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The search for useful genetic representations of neural
networks has led to the successive development of direct,
parametric and grammatical encoding approaches. (Yao,
1993; Happel and Murre, 1994; Gruau, 1995)  Each of these
approaches has, in turn, explored the inclusion of
increasingly detailed specifications of neural network
properties into the genetic representation.  Incorporating
increased knowledge into the encoding permits the
representation of more complex and varied neural network
models, permits the evolutionary search to manipulate more
aspects of the network model, and reduces the assumptions
required in interpreting the genotype to form a functional
phenotype.  The latter is important since any knowledge
included in the interpreter is fixed for the entire space of
genotypes and is thus unavailable for genetic manipulation.
     Existing research has succeeded in representing only a
small subset of the properties of typical neural network
models.  The focus has been primarily upon representing
network connectivity, network weights, and simple learning
parameters.  The evolutionary search spaces thus contain
networks with homogenous neurons, identical learning
mechanisms (varying only by mechanism-specific
parameters), and identical signal processing behaviors.
     Our research (Hussain and Browse, 1998; Browse,
Hussain and Smillie, 1999) extends the complexity of the
genetic representation and reduces the complexity of the
neural interpreter.  We use a grammatical encoding
approach, but adopt a model of neural processing that
permits grammars to specify heterogeneous networks.
     Our evolutionary system uses an attribute grammar
(Knuth, 1968) to specify a class of neural networks.  Each
parse tree generated from the grammar depicts an individual
neural network.  The values of the attributes that are
computed within the parse tree encode the connections
among nodes of the network along with the characteristics of
the operation of the nodes.  Our current grammar collects
this information in the attributes of the root symbol of the
tree to form a concise neural network specification.  The
system’s neural interpreter is able to accept this specification
and carry out the functions of the network.
     In our system, a neuron is considered a processing
element which may receive signals of multiple types and
may transmit signals of multiple types (e.g., activation and
feedback).  It may include arbitrary internal memory and
internal functions that process the incoming signals, modify
internal memory and produce output signals.  This is in
contrast to the typical neuron model in which the only signal

is the activation signal.  Finally, all functional behaviors of a
neural network are considered to occur as local operations of
its constituent nodes.
     Through the use of multiple signal types, it becomes
possible to explicitly include nodes and connections into the
network that control the processing behavior of other nodes.
As a result, the signal processing properties of the network
may be genetically represented.  For example, a grammar
may include nodes which transmit control signals that other
processing nodes may use to determine when to initiate or
inhibit actions such as transmitting activation, transmitting
feedback, or adapting weights.  The particular set of control
nodes specified in a network will determine the sequence of
feedforward, feedback and learning operations.  These
control nodes carry out a different operation than the
processing nodes, but those differences are only variations of
the basic neuron model and thus do not require special
treatment by the neural interpreter.
     Our method of genetically representing neural networks
has several useful characteristics.  Firstly, depending upon
the productions of the grammar, networks with highly
structured or highly arbitrary connectivity may be created.
Secondly, because a grammar may include different kinds of
control nodes, it may produce neural networks with different
processing and learning behaviors.  Thirdly, the interpreter
used to generate a functioning network from the parse trees
of such grammars requires no knowledge of the architectural
details of the model.  During each cycle of the network, it
simply executes the given processing function of each
neuron and propagates the generated signals.  Finally,
changes to the underlying neural network model require
changes solely to the grammar productions and terminal
symbol characteristics.  Changes to the neural interpreter are
never required.
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