early work with graph grammars [PR69] [Mont70] sparked interest in the embedding problem. In 1970, Schneider
provided the first formal definition of the embedding problem; a summary can be found in [Nag79b]. Schneider’s
embedding specification consists of two sets In; and Out;, which specify the transformation of edges with edge label
i. Each set contains pairs of the form (n,n"), where n denotes a node in LHS and n' denotes a node in RHS. This
pair causes a pre-embedding edge connected to node n in LHS™® to be transformed into a post-embedding edge
connected to node n' in RHS"®, The orientations, labels, and RestGraph-endpoints of the embedding edges remain
unchanged. The notation simplifies if there are no edge labels (only two sets, In and Out, are needed) or if edges are
undirected (each pair In; and Out; combine into one set).

2.3.6 Invariant Embeddings

Invariant embeddings establish a one-to-one correspondence between a subset of LHS and RHS nodes. These nodes,
called gluing points, are not altered during application of the production. All embedding edges must connect to
gluing points; rule application is disallowed at LHS"* if there is a pre-embedding edge connecting to a non-gluing
node of LHS', The effect is that the set of embedding edges is unchanged by production application.

The restricted nature of the invariant embedding limits the expressiveness of a gluing production. A
production expressed with a more complex embedding can be translated to an invariant embedding by suitable
expansion of LHS and RHS. In the original rule, graph changes are accomplished by the embedding process as well
as by subgraph replacement; in the new rule, all graph changes must be explicit in the expanded LHS and RHS. To
enable such translation to invariant embedding, additional notation for LHS and RHS may be needed. Figure 2.7
shows an example: a production to “delete a node with label A”. Using an analogous embedding, LHS is a single
node, RHS is a null graph, and the embedding specification is null. To translate this to an invariant embedding,
LHS must explicitly include all of the neighbors of node A. (These neighbors become gluing nodes.) Since we
don’t know the number of neighbors, we have to express LHS using some notation for replicated nodes and edges.
This idea is incorporated into A notation: *-groups denote zero or more occurrences of starred graph elements. A A
production that deletes a node is syntactic shorthand for an infinite collection of A production that meet the gluing
condition [KalL.G91, p478].

node;
- g

node,

-
(a) (b)

Figure 2.7 Production rules to delete an A-labeled node and all incident edges. (a) Elementary embedding
mechanism. During rule-application, LHS is matched to an A-labeled node. When this LHS"* is
replaced by RHS"®! (an empty graph), all embedding edges are discarded. (b) A collection of rules
in a gluing model, drawn using a shorthand notation. The invariant embedding of the gluing
model necessitates that LHS be expanded to include all nodes neighboring the A-labeled node.
Many productions are needed, to enumerate each possible configuration of incident edges. Here,
the “...” notation indicates a match to any number of nodes and edges.

Because of the simplicity of invariant embedding, a graph production does not need to remove pre-embedding
edges and replace them by post-embedding edges. Instead, it removes LHS™ except for the gluing nodes, and then

18 NOTATIONS AND MECHANISMS

adds RHS"™! except for its gluing nodes (connecting, instead, to the gluing nodes left by LHS"*"). This carries
over the embedding edges unchanged. As mentioned in Section 1.1.1, Algebraic graph rewriting uses category
theory to model graph transformations, effectively using invariant embeddings [EhKL91] [Roz97]. Because of its
strong mathematical basis, this approach has received much attention by those interested in the theory of graph
grammars. The algebraic approach has been used in applications where concurrency and synchronization must be
proven, for example in developing a small database system for managing library transactions [EhKr80] [EhHa86],
and for high-level data-structure manipulation [Pfe90].

2.4 Other Aspects of Graph Productions

A variety of notations and mechanisms can be used for graph productions. The following sections discuss the
use of induced versus non-induced subgraph isomorphism, the use of class hierarchies for node labels, homomorphic
versus isomorphic graph matching, hierarchical host graphs, efficiency of production application, and tools and
languages available for graph transformation.

