Attribute Grammarsfor Genetic Representations of Neural Networks

and Syntactic Constraints of Genetic Programming
Talib S. Hussain and Roger A. Browse
Queen’s University, Kingston, Ontario

Presented at AIVIGI'98: Workshop on Evolutionary Computation (June 17, Vancouver, BC).

An attribute grammar (Knuth, 1968; Bochmann, 1976) is anetwork structure is extracted from the attributes of the root
context-free grammar augmented by the assignment ofymbol, and interpreted to produce a functional neural
semantic attributes to the symbols of the grammar. Anetwork. That neural network may then be randomly
production rule specifies not only the replacement ofinitialized and trained accordingly on the available data.
symbols, but also the evaluation of the symbol’s attributes. We have termed our approach the Network
In our research, an attribute grammar is used to specify{Generating Attribute Grammar Encoding (NGAGE). Figure
classes of neural network structures with explicit 1 presents an NGAGE grammar which generates layered
representation of their functional organization. Thesenetworks with p inputs and g outputs. The symbols x, o0 and n
representations provide useful constraints upon a geneticefer to neuron objects of different types which are created
optimization that guarantee the preservation of syntacticallywith a uniqueid. 'Neurons', Inputs', 'Outputs’, 'Hidden' and
correct genetic trees with semantically meaningful sub-trees'Connections' are the attributes of the production rules. Each
In this paper, we give a broad overview of our research intgproduction rule specifies a syntactic rule and a set of
attribute grammar representations, from the basic and knowattribute manipulations. For the Map, End1 and End2 rules,
capabilities, to the current ideas being addressed, to thall the attributes of the left symbol are set equal to the
future directions of our research. corresponding attributes of the right symbol.

Attribute Grammarsand Neural Networks Sat SSB

An attribute grammar may be applied as a techniquge I’\:]%:jrt‘;”gf‘g fz[iﬂ?fj“"}%&f ﬁ, 0 %%, 0 0,0.,0];

for representing and generating classes of neural networksoutputs of S = [id(o))....id(6)]; _

(Hussain and Browse, 1998a,b). Our approach involves tolite X S [IRIES0, Supse A BIHImat ol o o,

principles in the design of the context free syntax and of B) O full_connect(Outputs of B, Outputs of S)]:

attribute manipulations. First, we interpret every non-Seq: B,~> B,B,

terminal and terminal symbolin the grammar as I’}'g&g”;‘g%;gt'mes“g?rg_"f B, 0 Neurons of B,J;

representing neural network modules. Within the attributes Outputs of B, = Outputs of B,;

of a symbol, a neural network module is defined to be a setHid%‘?”BO{,Boz [Hidden of B, O Outputs of B, U Inputs of B, [J Hidden

of one or more neurons. From that set, input, output, and Connections of B, = [Connections of B, [Connections of B, O

hidden neurons are designated along with the connectiohs_full_connect(Outputs of B, Inputs of B,),

among them. Second, each production rule is designed [aréumnso?ﬂcjz%,\,%mnsof C, O Neurons of CJ;

respect the internal integrity of the modules that arg Inputsof C =[Inputsof C O Inputsof CJ;

represented by the symbols on the right hand side of treﬂ;gggﬁf;fgoo;[[,j)igg%‘;‘Z?fohﬂH?géggtngij;]i

production in composing the module that is represented hy Connections of C, = [Connections of C, 0 Connections of CJ];

the left hand symbol. A production rule may create newMap: B>C

connections only among the designated input and outpyfndl: B = node

nodes of the right hand modules and may not specify thgnd2 €= node

input and output nodes of the left hand module from the Siyons of node = [l

hidden nodes of the right hand modules. Inputs of node := [id(n)];

The process of generating a network with a giver S}*(;ggsgfn“gggf[g';d<“ﬂ?

attribute grammar involves three steps. First, a parse tree|isConnections of node:=[]

generated from the starting symbol through the application of Figure 1: NGAGE Grammar for Layered Networks

the context-free production rules. This is termed a derivation

tree. Second, the attributes of the symbols in the derivation We have derived representations for several

tree are evaluated using the attribute manipulation rulesetworks, including recurrent networks, the Kohonen

associated with the grammar productions to generate a fullyetwork, arbitrarily layered networks, and the classic back-

attributed parse tree. Third, a specification of a neuralpropagation network. Our research is continuing to extend
the NGAGE representations along several fronts. An

