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Feature-Based Tactile Object Recognition

ROGER A. BROWSE

Abstract—Tactile sensing offers powerful capabilities for robotic
perception. Through the use of array-force sensors, precisely located
surface information about objects in the workspace is available wher-
ever the robot arm may reach. In order to use this information to iden-
tify objects and their placement, interpretation processes should em-
ploy proprioceptive information and should use tactile image features
which reflect object characteristics. A technique is described for the
generation of constraints on object identity and placement such that
information from multiple sensor contacts may cooperate towards
interpretation.

Index Terms—Object recognition, robotics, tactile perception.

I. INTRODUCTION

OST existing robotic systems are only capable of

operating within a completely understood layout of
the workspace. For situations which vary from the pro-
totype environment, the robot must be reprogrammed. The
limitations imposed by this inability to adapt to the envi-
ronment are well documented as arguments for the devel-
opment of robotic perception [1].

Research in computational vision holds the promise of
eventually providing the capability for robots to represent
their environment sufficiently well to be able to react to
variations in the workspace. However, because of the
limitations of real-time operation, and because visual pro-
cessing techniques are often designed in modules for the
examination of isolated image aspects, progress in gen-
eralized robotic vision has been limited. In particular,
some of the more effective methods, such as the use of
structured light, impose tight constraints on the work-
space layout.

Recently, interest has grown in the examination of the
role of tactile information in robotic perception. There are
two main reasons for believing that tactile perception will
play an important part in robotics of the future. First, the
data obtained through contact sensing do not undercon-
strain the scene interpretation as is the case for visual in-
formation, and therefore it may be more simply processed
to yield knowledge of the environment. Second, the robot
must contact and manipulate objects, and so tactile per-
ception systems may utilize the robot’s inherent capabil-
ities.
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It is also clear that tactile perception offers information
about the scene which is not available to visual sensors.
This includes characteristics of surfaces which are vi-
sually occluded, purely tactile properties such as surface
roughness and temperature, surface compliance, and
physical resistance of objects. Also, the details of gripper
placement and adequacy of force application are not
available through visual sensing.

Further encouragements to pursue robotic tactile per-
ception are found in the abilities of humans to identify
objects on the basis of tactile information alone. For ex-
ample, Klatsky, Lederman, and Metzger [2] have shown
a 97 percent identification rate for common objects.

The most sophisticated forms of tactile sensors consist
of a compliant surface capable of measuring force in an
array of locations across the sensor. While the density and
precision of the force measurements may vary, the result
is a regularly tesselated force image across an area rang-
ing up to about a square inch. There are several reviews
of this technology available [3], [4].

Tactile perception is limited in the sense that it is al-
ways confined to very small areas of a scene, and relative
to vision the time to relocate the sensor is very large.
These disadvantages are somewhat offset by the precise
spatial information about surface organization that is
available to the tactile system, and by the flexibility of
arbitrary orientation of the sensor. Any system which is
to make full utility of these advantages in the tactile mode
must provide for the extensive use of proprioceptive feed-
back, and must constrain the scene interpretation maxi-
mally for each piece of tactile data. Such a system should
operate with clearly defined tactile image primitives which
have counterparts in the imaged scene. In addition, the
system must leave open the possibility of integration with
other sensed information, in particular vision.

This paper describes a technique for the recognition of
objects and their placement in the workspace using struc-
tured image features extracted from tactile force-sensed
images, along with proprioceptive information about the
location of surface contacts. Tactile features are trans-
lated into constraints on object identity and placement.
These constraints are used to maintain small sets of con-
sistent interpretations through the use of modified net-
work consistency algorithms.

II. UsiNG PROPRIOCEPTION IN OBJECT RECOGNITION

Early approaches to the utilization of force sensed im-
ages treated the data as if obtained through visual sensors,
making the assumption that entire objects could be im-
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aged, and employed the image interpretation techniques
of computational vision [5]. There are two drawbacks to
this approach. First, the objects in the robotic environ-
ment will usually be large in relation to the sensor contact
areas, and only small portions will be imaged. Second,
this approach does not exploit the proprioceptive infor-
mation known to play a significant role in human tactile
sensing.