2.4.1 Induced versus Non-induced Subgraph Isomorphism

A graph transformation system can use either induced or non-induced subgraph isomorphism. This choice has
important consequences on the structure of graph productions.

The difference between induced and non-induced subgraph matching is illustrated in Figure 2.8. If LHS™* is
an induced subgraph of the host graph, then LHS"™! must include all local edges of the host graph (i.e. all edges
that connect two LHS" nodes). A non-induced subgraph may omit some or all of these edges.

NOTATIONS AND MECHANISMS 19

Application Condition: ((x(1)-x(2)) < (x(3)-x(1)))

Embedding: {(1,1),2,2),3,3)}

Attribute Transfer: {ALL(1)=ALL(1); ALL(2"=ALL(2); ALL(3")=ALL(3)}
(@)

()

(b) ©

Figure 2.8 Induced versus non-induced subgraphs. Production (a) is applied to host graph (b). If an induced
LHS" is required, the isomorphism test fails and the production cannot be applied. On the other
hand, if non-induced subgraph matching is used, a suitable LHS"™* is found. Production
application results in the new host graph (c). During production application, LHS"* is removed
from the graph, and is replaced by RHS™*, so the edge from the C-labeled node to the B-labeled
node is removed in from the host graph. This effect may not have been anticipated by the author
of production (a).

20 NOTATIONS AND MECHANISMS

— o)
1 2 1 2

Application Condition: Not_Edge(1,2) & x(2) > x(1)
Embedding: {(1,1"), (2,2}
Attribute Transfer: {ALL(1")=ALL(1); ALL(2")=ALL(2)}

Figure 2.9 When LHS™* is a non-induced subgraph, an extra application condition may be required. This
production, used in the [GrB195] system, adds a Left edge to the host graph. A Not_Edge (1, 2)
test is used in the application condition, to avoid the attempt to insert a Left edge when one is
already present. Without this clause in the application condition, the production could be applied
repeatedly. This would waste time (perhaps even cause an infinite loop), but would not result in
parallel Left edges. Any existing edges between nodes 1 and 2 are discarded when LHS" is
removed. If LHS"™ were required to be an induced subgraph, then the Not_Edge(1,2) condition is
no longer needed.

Compared to non-induced subgraphs, induced subgraphs meet more stringent matching criteria, and provide
more information about local host graph structure. The following consequences result.

¢ Using induced subgraphs increases the number of productions: LHS cannot match unless the rule-author has
anticipated all the edges present in that part of the host graph. If a variety of edge-configurations are
possible, these must be enumerated in separate graph productions (where a single non-induced production
could suffice).

* Non-induced subgraphs require extra application conditions, necessary to ensure the absence of certain host-
graph edges (Figure 2.9).

* Unanticipated edge-deletion is a major pitfall of non-induced subgraphs. Edges present in host-graph but
not mentioned in LHS are deleted by rule application (as in Figure 2.8).

These points become particularly significant in case of host-graph evolution. Suppose a graph transformation
system is being extended, by adding a new type of edge with the edge label “Grow”. Ideally, the old graph
productions should continue functioning as before, so that we merely need to create a few new rules that directly
process the Grow edges. Both induced and non-induced subgraphs disappoint us.

¢ Using induced subgraphs, the presence of a Grow edge prevents application of any of the old rules. The old
rules must be replicated, to enumerate all possible permutations of Grow edges that might occur in the
LHS" area.

* Using non-induced subgraphs, the old graph productions continue to apply, but they perform implicit
deletion of Grow edges. Productions apply whether or not a Grow edge is present, but if a Grow edge was
present before rule application, it is no longer present after rule application.

These problems are independent of the embedding mechanism, arising similarly in all models that use removal
of LHS"! during the transformation step. Improved semantics can be defined by using non-induced subgraph
matching and avoiding node deletion where possible. This means that whenever LHS"*' and RHS"*! contain
corresponding nodes, these nodes are preserved during production application. Preserved nodes are not removed as
part of LHS"* node and reinserted as part of RHS"*; instead they are left unchanged by production application.
Such semantics (incomplete removal of non-induced subgraphs) are provided in the definition of structured graph
transformation [KrRo90], and in the PROGRES language. Many graph-transformation papers give scant mention of
their choice to use induced or non-induced subgraph matching. This issue is important both theoretically and
practically.

