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Abstract
The discovery of good neural network solutions to
complex problems may be facilitated through the use of
evolutionary computation techniques, such as genetic
algorithms or genetic programming.  One key issue in
the development of any system which will evolve neural
networks is how and what information about a neural
network will be encoded in the genetic description that
will be manipulated by the evolutionary processes.
Several approaches have been taken to this encoding
problem, including direct, structural, parametric, and
grammatical encoding. We present a new grammatical
encoding technique in which an attribute grammar is
used to represent a class of neural networks.  We
propose that the resulting encoding offers several
improvements over existing approaches.

1. Introduction
Neural networks and genetic algorithms are two

computational techniques which have been actively and
increasingly researched in recent years. Neural networks
and genetic algorithms may be considered as
complementary search mechanisms, and a number of
researchers have proposed systems which combine both
techniques to allow the evolution of neural networks
(see Yao, 1993 for a more complete review).

In neural networks, computation is performed
through the passing of signals within a structured
arrangement of connected processing units, in response
to given input signals.  A neural network, in addition to
its connectivity details, usually includes mechanisms
which specify how weights on those connections may be
changed over time in response to the inputs provided to
the network.

In genetic algorithms, computation is performed
through the creation of an initial population of
individuals followed by the evaluation, synthesis,
creation and elimination of individuals over successive
generations until a satisfactory solution is found.

In a traditional system which evolves neural
networks, a genetic algorithm performs a coarse search
through the space of possible initial architectures, as
limited by the genetic specification of the neural
network model.  A neural network with a given initial
architecture performs a fine search through the space of
possible connection weights as limited by the nature of
the learning mechanisms.  The resulting system
performs a powerful, robust search.

2. Types of Genetic Encoding
The key issue in evolving neural networks is how to

represent a neural network architecture in a manner that
provides the genetic algorithm with a useful search
space.  This is termed a genetic encoding of a neural

network.  The nature of the genetic encoding has
important consequences for the efficiency and
robustness of the evolutionary search. We separate
current genetic encoding techniques of neural networks
into four different categories.

Within a direct encoding, the details of a neural
network are described in the gene such that the gene
may directly be used as a functioning neural network
(e.g., The matrix-of-weights gene in Figure 1a, in which
the row is the source node).  Little or no initialization is
required.  The genetic algorithm thus operates at a level
similar to that of the neural network learning rule.  The
genetic search space is the space of all possible
functioning neural networks with a given number of
nodes, and the number of degrees of freedom in that
genetic search space is enormous.  The search usually
does not scale well to large problems.

Figure 1: Direct encoding (a) and structural encoding
(b) of a neural network architecture (c)

Within a structural encoding, the graphical
structure of the network is described in the gene (e.g.,
The matrix-of-connections gene in Figure 1b).  To
derive a functioning neural network, some specific
values need to be initialized according to formal, pre-
determined rules. In particular, a functioning network
may be formed only once weight values have been
assigned to the connections. Consider, for example, an
initialization rule which sets all weights to random
values between -0.05 and +0.05.  In this case, a given
gene will define a specific connectivity pattern, but will
represent a number of potential functioning neural
networks with different initial weight configurations.
Thus, the genetic search space is the space of all
possible neural network structures with a given number
of nodes, and is smaller than the space of all possible
functioning neural networks with that number of nodes.
Structural encoding based search is usually faster and
more effective than direct encoding based search.

Within a parametric encoding, certain important
aspects of a neural network architecture are represented
by a fixed number of parameters (e.g., The gene of
Figure 2 represents three parameters of a back-
propagation network).  The permissible values of those
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parameters form a genetic search space.  Typically, the
number of parameters is very low in comparison to the
size of the network.  This has three main consequences.
Firstly, the steps required to derive a functional neural
network are more complex and a number of
assumptions must be made in the interpretation.
Secondly, the search space is considerably smaller than
those of direct and structural encoding and thus the
search for a good solution is typically faster.  Thirdly, if
the parameters used have not been selected well, then
the space of possible networks may not be robust and
the genetic search may be ineffective for some
problems.

Figure 2: Parametric encoding of a back-propagation
network

Finally, within a grammatical encoding, a neural
network is represented as a sentence of a language
described by a grammar.  Two basic approaches to
grammatical encoding have been examined in the
literature.  In developmental grammatical encoding, the
gene actually describes the grammar rules that will be
used to develop a specific neural network structure
(Kitano, 1990).  In derivation grammatical encoding, a
single fixed grammar is designed and the gene contains
a derivation sequence or tree (see Figure 3) which
defines a specific network (Jacob and Rehder, 1993;
Gruau, 1995). The level of network detail specified in
the gene is determined by the nature of the production
rules. Our research follows the second approach and
examines the use of attribute grammars in creating a
useful genetic encoding of neural networks.