While human tactile-based object recognition is known
to be quite accurate, it is also known to depend on kin-
esthetic feedback. Experiments which compare active with
passive tactile capabilities show a marked decline in rec-
ognition ability when objects are simply pressed against
the skin [6]. As the size of the object to be detected in-
creases beyond fingertip size, the importance on Kines-
thetic feedback increases [7].

Other studies in human tactile recognition have dem-
onstrated the importance of the perceived orientation of
the area receiving stimulation [8]. Oldfield and Phillips
[9] have also shown that identical patterns of cutaneous
stimulation can yield different perception of object iden-
tity depending on the spatial orientation of the skin sur-
face.

A realistic approach to robotic tactile perception is to
rely on the constraints imposed on object identity and
placement which are given by the information about where
in space sensor contact takes place. Computational per-
ception systems have been devised which employ contact
position information. Bajcsy and Goldberg [10] used a cy-
lindrical finger with point contact sensors to scan for the
presence of objects. Once contact is made, a positional
feedback system engages in the task of circumscribing the
object. The joint positional information at each contact
point is used to develop a cross-sectional model of the
object, which is then matched against a database of ob-
jects to accomplish recognition.

Gaston and Lozano-Perez [11] use object models to
build interpretation trees which represent each possible
surface for each of the sensor contacts. The sensor infor-
mation consists of the contact location and the surface
normal at the contact point. By considering pairs of con-
tacts, constraints are available on the matching surface
pairs. These constraints are used to prune the interpreta-
tion trees and thereby yield the object configuration con-
sistent with the sensor data.

While these two systems represent major advances in
the use of tactile information, each is limited in the use
of proprioception in that individual sensor contacts are not
capable of exerting constraints on object identity and
placement. Also, in each of these systems, only point
contact sensing is assumed, and thus the full capabilities
of tactile sensor technology are not exploited.

III. TAcTILE FEATURES

The emergence of array force sensing technology has
provided the capability to measure the detailed structure
of the point of contact between the sensor and the object
surface. Given that the surfaces of objects that the robot

will contact will be much larger than the sensor’s surface,
we must find an alternative to the use of processing tech-
niques which require images of the entire object.

There are several factors which combine to determine
the actual “‘forcel’” values of a tactile image:

1) The underlying shape of the contacted surfaces.

2) The textural properties of the surfaces.

3) The conditions of application of the sensor.

4) The compliance and response characteristics of the
sensor.

While initial steps have been taken to formulate meth-
ods through which these separate factors might be re-
covered from images [12], the exact nature of such recov-
ery algorithms remains an unsolved problem in tactile
sensing.

Rather than attempting to use tactile images to recover
structure explicitly, recently proposals have been made
for the use of tactile images in the construction of a small
set of ‘‘tactile features’’ which represent major image
characteristics, and at the same time are useful in deter-
mining object identity and placement [13]-[15]. There has
not been complete agreement as to which features might
be the most useful to compute from tactile images. Bajcsy
and Hager [13] have proposed hardness, surface normal,
and surface curvature as the underlying characteristics of
a ‘‘tactile primal sketch.”” Browse and Lederman [15],
[16] have proposed surface roughness, surface curvature,
and oriented edges as primary features in an attempt to
maintain some consistency with proposed primitives of
the human tactile system [17].

If a set of tactile features can be defined whose values
are adequate to permit the interpretation of aspects of the
robotic workspace layout, then it may be possible to com-
pute those features locally, on the sensor, and thereby re-
duce the volume of information which must be passed for-
ward to interpretation processes.

IV. A SysTEM FOR TACTILE OBJECT RECOGNITION

The remainder of this paper describes a method for tac-
tile robotic perception which employs a set of tactile fea-
tures extracted from an array force sensor contact. The
nature of the features found, along with the joint posi-
tional information giving the location of contact, provides
constraints on object identity and positioning. By inte-
grating across several tactile features, the system quickly
arrives at a correct scene interpretation.