NOTATIONS AND MECHANISMS 21

2.4.2 A Class Hierarchy for Node Labels

Both node and edge labels can be used to represent information in a graph. For subgraphs to be considered
isomorphic, they must match not only in structure, but also in labeling. The set of possible labels can be organized
as a flat set or as a hierarchy of label classes. Using flat labels, an X-labeled node in LHS must match an X-labeled
node in the host graph. Using hierarchically structured labels, an X-labeled node in LHS matches any host graph
node whose label occurs at or below X in the label tree.

Hierarchical node labels have been used in several graph transformation systems [ELNSS92] [Got92]. The
PROGRES language allows multiple-inheritance among node-classes, resulting in lattice-structured rather than tree-
structured node labels [ELNSS92]. The distinction between labels and attributes is blurred in A notation [KaLG91].
Here labels are tuples of arbitrary structure, and hence combine the functions otherwise divided among labels and
attributes. Unification is used when matching variable labels in a A production to labels in the host-graph.
Advantages of a hierarchical label structure are as follows.

Inheritance for the definition of attributes. Every node label has an associated set of attributes. The definition
of available attributes is simplified by the use of inheritance among classes of node labels. A label class inherits all
of the attributes of its parent label, and may have additional attributes defined specifically for it.

LHS nodes match with a variable degree of specificity. With hierarchical node labels, each production rule can
be designed to match node labels with a greater or lesser specificity. An LHS node that has a node-class label high
in the inheritance tree will match many host graph nodes. An LHS node with a more specific node-class label will
match a much narrower set of host graph nodes. In contrast, difficult design choices must be made when a flat label
set is used.

¢ Option 1: Use many labels to make fine case distinctions.
¢ Option 2: Use a small number of general labels, augmented by attributes for fine case distinctions.

Efficiency problems arise under both options. These arose in our design of a graph transformation system for
recognition of math notation [GrB195]. This system was first designed using flat label sets; a later translation to
PROGRES gave us access to hierarchical label sets (Chapter 4). With flat label sets, our options were as follows.

¢ Use highly-specific node labels, such as a, b, c, I, 2, 3 for selected letters and digits.

* Use general node labels, such as letter, number, digit, with node attributes recording which character gave
rise to the node.

Graph transformation can involve operations on individual letters, or on all letters. The above options are suitable
for one of these operations but not the other.

» Using highly-specific labels, it is expensive to perform an operation on all letters. A separate production
rule can be written for each letter, or wildcard node-labels can be used in LHS.

* Using general labels, it is expensive to search for a particular letter. This has to be done, for example, by a
production rule that looks for the sequence cos to interpret it as the name of a trigonometric function, rather
than as the implied multiplication c*o*s. Here LHS contains a node labeled letter, with an application
condition to specify the desired attribute value “c”. The search for LHS"* is quite inefficient under standard
implementations, since matches to all /etter nodes in host-graph are undertaken, with most matches rejected
by the application condition. It is possible, but cumbersome, to make this search efficient by customizing
the subgraph-isomorphism code so that application conditions limit the search space for suitable LHS™,

The use of hierarchical node labels solves these problems, allowing LHS nodes to match with a variable degree of
specificity.

22 NOTATIONS AND MECHANISMS

2.4.3 Homomorphism versus Isomorphism

Most commonly, a subgraph isomorphism test is used when finding a subgraph that matches LHS. Alternatively, a
general graph morphism can be used. The utility of general graph morphisms is illustrated by small examples in the
literature ([EhHK92, p. 560], [KrRo90a, p. 200]). However, the use of general morphisms might result in
productions that match the host graph in unintended ways. A useful compromise is to selectively indicate where
general morphisms may be used. For example, A graph rewriting uses subgraph isomorphism, but with a label-
subscript notation (called a fold) to explicitly indicate groups of nodes and edges which can be matched to the same
host-graph entity [KalLG91] [LoKa92]. A fold construct is also available in PROGRES. The utility of this
construct is demonstrated by a production to insert an element into a circular list. (In the example, this is a circular
list of nodes representing philosophers and forks, used to simulate the dining philosophers problem.) The
production works on non-empty lists of any length. When matching long lists, each LHS node maps to a unique
host-graph node, but a short list causes several LHS nodes to map to one host graph node. This construct provides
controlled deviation from strict isomorphism: a rule-author selectively and explicitly indicates where LHS node
identifications are permissible.

