
Attribute Grammars for Genetic Representations of Neural Networks
and Syntactic Constraints of Genetic Programming

Talib S. Hussain and Roger A. Browse
Queen’s University, Kingston, Ontario

Presented at AIVIGI’98: Workshop on Evolutionary Computation (June 17, Vancouver, BC).

An attribute grammar (Knuth, 1968; Bochmann, 1976) is a
context-free grammar augmented by the assignment of
semantic attributes to the symbols of the grammar. A
production rule specifies not only the replacement of
symbols, but also the evaluation of the symbol’s attributes.
In our research, an attribute grammar is used to specify
classes of neural network structures with explicit
representation of their functional organization. These
representations provide useful constraints upon a genetic
optimization that guarantee the preservation of syntactically
correct genetic trees with semantically meaningful sub-trees.
In this paper, we give a broad overview of our research into
attribute grammar representations, from the basic and known
capabilities, to the current ideas being addressed, to the
future directions of our research.

Attribute Grammars and Neural Networks
An attribute grammar may be applied as a technique

for representing and generating classes of neural networks
(Hussain and Browse, 1998a,b). Our approach involves two
principles in the design of the context free syntax and
attribute manipulations. First, we interpret every non-
terminal and terminal symbol1 in the grammar as
representing neural network modules. Within the attributes
of a symbol, a neural network module is defined to be a set
of one or more neurons. From that set, input, output, and
hidden neurons are designated along with the connections
among them. Second, each production rule is designed to
respect the internal integrity of the modules that are
represented by the symbols on the right hand side of the
production in composing the module that is represented by
the left hand symbol. A production rule may create new
connections only among the designated input and output
nodes of the right hand modules and may not specify the
input and output nodes of the left hand module from the
hidden nodes of the right hand modules.

The process of generating a network with a given
attribute grammar involves three steps. First, a parse tree is
generated from the starting symbol through the application of
the context-free production rules. This is termed a derivation
tree. Second, the attributes of the symbols in the derivation
tree are evaluated using the attribute manipulation rules
associated with the grammar productions to generate a fully
attributed parse tree. Third, a specification of a neural

1 We will use the terms non-terminals and terminals to refer to the
symbols of the grammars discussed in this paper, and the terms
internal nodes and leaves to refer to the placement of elements in
the genetic tree. This should clarify differences with genetic
programming terminology.

network structure is extracted from the attributes of the root
symbol, and interpreted to produce a functional neural
network. That neural network may then be randomly
initialized and trained accordingly on the available data.

We have termed our approach the Network
Generating Attribute Grammar Encoding (NGAGE). Figure
1 presents an NGAGE grammar which generates layered
networks with p inputs and q outputs. The symbols x, o and n
refer to neuron objects of different types which are created
with a unique id. 'Neurons', Inputs', 'Outputs', 'Hidden' and
'Connections' are the attributes of the production rules. Each
production rule specifies a syntactic rule and a set of
attribute manipulations. For the Map, End1 and End2 rules,
all the attributes of the left symbol are set equal to the
corresponding attributes of the right symbol.

Start: S È B
 Neurons of S = [Neurons of B ∪ x1,...,xp ∪ o1,...,oq];
 Inputs of S = [id(x1),...,id(xp)];
 Outputs of S = [id(o1),...,id(oq)];
 Hidden of S = [Inputs of B ∪ Outputs of B ∪ Hidden of B];
 Connections of S = [Connections of B ∪ full_connect(Inputs of S, Inputs

of B) ∪ full_connect(Outputs of B, Outputs of S)];
Seq: B0 È B1 B2

 Neurons of B0 = [Neurons of B1 ∪ Neurons of B2];
 Inputs of B0 = Inputs of B1;
 Outputs of B0 = Outputs of B2;
 Hidden of B0 = [Hidden of B1 ∪ Outputs of B1 ∪ Inputs of B2 ∪ Hidden

of B2];
 Connections of B0 = [Connections of B1 ∪ Connections of B2 ∪

full_connect(Outputs of B1, Inputs of B2);
Par: C0 È C1 C2

 Neurons of C0 = [Neurons of C1 ∪ Neurons of C2];
 Inputs of C0 = [Inputs of C1 ∪ Inputs of C2];
 Outputs of C0 = [Outputs of C1 ∪ Outputs of C2];
 Hidden of C0 = [Hidden of C1 ∪ Hidden of C2];
 Connections of C0 = [Connections of C1 ∪ Connections of C2];
Map: B È C
End1: B È node
End2: C È node
node:
 Neurons of node = [n];
 Inputs of node := [id(n)];
 Outputs of node := [id(n)];
 Hidden of node := [];
 Connections of node := []

Figure 1: NGAGE Grammar for Layered Networks

We have derived representations for several
networks, including recurrent networks, the Kohonen
network, arbitrarily layered networks, and the classic back-
propagation network. Our research is continuing to extend
the NGAGE representations along several fronts. An
interesting consequence of this research is that as more
neural network architectures are modeled as NGAGE
grammars, the similarities and differences between them are
emphasized within a common framework. In addition, the
grammatical description of network architectures suggests

techniques for integrating multiple architectures to form
hybrid classes.