L Wewill use the terms non-terminals and terminals to refer to the interesting consequence of this research is that as more

symbols of the grammars discussed in this paper, and the terms neural network . a.rch'lt.ectures are modeled as NGAGE

internal nodes and leavesto refer to the placement of elementsin grammars, the similarities and differences between them are

the genetic tree. This should clarify differences with genetic emphasized within a common framework. In addition, the

programming terminol ogy. grammatical description of network architectures suggests

techniques for integrating multiple architectures to form B

hybrid classes. / Seq\

Attribute Grammars and Genetic Programming

B B
An atribute grammar may be used in the End1
optimization of neural networks using genetic programming / S
in two ways. Firstly, an attribute grammar may be used to B 5 | node B

form a genetic encoding of a class of neural networks.
Secondly, an attribute grammar provides severa properties
that may be exploited in the design and application of the

node node B B
operators of the genetic programming technique. Endl
An NGAGE grammar provides three different @ / Seq\
representations of a specific neural network structure: the B -
derivation tree, the attributed parse tree, and the final S B B e
functioning neural network. Thus, we have available not only \ Endt Map
a specification of a neural network’s structure, but also 5 5

information on the functional organization of that structure. Map
As a consequence of the two grammar design principles /Paf\
described in the previous section, each subtree in any c c

generated derivation tree corresponds to a meaningful /PN

structural component of the network (i.e., a module). The
derivation tree therefore provides a compact, indirect c c | node

encoding of a neural network with which intelligent genetic End2 B2 node node
manipulations may be made. ©
In the design of genetic programming, genetic node node
operators must be used which ensure that the offspring they
produce are always valid. In the encoding provided by the (0)
derivation tree, this requires that the genetic operators form Figure 2: Example of Constrained Crossover
offspring whose derivation trees could be generated from
scratch through the appropriate application of the attribute The genetic operators may also be designed to have

grammar productions. Our solution is to constrain theaccess to the context-free rules of the grammar. For
genetic operators to operate only upon entire subtrees and {Bstance, the mutation operator can identify the non-terminal
ensure that a subtree rooted by a given non-terminal symbdgtymbol present at a selected point in the tree and then
will only be replaced with a subtree rooted by the same nongenerate a new subtree by applying the grammar rules using
terminal symbol. This solution is related to work on that non-terminal symbol as the initial symbol.
structure-preserving crossover (Koza, 1994) and strongly- The use of attribute grammars has two additional
typed genetic programming (Montana 1993; Haynes et al.benefits in the search for good neural network solutions.
1996). Figure 2 demonstrates an example of constraineffirstly, changes to the attribute grammar itself can produce
crossover on two derivation trees (a) and (b) formed from thesignificant and meaningful changes to the space of
grammar in Figure 1. The boxed subtree of (a) is replaced@rchitectures that are to be explored and require no changes
with the boxed subtree of (b) to form the new derivation treeto the genetic programming design. Secondly, the random
(c), which is syntactically valid according to the grammar. ~ application of the production rules in creating a population
In genetic programming, it is also important that the results in a randomization of both the coarse and fine
genetic manipulations be semantically meaningful. If Structure of neural network solutions. Since an attribute
changes to a genetic tree always have entirely unpredictabl@rammar provides the ability to specify classes of neural
results on the functionality of the solution, then the geneticnetworks at the basic structural level, some random choices
search is no better than a random walk. In NGAGE of productions will reflect large architectural characteristics
grammars, the property that subtrees in the derivation treéVhile others will reflect smaller structural details.
correspond to structural modules ensures that genetic Our approach to the evolutionary optimization of
operations will correspond to semantically meaningful neural networks integrates a variety of principles into a
changes. A substitution of one subtree with another roote@ingle framework, including the genetic representation of
by the same symbol is effectively the substitution of onemodular neural networks (Happel & Murre, 1994); the use of
modular structure with another, and the only adverse effecgrammars as a base for genetic encoding of neural networks
on the remaining neural network structure concerns thelKitano, 1990; Boers et al., 1993; Jacob & Rehder, 1993;

connections that will be made to the input and output node$ruau, 1995); and syntactic constraints upon genetic
of the new module. programming (Montana, 1993; Gruau, 1996; Haynes et al.,

1996).

Current Work

As a neural network representation, the attribute
grammar can be made dightly more interesting through the
assignment of probabilities to the various production rules.
During the random generation of an individual, the rules
applicable to a given non-terminal under expansion may be
selected probabilistically. This has the effect of biasing the
generation process to encouraging certain structural formsin
the final neural network. Note that the class of networks
represented by the grammar is not affected, only the
frequency with which certain networks are generated. In
population-based genetic search, this has the effect of biasing
the relative frequency of certain genes in the population. As
well, these same probabilities may be used in combination
with mutation to naturally constrain certain types of
mutations from occurring too often. In this way, the
frequency of extreme structures in the population will remain
low over the course of evolution unless and until certain
extreme cases exhibit high fitness.

The application of a genetic operator such as
mutation or crossover requires the selection of an internal
node within the derivation trees of the neura networks that
make up the current population. If such internal node is
represented by a non-terminal that is close to the starting
symbol of the grammar, there will be a large structural
modification. The selection of a node that corresponds to a
non-terminal that is close to the terminals of the grammar
will result in a small structural change. Within our current
research, each genetic operator selects these non-terminals
according to probabilities, thereby providing the ability to
bias the scale of structural changes. We are investigating a
dynamic set of probabilities that shifts the scale of structural
changes as the genetic algorithm proceeds, and we are
investigating the use of a reinforcement learning strategy to
adjust these probabilities, where the reinforcement signal is
derived from the fithess measure for the newly generated
network. Our conjecture is that the effect of such dynamic
manipulation of the probabilities will have the consequence
of the genetic program seeking coarse structure in the early
generations and focusing upon the finer structure in the later
generations. Such a result could be compared to similar
findings of Poli and Langdon (1997) using standard genetic
programming.