2.4 .4 Hierarchical Graphs and Distributed Graph Rewriting

Hierarchical host-graph structures arise naturally in many applications. In a strict definition of hierarchical graphs,
all edges must connect siblings, or connect a parent and a child node. However, many practical problems cannot be
modeled without additional edges that cross the hierarchy, for example to connect “cousin” nodes. The presence of
such hierarchy-crossing edges greatly complicates the construction of tools for hierarchical graph transformation.
Various notations for hierarchical graph structures are described in [Hare88] [SiGJ93]. Hierarchical structure assists
in the display of a large graph. Zoom-in and zoom-out operations reduce the graph to manageable proportions for
viewing, or delimit selected portions of the graph for processing.

There is significant interest in the topic of hierarchical graph transformation. Relevant references include a
chart-based parser for hierarchical-graphs [MaK192]; abstract graphs in a prototype algebraic-transformation
environment [LoBe93]; graphs where node labels can be graphs themselves [Sch93]; and flat host-graph structure
with hierarchy-expressing productions used to zoom in and out [EhnHK92].

Distributed graph rewriting is an interested research topic that is related to the use of hierarchical graphs
[Taen96] [Taen96b]. A distributed graph is a two-level hierarchical graph, where the fine-grained level contains the
graph per se and the coarse-grained level describes the partitioning of the graph and the relationships between the
partitions. Distributed graph rewriting systems are an interesting approach for modeling dynamic, distributed data
structures. There are not yet any implementations of distributed graph transformations.

2.4.5 Efficiency of Production Application

Graph transformation can be computationally expensive. Nevertheless, it is useful in the specification and design
stages of software development, as well as in the construction of a prototype. Final implementation may have to
resort to another programming language, in the interest of faster execution. The execution speed of graph
transformations depends heavily on the characteristics of the graph productions, as well as on the control structures
which invoke them.

A subgraph-isomorphism test is involved in the execution of every graph production. This test locates a part
of the host graph which has the same structure as LHS; node labels and edge labels must match, but attribute values
can differ. Subgraph-isomorphism testing is an NP-complete problem in general, but various factors make it
tractable in graph transformation. Usually the LHS graph in a graph production is small. This greatly reduces the
search space for an isomorphic subgraph. There are polynomial algorithms for subgraph isomorphism given a fixed
upper bound on the size of the subgraphs to be matched. Also, node labels, edge labels, and directed edges drastically

NOTATIONS AND MECHANISMS 23

reduce the search space for isomorphic subgraphs. In some applications, subgraph isomorphism search is eliminated
by keeping a unique cursor node (or demon node) in the host-graph, which indicates where the graph production
should be applied. For example, this is a way to keep track of the insertion point in an editing application [G6t92]
[ELNSS92]. Production rules used for tool specifications usually match in constant time [Zun96b]. For the
mathematics-recognition example, Build rules match in O(n?) time and the remaining rules generally take O(n) time.
Many techniques can be used to optimize subgraph-isomorphism testing [Zun96b] [BuGT91].

2.4.6 Tools and Languages for Graph Transformation

Many notations have been devised for graph transformation [[WGG] [Roz97] [BIFG95], but only some of them are
supported by generally-available tools. Links to available tools, including PROGRES, may be found at the URL in
reference [URL98]. These include tools for generating pictures and films using collage graph grammars (BIZARR2
and The Collage System); a general purpose, pure, lazy, functional programming language implemented using
transformations of directed acyclic graphs (Concurrent CLEAN); a generator for diagram editors using hypergraph
grammars (DiaGen); a database of biochemical compounds which uses layered graph grammars as its modeling
language (Klotho); a generator for compiler optimizers which combines DATALOG and graph transformation
(OPTIMIX); a pattern matching language which includes term and graph transformation (PROP); and an extension of
ANSI C for matching and transformation trees and graphs (SMART).