Attribute Grammars and Genetic Programming
An attribute grammar may be used in the

optimization of neural networks using genetic programming
in two ways. Firstly, an attribute grammar may be used to
form a genetic encoding of a class of neural networks.
Secondly, an attribute grammar provides several properties
that may be exploited in the design and application of the
operators of the genetic programming technique.

An NGAGE grammar provides three different
representations of a specific neural network structure: the
derivation tree, the attributed parse tree, and the final
functioning neural network. Thus, we have available not only
a specification of a neural network’s structure, but also
information on the functional organization of that structure.
As a consequence of the two grammar design principles
described in the previous section, each subtree in any
generated derivation tree corresponds to a meaningful
structural component of the network (i.e., a module). The
derivation tree therefore provides a compact, indirect
encoding of a neural network with which intelligent genetic
manipulations may be made.

In the design of genetic programming, genetic
operators must be used which ensure that the offspring they
produce are always valid. In the encoding provided by the
derivation tree, this requires that the genetic operators form
offspring whose derivation trees could be generated from
scratch through the appropriate application of the attribute
grammar productions. Our solution is to constrain the
genetic operators to operate only upon entire subtrees and to
ensure that a subtree rooted by a given non-terminal symbol
will only be replaced with a subtree rooted by the same non-
terminal symbol. This solution is related to work on
structure-preserving crossover (Koza, 1994) and strongly-
typed genetic programming (Montana 1993; Haynes et al.,
1996). Figure 2 demonstrates an example of constrained
crossover on two derivation trees (a) and (b) formed from the
grammar in Figure 1. The boxed subtree of (a) is replaced
with the boxed subtree of (b) to form the new derivation tree
(c), which is syntactically valid according to the grammar.

In genetic programming, it is also important that the
genetic manipulations be semantically meaningful. If
changes to a genetic tree always have entirely unpredictable
results on the functionality of the solution, then the genetic
search is no better than a random walk. In NGAGE
grammars, the property that subtrees in the derivation tree
correspond to structural modules ensures that genetic
operations will correspond to semantically meaningful
changes. A substitution of one subtree with another rooted
by the same symbol is effectively the substitution of one
modular structure with another, and the only adverse effect
on the remaining neural network structure concerns the
connections that will be made to the input and output nodes
of the new module.

Figure 2: Example of Constrained Crossover

The genetic operators may also be designed to have
access to the context-free rules of the grammar. For
instance, the mutation operator can identify the non-terminal
symbol present at a selected point in the tree and then
generate a new subtree by applying the grammar rules using
that non-terminal symbol as the initial symbol.

The use of attribute grammars has two additional
benefits in the search for good neural network solutions.
Firstly, changes to the attribute grammar itself can produce
significant and meaningful changes to the space of
architectures that are to be explored and require no changes
to the genetic programming design. Secondly, the random
application of the production rules in creating a population
results in a randomization of both the coarse and fine
structure of neural network solutions. Since an attribute
grammar provides the ability to specify classes of neural
networks at the basic structural level, some random choices
of productions will reflect large architectural characteristics
while others will reflect smaller structural details.

Our approach to the evolutionary optimization of
neural networks integrates a variety of principles into a
single framework, including the genetic representation of
modular neural networks (Happel & Murre, 1994); the use of
grammars as a base for genetic encoding of neural networks
(Kitano, 1990; Boers et al., 1993; Jacob & Rehder, 1993;
Gruau, 1995); and syntactic constraints upon genetic
programming (Montana, 1993; Gruau, 1996; Haynes et al.,
1996).

C

node

End2

B

BB

Seq

C

C C

Par

node node

Map

End2

Map

End2

B

BB

Seq

BB

Seq

C

CC

Par

node node

End1 Map

node

End1

End2 End2

node

B

BB

Seq

BB

Seq

End1 End1

node

End1

node node

(a)

(b)

(c)

Current Work
As a neural network representation, the attribute

grammar can be made slightly more interesting through the
assignment of probabilities to the various production rules.
During the random generation of an individual, the rules
applicable to a given non-terminal under expansion may be
selected probabilistically. This has the effect of biasing the
generation process to encouraging certain structural forms in
the final neural network. Note that the class of networks
represented by the grammar is not affected, only the
frequency with which certain networks are generated. In
population-based genetic search, this has the effect of biasing
the relative frequency of certain genes in the population. As
well, these same probabilities may be used in combination
with mutation to naturally constrain certain types of
mutations from occurring too often. In this way, the
frequency of extreme structures in the population will remain
low over the course of evolution unless and until certain
extreme cases exhibit high fitness.