Figure 3: Context free grammar (a) and tree-based
derivation encoding (b) for one possible network

3. Structural Regularity

In neural network architectures, the degree of
structural regularity, in the form of hierarchy and
modularity in the connectivity, varies from model to
model and is usually a fixed aspect of a network design.
Such regularities have been shown by many researchers
to be an important factor in the development of neural
network architectures which scale well to large
problems (Jacobs et al., 1991; Boers et al., 1993;
Happel and Murre, 1994).

In a direct or structural encoding, few constraints
are placed upon the variations in connectivity that the
genetic algorithm may explore.  For instance, in a
connection matrix gene, arbitrary changes to the
connectivity are possible.  Thus, genetic exploration
with such an encoding is not biased towards developing
regularities in connectivity. For instance, in Figure 4, an
example of structural encoding for a network with
hierarchical and modular connectivity is given.  Note
that in the matrix, the 1’s and 0’s are distributed in a
more organized arrangement than in the matrix of
Figure 1b.  However, both matrices are equally likely to
be considered during the evolutionary process.

Figure 4: Structural encoding (a) of a network with
hierarchical and modular connectivity (b)

In a parametric encoding, it is possible to encode a
certain degree of structural regularity explicitly, but
solutions that are developed will scale only as well as
that degree of regularity permits.  For instance, in a
gene in which the only structural parameter is the
number of nodes in the hidden layer of a back-
propagation network, the layered structure is encoded
by all genes.  However, no variations to the single
hidden layer architecture are possible.

Finally, in a grammatical encoding, structural
regularities are readily represented.  Grammars, by their
very nature, enable the concise representation of
structures which incorporate hierarchy and modularity.
Current grammatical encoding techniques, however,
have not exploited this property very well.  The
grammars developed tend to permit only limited
structural regularity due to the difficulty in specifying
grammar productions which allow complex connectivity
manipulations. For instance, Gruau (1995) has
presented the most advanced derivation grammatical
encoding technique to date.  However, in his approach,
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a given subtree in the genetic representation does not
always have a clear structural meaning.  Further, it is
unclear whether his approach can be used to explicitly
represent more popular neural network architectures.
These conclusions are the findings of analyses that we
have carried out in our research; space does not permit
further substantiation of these claims.

4. Attribute Grammar Encoding
An attribute grammar (Knuth, 1968) is a context-

free grammar in which symbols of the grammar are
assigned semantic attributes and each production rule
specifies not only how symbols are replaced but how
their attributes are evaluated.  Through the context-free
component, an attribute grammar permits the explicit
representation of hierarchical, recursive and modular
structural design.  Through the attribute evaluations, an
attribute grammar permits the explicit representation of
complex neural network design details.

Many branches of science, including linguistics and
computer science, have long recognized the
representational power of formal grammars in the
description of complex structures and processes.  By
bringing the power of phrase structure grammars to bear
in the specification of classes of neural networks, we
have developed a technique in which semantically
meaningful substructures may be explicitly represented.
Through the use of attribute grammars, structural
regularities may be more precisely specified to produce
an interesting sub-class of all possible structures for the
genetic algorithm to explore.

Given an attribute grammar which defines a class
of neural networks, a genetic description of a particular
neural network may be formed from the context-free
derivation tree.  That genetic description may be used
naturally in a genetic programming evolutionary
technique.  To ensure that only valid genes are created
during the evolutionary processes, tailored genetic
operators must be used (Koza, 1994; Haynes et al.,
1996). An example of the creation of a new individual
from two parents, based on the grammar in Figure 3 and
using a syntactically constrained crossover operator, is
illustrated in Figure 5.

Three primary benefits are provided by using this
attribute grammar encoding (Hussain and Browse,
1998ab). Firstly, the encoding is highly compact since a
very complex network, as determined by the complexity
of the attributes, is only represented by the concise
context-free derivation tree.  Secondly, the subtrees in a
gene have a clear structural interpretation, and the
evolutionary processes will tend to develop networks
exhibiting a high degree of structural regularity.
Thirdly, an attribute grammar may be written for many
different classes of neural networks, including
traditional models such as back-propagation.  Thus, the

technique has wide applicability in the design of
systems that evolve neural networks.

Figure 5: New individual (c) formed using syntactically
constrained crossover on parents (a) and (b)
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