All graph transformations in these notes are node oriented. Edge and hyperedge graph transformations have
been investigated as well [Hab92].

2.5. Methods of Controlling the Application of a Set of Graph
Productions

Issues concerning individual graph productions are discussed above. A computation is carried out by a collection of
graph productions. These productions can be organized in a variety of ways, which we call unordered graph
transformation, graph grammars, ordered graph transformation (with and without backtracking), and event-driven
graph transformation.

2.5.1 Unordered Graph Transformation Systems

An unordered graph transformation system consists of a collection of graph productions. A given graph is
transformed by nondeterministically choosing the next production to apply, until no further production application is
possible.

Unordered graph transformation is used in the A notation introduced in Section 2.3.3. The transformation
system is given an initial host graph to which productions are applied. For the quicksort example of [LoKa92, p.
1771, the initial host graph is a list of numbers to be sorted. For the specification of the Actor language [KaLG91,
p- 4841, the initial host graph is compiled from an Actor program. For the dining philosophers example (a dynamic
version in which philosophers can join or leave the table) [LoKa92, p. 112], the initial host graph represents five
philosophers and five forks. The initial host graph may be transformed by a finite number of production
applications (as in the quicksort example), or with indefinite application of productions (as in the dining philosopher
example).

To divide a large problem into more manageable subproblems, A productions are organized into platforms of
related rules. The interface between platforms is provided by triggers, special host-graph nodes that are used to

24 NOTATIONS AND MECHANISMS

trigger the application of rules in a platform. Every rule in a given platform contains this trigger node as part of its
LHS. To invoke rules belonging to platform G, the G trigger is placed somewhere into the host graph. This
satisfies one of the preconditions of rule-application from platform G; of course, successful rule-application from
platform G also depends also on proper matching of LHS'. The label of the trigger node is a tuple of arbitrary
structure, and can include parameters to influence the resultant application of a G-platform rule. This style of
computation has been used to solve a variety of specification and concurrency problems. The A notation hides many
synchronization details from the programmer. A variety of techniques for proving properties such as deadlock
freedom and termination are presented in [LoKa92]. The structuring of A productions into platforms is helpful for
proof construction; for example, a different proof method can be used to demonstrate termination of each platform.

Unfortunately, there is no mention of plans to implement an environment for A notation; current experience
is limited to paper-based descriptions of A transformation systems. Implementation of A program execution
involves three steps [LoKa92, p. 100]: (1) matching (find a set of applicable production, each with a suitable
LHS" and a unification of variable labels); (2) conflict resolution (find a non-conflicting subset of the applicable
productions); and (3) application (apply the non-conflicting rules in parallel). Conflict resolution seems difficult to
implement, since it must guarantee fairness, it must permit maximal parallelism, and it must prevent parallel
application of rules A and B if application of rule A modifies the host graph so that rule B is no longer applicable.
(A “prohibited context” greatly complicates this latter test: rule A might add host-graph structure that matches rule
B’s prohibited context.)

2.5.2 Graph Grammars

A graph grammar consists of a set of productions, a start graph, and a designation of labels as “terminal” or
“nonterminal” [ReSc97]. In generative use of a graph grammar, productions are applied to the start graph until a
terminal graph results. For recognition, a parser determines whether a given graph can be derived from the start
graph. Unless the form of graph productions is severely restricted, backtracking is necessary during parsing. The
parser can operate either top-down, beginning with the start graph and attempting to transform it into the target
graph, or bottom-up, beginning with the target graph and applying the production rules (in reverse direction) in order
to transform it into the start graph. In practice, the use of attribute computations makes productions applicable only
in the forward (top-down) or reverse (bottom-up) direction. Thus the style of the productions limits the applicable
parsing algorithms.