The system simulates the availability of tactile features
along with sensor positions, and uses this information in
the detection of object identity and placement. Initially,
an object is selected from a set of models and arbitrarily
“‘placed”” on the table-top. Next, several simulated sen-
sor contacts are chosen, and made available as tactile fea-
tures with proprioceptive information about the placement
of the sensor. Fig. 1 shows the set of objects from which
an initial configuration is selected, such as in Fig. 2. Each
model is a uniform cross-section object whose sides may
be either planar or curved, and each model has associated
with it a “‘home’’ placement, usually at the origin of the
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Fig. 1. The set of objects which are known to the system.

Fig. 2. An example of a starting configuration of object and sensor con-
tacts from which the system performs interpretations.

tabletop coordinate system, from which any placement of
that object may be referenced. The objects, and as well
the sensor pad, are placed with three degrees of freedom
on the table-top; one rotational, and two translational.

Recognition is defined to include object identity and the
transformation necessary to take the object from its
“‘home’’ position into the location at which it is detected.
The four-tuple which the system determines for recogni-
tion is (i,, ¢,, X,, y,) where the four values are the iden-
tity, rotation, and x and y translations of the object.

A. Recognition Features

The task of defining a useful set of tactile features in-
volves determining tactile image structures which may be
unambiguously computed and which have immediate cor-
respondences to important aspects of the objects. The tac-
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- A raw tactile image obtained from contact with the edge of a planar
object.

Fig. 4. Results of detecting edges in the tactile image of Fig. 3. The points
indicated with a 1 are on the boundary.

tile features employed are a subset of the features for
which extraction routines have been developed using a
Barry Wright Corporation Sensoflex System. This device
returns a 16 X 16 grid of force measurements across about
one square inch of the compliant sensor. Fig. 3 shows an
example of an initial tactile image obtained by pressing
the sensor pad against a planar object with part of the pad
overhanging. The integer values represent the force sensed
at each of the 256 locations. Fig. 4 indicates the locations
which were classified as belonging to the surface bound-
ary, and Table I provides the symbolic information de-
rived to represent the edges in this image.

The complete set of features is described elsewhere [17]
but for the purposes of this recognition system, only a
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TABLE 1 TABLE 111
THE SYMBOLIC INFORMATION FOR THE EDGES DETECTED IN THE TACTILE CATEGORIZATION OF SURFACES WITH DIFFERENT RADII OF CURVATURE (r)
IMAGE SHOWN IN FIG. 3. THE INFORMATION INCLUDES ENDPOINTS,
CURVATURE (0 INDICATES STRAIGHT), AND ORIENTATION OF THE EDGE Categorization of Curvatures
- - curve | conditions on
edge start end curvature | orientation type radius of curvature
row | column | row | column
0 5 ] 5 13 0.00 180 0 r>2.0
2 8 13 1 3 0.00 304 1 2.2>r>0.75
2 0.9>r>0.5
3 0.6>r>0.3
TABLE 11 4 0.35>r>0

TACTILE FEATURES AVAILABLE TO THE RECOGNITION SYSTEM

Features Available
Name Properties number of possible
property values
surfaces | estimate of radius of curvature of surface 5
edges contact side 2
estimate of radius of curvature of surface 5
corners | none

subset of the features are necessary because of the as-
sumption of uniform cross-sectioned objects. The features
shown in Table II are assumed available. Given the re-
stricted nature of the object models and the tabletop en-
vironment, this set of features is sufficient to permit sig-
nificant constraints on the placement and identity of
objects.

As indicated in Table II, the basic features ‘‘surface’’
and ‘‘edge’’ carry with them a categorization of the radius
of curvature of the object surface contacted. In addition,
an edge may arise from the contacted surface being on the
left or right side of the sensor. These properties are used
in constructing an extended feature set in which 16 fea-
tures are defined by the unique values of their properties.

Before the system begins its interpretation process, a
representation is developed in which each extended fea-
ture has associated with it a list of all the objects’ surfaces
that could possibly give rise to the feature. For example,
only surfaces of length greater than or equal to the sensor
pad width may give rise to a flat *‘surface feature’” with-
out an edge present. Also, concave corners will not pro-
duce ‘‘corner features’ because of the planar surface of
the sensor.