Future Directions

We expect that the attribute grammar system will
lead us to a consideration of cultural evolution (Donald,
1991; Bankes, 1995; Spector & Luke, 1996). In any
evolutionary computation of complex learning components
such as neura networks, the largest proportion of compute
time is dedicated to the evaluation of the fitness of
individuals. To evaluate the fitness of a neural network, it
must first be instantiated from the genetic code and then it
must undergo learning in its environment. At the end of
these two processes, the neural network contains a great deal
of useful acquired information. However, typically none of
that information is transmitted to new individuas, whose
training is started from scratch. The conjecture of a cultural

evolution process is two-fold. On the one hand, if some
information that has been learned by prior individuals can be
transmitted relatively quickly to new individuas, then the
evaluation of their fitness will be sped up. On the other
hand, perhaps the individuals will learn the problem better
because they have had a better starting point.

The transmission of cultural information may
involve the direct transfer of neural network structure or the
indirect transfer of, usually, behaviora information. With
neural networks, direct transmission is difficult to perform
since it is generally difficult to identify components in two
individuals which share identical structure (i.e., sub-graph
isomorphism), and even more difficult to support the claim
that such components are performing similar functions. In
NGAGE, we suspect that the intermediate representation, the
attributed parse tree, may be used to quickly identify
matching structural components between individuals (e.g.,
between parent and offspring) and permit direct transfer of
structural information (e.g., weights). Two identical
components formed from subtrees in similar locations in the
genetic tree may aso be likely to be performing similar
functionsin the final network.

References

Bankes, S. (1995) “Evolving social structure in communities of agents
through meme evolution,” Proceedings of the Fourth Annual
Conference on Evolutionary Programming. Cambridge, Mass: The MIT
Press, p. 333-352.

Bochmann, G.V. (1976) “Semantic evaluation from left to right,”
Communications of the ACM, 19, p. 55-62.

Boers, E.J.W., Kuiper, H., Happel, B.L.M & Sprinkhuizen-Kuyper, I.G.
(1993) “Designing modular artificial neural networks,” Leiden
University Tech Report #93-24.

Donald, M. (1991)Crigins of the Modern Mind. Cambridge, Mass:
Harvard University Press.

Gruau, F. (1995) “Automatic definition of modular neural networks,”
Adaptive Behavior, 3, p. 151-183.

Gruau, F. (1996) “On wusing syntactic constraints with genetic
programming,” Chapter 19 in K.E. Kinnear, Jr. and P.J. Angeline (Eds.),
Advancesin Genetic Programming 2. Cambridge, Mass: MIT Press.

Happel, B.L.M. & Murre, J.M.J (1994) “Design and evolution of modular
neural network architectured\eural Networks, 7, p. 985-1004.

Haynes, T.D., Schoenefeld, D.A. & Wainwright, R.L. (1996) “Type
inheritance in strongly typed genetic programming,” Chapter 18 in K.E.
Kinnear, Jr. and P.J. Angeline (Eds.Advances in Genetic
Programming 2. Cambridge, Mass: MIT Press.

Hussain, T.S. & Browse, R.A. (1998a) “Network generating attribute
grammar encoding, 1998 |EEE International Joint Conference on
Neural Networks, May 4-9, 1998 in Anchorage, Alaska, p. 431-436.

Hussain, T.S. & Browse, R.A.(1998b) “Basic properties of attribute
grammar encoding,Third Annual Genetic Programming Conference:
Ph.D. Student Workshop, July 21, 1998 in Madison, Wisconsin.

Jacob, C. & Rehder, J. (1993) “Evolution of neural net architectures by a
hierarchical grammar-based genetic systeliNNGA '93 p. 72-79.

Kitano, H. (1990) “Designing a neural network using genetic algorithm
with graph generation systenGomplex Systems, 4, p.461-476.

Knuth, D. E. (1968) “The semantics of contéde languages,”
Mathematical Systems Theory, 2, p.127-145.

Koza, J.R. (1994)Genetic Programming |I: Automatic Discovery of
Reusable Programs. Cambridge, Mass: MIT Press.

Montana, D.J. (1993) “Strongly Typed Genetic ProgrammiBBN Tech
Report #7866.

Poli, R. & Langdon, W.B. (1997) “An experimental analysis of schema
creation, propagation and disruption in genetic programming,”
Proceedings of the Seventh International Conference on Genetic
Algorithms, p.18-25.

Spector, L. & Luke, S. (1996) “Cultural Transmission of information in
genetic programming Proceedings of the First Annual Genetic
Programming Conference.

