
 Genetic Operators with Dynamic Biases that Operate on Attribute
Grammar Representations of Neural Networks

Talib S. Hussain

Computing and Information Science Dept.
Queen’s University

Kingston, ON, Canada. K7L 3N6
hussain@cs.queensu.ca

Roger A. Browse

Computing and Information Science Dept.
Psychology Dept., Queen’s University

Kingston, ON, Canada. K7L 3N6
browse@cs.queensu.ca

1 INTRODUCTION

Grammar-based representations of neural networks have
shown promise in advancing the study of the evolutionary
optimization of neural networks (Yao, 1993; Gruau, 1995;
Hussain and Browse, 1998). Our research on the
Network Generating Attribute Grammar Encoding
(NGAGE) technique has demonstrated that attribute
grammars may be used successfully in representing and
exploring a space of neural networks (Browse, Hussain
and Smillie, 1999). In addition to offering the capability
of representing a wide variety of neural network models,
NGAGE also offers the potential of designing meaningful
dynamic genetic operators. In this paper, we present two
reproduction operators that perform a biased offspring
creation, and use knowledge of the grammar
representation to adapt those biases in response to fitness
measurements.

2 NGAGE PROPERTIES

An NGAGE system uses an attribute grammar (Knuth,
1968) to specify a class of neural networks. Attribute
grammars consist of a context-free grammar base in
which the productions are supplemented with the ability
to compute values of both synthesized and inherited
attributes which may be associated with the terminal and
non-terminal symbols. The use of such attributes extends
the representational power of the context-free grammar.
The context-free component of an NGAGE grammar
specifies distinct structural components and the manner in
which they are organized within a neural network (see
Figure 1). The values of the attributes that are computed
within the parse tree encode the connections among nodes
of the network along with the characteristics of the
operation of the nodes. Inherited attributes may be used
to provide constraints on the structures formed by the
symbols of the right hand side of the production rule (see
Figure 2). Synthesized attributes may be used to collect
and store structural information about network
components (see Figure 3).

Figure 1: Context-Free Portion of Attribute Grammar for
Back-Propagation Networks

Figure 2: Example of Inherited Attributes

<S> Å <in-port> <out-port> <feedb-port> <FULL-NET>

<FULL-NET> Å <CONTROL> <NETWORK>

<CONTROL> Å <stable-act > <stable-feedb > <learning-
start>

<NETWORK> Å <INPASS> <PROCESS> <HIDDEN>

<HIDDEN> Å <LAYER> <HIDDEN>

Å <LAYER>

<LAYER> Å <PROCESS> <LAYER>

Å <PROCESS>

<PROCESS> Å <process-nodes>

<INPASS> Å <pass-nodes>

<HIDDEN> Å <LAYER> <HIDDEN>

(inherited)

<LAYER>.max_size := <HIDDEN>1.max_size

<HIDDEN>2.max_layers :=

 max((<HIDDEN>1.max_layers - 1), 0)

<HIDDEN>2.max_size :=

 if <HIDDEN>2.max_layers > 0

then <HIDDEN>1.max_size

else 0

<HIDDEN> Å <LAYER>

(inherited)

<LAYER>.max_size := <HIDDEN>.max_size

Figure 3: Example of Synthesized Attributes

Each parse tree generated from the grammar depicts an
individual neural network (see Figures 4 and 5). The
synthesized attributes of the root symbol of the tree form
a concise neural network specification. The NGAGE
system’s neural interpreter is able to accept this
specification and carry out the functions of the network.
The interpreter may be called by a problem-dependent
training paradigm in order to train and test the network on
a particular set of data.

Figure 4: Sample NGAGE Parse Tree

Finally, the NGAGE system includes an evolutionary
algorithm that performs a genetic search over the space of
possible networks formed by the grammar. The context-
free parse tree is used as the genotype, and the
performance of the trained network is used as a fitness
measure.

Figure 5: Network Depicted by Parse Tree

A more complete description of the NGAGE grammar for
back-propagation networks illustrated in Figures 1
through 5 is provided in Browse et al (1999).

3 GENETIC OPERATOR DESIGN

There are several important aspects of the design
principles behind the attribute grammar representation of
neural networks that affect the development of
appropriate genetic operators.

(a) Any of the neural networks generated by the grammar
are encoded as simple context-free parse trees.

This suggests the use of tree-based genetic operators,
such as the sub-tree crossover and sub-tree mutation
operators of genetic programming.

(b) An NGAGE grammar is hierarchical.

Unlike most genetic programming representations, an
NGAGE grammar contains non-terminal symbols
that are not interchangeable. Proper evaluation of the
attributes requires a valid context-free parse tree. The
genetic operators used must therefore preserve type
in order to ensure viable offspring (Haynes,
Schoenefeld and Wainwright, 1996).

(c) Different non-terminal symbols in an NGAGE
grammar may represent very different functional
components.