The application of a genetic operator such as
mutation or crossover requires the selection of an internal
node within the derivation trees of the neural networks that
make up the current population. If such internal node is
represented by a non-terminal that is close to the starting
symbol of the grammar, there will be a large structural
modification. The selection of a node that corresponds to a
non-terminal that is close to the terminals of the grammar
will result in a small structural change. Within our current
research, each genetic operator selects these non-terminals
according to probabilities, thereby providing the ability to
bias the scale of structural changes. We are investigating a
dynamic set of probabilities that shifts the scale of structural
changes as the genetic algorithm proceeds, and we are
investigating the use of a reinforcement learning strategy to
adjust these probabilities, where the reinforcement signal is
derived from the fitness measure for the newly generated
network. Our conjecture is that the effect of such dynamic
manipulation of the probabilities will have the consequence
of the genetic program seeking coarse structure in the early
generations and focusing upon the finer structure in the later
generations. Such a result could be compared to similar
findings of Poli and Langdon (1997) using standard genetic
programming.

Future Directions
We expect that the attribute grammar system will

lead us to a consideration of cultural evolution (Donald,
1991; Bankes, 1995; Spector & Luke, 1996). In any
evolutionary computation of complex learning components
such as neural networks, the largest proportion of compute
time is dedicated to the evaluation of the fitness of
individuals. To evaluate the fitness of a neural network, it
must first be instantiated from the genetic code and then it
must undergo learning in its environment. At the end of
these two processes, the neural network contains a great deal
of useful acquired information. However, typically none of
that information is transmitted to new individuals, whose
training is started from scratch. The conjecture of a cultural

evolution process is two-fold. On the one hand, if some
information that has been learned by prior individuals can be
transmitted relatively quickly to new individuals, then the
evaluation of their fitness will be sped up. On the other
hand, perhaps the individuals will learn the problem better
because they have had a better starting point.

The transmission of cultural information may
involve the direct transfer of neural network structure or the
indirect transfer of, usually, behavioral information. With
neural networks, direct transmission is difficult to perform
since it is generally difficult to identify components in two
individuals which share identical structure (i.e., sub-graph
isomorphism), and even more difficult to support the claim
that such components are performing similar functions. In
NGAGE, we suspect that the intermediate representation, the
attributed parse tree, may be used to quickly identify
matching structural components between individuals (e.g.,
between parent and offspring) and permit direct transfer of
structural information (e.g., weights). Two identical
components formed from subtrees in similar locations in the
genetic tree may also be likely to be performing similar
functions in the final network.

References
Bankes, S. (1995) “Evolving social structure in communities of agents

through meme evolution,” Proceedings of the Fourth Annual
Conference on Evolutionary Programming. Cambridge, Mass: The MIT
Press, p. 333-352.

Bochmann, G.V. (1976) “Semantic evaluation from left to right,”
Communications of the ACM , 19, p. 55-62.

Boers, E.J.W., Kuiper, H., Happel, B.L.M & Sprinkhuizen-Kuyper, I.G.
(1993) “Designing modular artificial neural networks,” Leiden
University Tech Report #93-24.

Donald, M. (1991) Origins of the Modern Mind. Cambridge, Mass:
Harvard University Press.

Gruau, F. (1995) “Automatic definition of modular neural networks,”
Adaptive Behavior, 3, p. 151-183.

Gruau, F. (1996) “On using syntactic constraints with genetic
programming,” Chapter 19 in K.E. Kinnear, Jr. and P.J. Angeline (Eds.),
Advances in Genetic Programming 2 . Cambridge, Mass: MIT Press.

Happel, B.L.M. & Murre, J.M.J (1994) “Design and evolution of modular
neural network architectures,” Neural Networks, 7, p. 985-1004.

Haynes, T.D., Schoenefeld, D.A. & Wainwright, R.L. (1996) “Type
inheritance in strongly typed genetic programming,” Chapter 18 in K.E.
Kinnear, Jr. and P.J. Angeline (Eds.), Advances in Genetic
Programming 2. Cambridge, Mass: MIT Press.

Hussain, T.S. & Browse, R.A. (1998a) “Network generating attribute
grammar encoding,” 1998 IEEE International Joint Conference on
Neural Networks, May 4-9, 1998 in Anchorage, Alaska, p. 431-436.

Hussain, T.S. & Browse, R.A.(1998b) “Basic properties of attribute
grammar encoding,” Third Annual Genetic Programming Conference:
Ph.D. Student Workshop , July 21, 1998 in Madison, Wisconsin.

Jacob, C. & Rehder, J. (1993) “Evolution of neural net architectures by a
hierarchical grammar-based genetic system,” ANNGA ’93, p. 72-79.

Kitano, H. (1990) “Designing a neural network using genetic algorithm
with graph generation system,” Complex Systems, 4, p.461-476.

Knuth, D. E. (1968) “The semantics of context-free languages,”
Mathematical Systems Theory , 2, p.127-145.

Koza, J.R. (1994) Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge, Mass: MIT Press.

Montana, D.J. (1993) “Strongly Typed Genetic Programming,” BBN Tech
Report #7866.

Poli, R. & Langdon, W.B. (1997) “An experimental analysis of schema
creation, propagation and disruption in genetic programming,”
Proceedings of the Seventh International Conference on Genetic
Algorithms, p.18-25.

Spector, L. & Luke, S. (1996) “Cultural Transmission of information in
genetic programming,” Proceedings of the First Annual Genetic
Programming Conference.