In a pure graph grammar, productions can be listed in any order. However, order-dependence often arises in
practice. Once a developer has chosen a particular parser, the developer is usually aware of the order in which the
parser tries alternatives. The developer may make use of this to design a smaller or faster graph grammar. For
example, Anderson [Ande77] uses a set-based “coordinate grammar” (not a graph grammar) to recognize mathematical
notation. He describes his reliance on production-rule ordering to distinguish an input “cos” as a word denoting a
trigonometric function, rather than as an implied multiplication denoting “c*o*s”. It would be possible to rewrite
the grammar to avoid this order dependence, but the grammar would increase in size and complexity. The drawback
of such order dependence is that the language is no longer defined by the grammar alone, but arises through the
interaction of the grammar with a particular parser.

2.5.3 Ordered Graph Transformation Systems

Ordered graph transformation systems (elsewhere called programmed graph grammars) consist of productions and a
control specification [Bun82]. There is no need for a distinction between terminal and nonterminal labels, since the
control specification indicates when production application should terminate. The PROGRES language supports
ordered graph transformation, using procedural control constructs to invoke productions. The success or failure of
production application influences future control flow [ZuSc91]. For example, a PROGRES loop can be written to
apply one or more productions as often as possible, iterating until all productions fail. Similarly, a conditional

NOTATIONS AND MECHANISMS 25

statement can be written to take one action upon successful production application, and another action upon failure.
Productions can be grouped into transactions, which succeed or fail as a whole.

Nondeterminism arise from two sources in an ordered graph transformation system. Firstly, there is
nondeterminism in the selection of a particular LHS™ when there are several possible matches for LHS. Secondly,
nondeterministic constructs can be used in the control specification. If there is non-determinism, it may be sufficient
merely to follow any of the possible execution paths, or it may be necessary to backtrack in case a path fails.
PROGRES programs can be executed with or without backtracking. For example, backtracking is used to search the
space of possible moves in the Ferryman's Problem, in which a goat, wolf and cabbage are transported across a river
[ZaSc91]. Backtracking involves significant overhead. In applications such as diagram recognition, ordered graph
transformation (without backtracking) is found to be very efficient compared to parsing with a graph grammar
[Bun82]. The ordered graph transformation can directly transform an input graph into an output graph. The control
structure limits the number of productions that are under consideration, reducing the number of subgraph
isomorphism tests that are needed to find the next applicable production. The system is written such that all non-
deterministic alternatives lead to a desired result.

Completely deterministic graph transformation results from using a deterministic control specification, paired
with the use of cursor-nodes (also called demon nodes) to indicate the desired host graph location for rule application.
Such determinism is desirable in editing applications, since end users expect a deterministic response to an editing
command. For example, in [Got92] each graph production LHS includes a cursor node, which is matched to the
unique host-graph cursor node; RHS leaves a new cursor node in the host graph. (Overall control in this editing
system is event-driven; short sequences of ordered, deterministic graph transformations are used to respond to an
individual editing command. When the end user selects an insertion point in the diagram, this moves the cursor node
in the underlying graph representation.)

2.5.4 Event-driven Graph Transformation Systems

Event-driven graph transformation systems have an ordering imposed by an external sequence of events. For
example, events related to a library database are the loaning, returning, or ordering a library book. Each event results
in the invocation of a corresponding production rule [EnKr80]. Editors are event-driven as well. A more general
control specification can be used, to define which set of editing events are legal at any given point [DoTo88]
[Got92]. Event-driven systems can be quite efficient since they can be almost fully deterministic. External events
are used to select the next production to apply, and little search of the host graph is needed since there is a known
insertion point.

It is possible to combine ordered graph transformation with event-driven graph transformation, as in the
Forrester-diagram editor of [DoTo88]. Here the control specification (which uses host-graph inspection) is used to
describe which editing events are legal at any given point. Events not foreseen by the control specification are
disallowed, resulting in an error message to the user. A similar structure is used by the diagram editors described in
[Got92].