Previous grammar representations of neural networks
(Gruau, 1995) have focused on using the grammar to
specify the topology of a set of identical nodes. In
NGAGE, a variety of nodes are possible and different
non-terminal symbols may refer to components that
perform functionally distinct operations. Further,
two different non-terminal symbols may differ
significantly in their functional importance to the
resultant network. This suggests that genetic
operators which are biased towards selecting certain
symbols as points of mutation or crossover may focus

<HIDDEN> Å <LAYER> <HIDDEN>

(synthesized)

<HIDDEN>1.in_nodes := <LAYER>.all_nodes

<HIDDEN>1.out_nodes :=

if non-empty(<HIDDEN>2.out_nodes)

then <HIDDEN>2.out_nodes

 else <LAYER>.all_nodes

<HIDDEN>1.all_nodes :=

<LAYER>.all_nodes ∪ <HIDDEN>2.all_nodes) ∪
sat_nodes(<LAYER>.all_nodes,<HIDDEN>2.in_nodes)

<HIDDEN>1.connections :=

<HIDDEN>2.connections ∪
sat_conns(<LAYER>.all_nodes,<HIDDEN>2.in_nodes)

<S>

<FULL-NET>
<in-port>

<out-port>

<feedb-port>
<CONTROL>

<stable-act >

<stable-feedb >

<learning-start>

<pass-nodes>

<process-nodes>

<NETWORK>

<INPASS> <PROCESS> <HIDDEN>

<LAYER> <HIDDEN>

<LAYER><PROCESS> <LAYER>

<PROCESS> <PROCESS><process-nodes>

<process-nodes> <process-nodes>

<in-port>

<pass-nodes>

<INPASS>

<HIDDEN>

<out-port>. . .

. . .

... ...

...

. . .

. . .

<process-nodes>

<HIDDEN>

<process-nodes>

<process-nodes>

<PROCESS>

<process-nodes>

the genetic search on exploring interesting areas of
the search space.

(d) Multiple productions may share the same left-hand
non-terminal symbol and may expand that symbol in
very different ways.

This is a natural result of exploiting the expressive
power of a grammar. A grammar is defined to
represent the space of all the parse trees that may be
formed from all possible expansions of the root
symbol. However, in searching that space
algorithmically, the likelihood of randomly visiting a
particular parse tree will depend upon the relative
frequency with which the productions are applied. If
all productions are equally likely, certain parse trees
may have an extremely low likelihood of being
generated randomly. In the context of a genetic
search, this has strong implications for the creation of
the initial population and the application of subtree
mutation operators. Different biases in the relative
likelihood of applying productions will focus the
genetic search on different areas of the search space.

4 GENETIC OPERATOR DEFINITION

The genetic operators used in the NGAGE system include
typed subtree mutation and typed subtree crossover, as
suggested in cases (a) and (b) from the previous section.
Research on strongly typed genetic programming (Haynes
et al., 1996) provides a basis for the creation of typed
operators. However, there is no accepted mechanism
whereby crossover points in the trees are selected. For
instance, Haynes (1998) uses a crossover operator that
continues to randomly select two nodes, one from each
parent tree, until the symbols at those nodes match. The
subtrees rooted at those symbols are then swapped. This
has the drawback of potentially never finding a match.
Montana (1993) uses a crossover operator in which a
node in one tree is selected randomly, the second tree is
analyzed to extract every node with a matching symbol
and then one of those nodes is randomly selected. This
has the potential of not finding a match if the first symbol
was poorly selected.

In defining our genetic operators, we use a third approach
that takes into account the points raised in cases (c) and
(d) from the previous section. Consider the addition of
two components to our NGAGE system. The first is a set
of probabilities associated with each production in the
grammar. In the normal creation of a parse tree, these
values will affect the frequency with which a rule is
applied relative to all other rules that share the same left-
hand symbol. The initial population created in the
evolutionary algorithm will be thus be biased. In the
creation of an offspring by reproduction operators, these
probabilities will affect operators such as typed sub-tree
mutation.

The second new component is a set of probabilities
associated with each non-terminal symbol in the
grammar. In the creation of an offspring by reproduction

operators, these probabilities will have an effect on which
nodes in the tree(s) are selected for mutation and/or
crossover.

Given these two components, we define two new
reproduction operators that exploit these probability
values. A biased typed subtree crossover operator is
defined as follows. Given two parent parse trees, all the
non-terminal symbols that are shared by both trees are
extracted. Those symbols that have a non-zero
probability of selection are considered in a random,
weighted selection. The result is the selection of a non-
terminal symbol from the grammar that exists in both
trees and is a valid crossover point. Then, for each tree,
all the nodes that match the selected symbol are
identified, and a uniform random selection of one of those
nodes is made. The subtrees rooted by the chosen node in
each tree are swapped to produce the offspring. Since
crossover can only occur at subtrees that have the same
root symbol, this crossover operator guarantees that the
two newly created examples could have been generated
from the defining grammar. The operator is somewhat
expensive computationally, but is guaranteed to find a
match if one exists.

A biased typed subtree mutation operator is defined as
follows. Given a single parent tree, a node is selected
using the same procedure described above of
probabilistically selecting a non-terminal symbol first and
randomly choosing a matching node next. The subtree
rooted at the selected node is then replaced by a new tree
randomly generated using the grammar, but with the
selected non-terminal as the start symbol. This guarantees
that the mutated network falls within the class of
networks that is described by the grammar. In this
generation process, the probabilities associated with the
productions may influence the mutation.

5 DYNAMIC BIASES

A final issue to be addressed in the design and application
of our genetic operators concerns the probability values
that are used. On an arbitrary problem and with an
arbitrary neural network, it is difficult to provide a strong
rationale for any particular set of probability values. For
instance, consider a grammar in which one non-terminal
symbol reflects a large-scale change to the network
structure and a second reflects a small change. Setting
different probability values to the two symbols allows the
researcher to tune the application of the genetic algorithm
to favor either large or small-scale modifications.
However, the values that are chosen may have highly
detrimental consequences for the genetic search.
Ensuring a good genetic search may require an additional
search for a good set of probability values. As well, there
may be no one fixed set of values that is appropriate. For
instance, the scale of the ideal modifications may vary
through the course of the genetic search, with large-scale
changes being more important at one point in the
evolution and small-scale changes more important at a
different point. Both of these points suggest that a

mechanism should be used whereby the evolutionary
algorithm can adapt the probability values.

During the course of an evolutionary algorithm,
operations involving one particular non-terminal symbol
may be more effective than operations on other symbols
in generating offspring with improved fitness. It is
possible to keep track of the results of applying genetic
operators to each of the non-terminal symbols, and use a
reinforcement learning scheme to influence the
probability of applying future operations to that symbol.
For example, if a particular symbol is selected in applying
crossover and the two offspring have higher fitness values
than the original parents, the probability of selecting that
symbol can be increased slightly using a reinforcement
learning algorithm.

Similarly, it is possible to keep track of the production
rules used in each mutation and adapt the probabilities
associated with those productions depending upon the
comparative fitness of the parent and offspring. We
therefore extend our evolutionary algorithm to include
reinforcement learning on both symbol probabilities and
production probabilities. Preliminary results, some of
which have been reported in Browse et al. (1999), suggest
that genetic operators with dynamic biases have a
beneficial effect on the genetic search of NGAGE
grammars.

6 CONCLUSIONS

The NGAGE system has been extended to include
probabilistic selection of grammar symbols and
production rules in the application of biased typed tree-
based genetic operators, as well as a reinforcement
learning mechanism that adapts the values of those
probabilities dynamically through the course of evolution.
Future work will involve further testing of the new
operators and their effects on genetic search. Two
potential problems that will be addressed are the
introduction of hill-climbing and low genetic diversity
into the genetic search. Both of these may result if the
reinforcement mechanism tends to produce probability
values that strongly favor a small number of non-terminal
symbols. In this situation, the genetic adaptations
required to lead the genetic search away from a local
optimum will have an extremely low likelihood of
occurrence, and the operators will tend to propagate
highly similar individuals.

Acknowledgments

The research reported in this paper was conducted with
financial support from the Natural Science and
Engineering Research Council of Canada.

References

Gruau, F. (1995) “Automatic definition of modular neural
networks,” Adaptive Behavior, 3, p. 151-183.

Browse, R.A., Hussain, T.S., and Smillie, M.B. (1999).
“Using attribute grammars for the genetic selection of
backpropagation networks for character recognition,”
Applications of Artificial Neural Networks in Image
Processing IV.

Haynes, T.D., Schoenefeld, D.A. and Wainwright, R.L.
(1996). “Type inheritance in strongly typed genetic
programming,” Chapter 18 in K.E. Kinnear, Jr. and P.J.
Angeline (Eds.), Advances in Genetic Programming 2.
Cambridge, Mass: MIT Press.

Haynes, T.D. (1998). “Strongly typed genetic
programming,” Tutorial presented at 1998 Genetic
Programming Conference.

Hussain, T.S. and Browse, R.A. (1998). “Including
control architecture in attribute grammar specifications
of feedforward neural networks,” 1998 Joint Conference
on Information Sciences 2, p. 432-436.

Knuth, D. E. (1968) “The semantics of context-free
languages," Mathematical Systems Theory, 2, p.127-145.

Montana, D.J. (1993). “Strongly typed genetic
programming,” BBN Tech Report #7866.

Yao, X. (1993) “Evolutionary artificial neural networks,”
International Journal of Neural Systems, 4, p. 203-222.