The categorization of curvatures for surfaces reflects the
resolving capabilities of the feature extraction program.
Some surfaces will have curvatures which could be de-
tected as belonging to either of two categories. In this
case, more than one extended feature of the same basic
type may list that surface as a potential scene-domain
counterpart. Table III lists the categorization of surface
curvature used.

B. Object Consistency

For each tactile feature F; which is made available to
the interpretation process there is a candidates list C; =
{(0y, 51), -+ * (04 5,)} Where (0;, 5;) is the jth object-
surface candidate. If more than one feature is present, then
a form of object consistency may be immediately im-
posed. The constraining condition is

(0, 5;) e C; = (ka)((as,,,)(oj, ) € Cy)

Enforcing this consistency ensures the elimination of all

object models which do not have a possible interpretation
for every one of the available features. The use of this
constraint requires the assumption that only one object is
sensed at a time.

C. Surface Transformation Constraints

The basic idea behind the operation of the system is that
each tactile feature that becomes available carries with it
constraints on the possible object interpretations. For a
single feature, there will be as many such possibilities as
there are surfaces that can give rise to the feature, but for
each such surface contact possibility there will be quite
severe constraints on the placement of the object on the
tabletop. In the case of several features, there is usually
only one object placement which will meet the constraints
imposed by all the features.

For each tactile feature, a five-tuple of information is
given: (i, S,y Op> Xps Vp) where i, is the feature type, s,
is the width of the sensor contact area, and (¢, X,, y,) i$
the transformation that takes the sensor pad to the contact
position.

For each surface known to the system, the information
shown in Table IV is retained for the object is in its
“‘home’” position (see Fig. 5).

The next step in the interpretation process is to extend
each of the object-surface possibilities to include the con-
straints which the possibility imposes on the placement of
that object on the tabletop. These constraints are gener-
ated using 1) the properties of the feature (as described
above), 2) properties of the surface under consideration,
and 3) templates for the construction of the constraints
which are associated with the feature types. Table V de-
scribes the constraints associated with each of the major
feature types.

Each of the feature types offers different constraints on
the surface contact possibilities. The most constraining
feature is an edge feature which results in the determina-
tion of the three values of the transformation necessary to
take the object to the location where the feature is found
[see Fig. 6(a)]. All other features leave the object trans-
formation incompletely specified. For example, a corner
feature locates an object vertex, but leaves the orientation
about the vertex unspecified in a range dependent on the
angle formed at the vertex, as shown in Fig. 6(b). The
rotational freedom is not centered on the tabletop origin,
so the resulting range of orientations provides a means of
computing the x and y transformation components for any
specific orientation.
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TABLE IV
INFORMATION RETAINED FOR SURFACES KNOWN TO THE SYSTEM
(p1,81) the polar coordinates of end-point 1
(p2,92) the polar coordinates of end-point 2
(a;,@,)  entrance and exit angles to the surface
c, the curvature of the surface
Py the length of the surface
¢, the orientation of the surface

0,0) «—

Fig. 5. Information retained for surfaces.

TABLE V
CONSTRAINT TEMPLATES FOR TACTILE FEATURES

Constraints Associated with Tactile Features

contact with a planar surface

bo=4,-9,

Xp=p1COS(B,+61)=5,CO8P, <X< X,—paCOS(d, +8,) +5,C058,,
Yo = ¥p=paSin(fz+¢,)—(tang, )(x, +p€08(0,+¢,)=x, )

an edge (with surface to the left)

bo=C,+4,~¢,

Xo = Xp=paC0S(f2+c, +6,—¢,)

Yo = Yp—posin(fy+c, +¢,~¢,)

an edge (with surface to the right)

bo=d,-¢,~c,

Xo = Xp=p1C08(6,+4,-4,~c,)

Yo = Yp—p1Sin(f1+¢,—4,—c,)

contact with curved surface

bp=b,=C, < ¢, < @p—¢,+c,

Xo = Xp=X arc(p1.01480.02.921 80,0 (B0 —Fp—4,))

Y, = yy“}’m(ﬂx,91+¢o,/72,92+¢o,C.,(¢o‘¢p—¢.))

where x . and y,,. are functions which return the x and y
coordinates respectively of a point a given distance along an arc.
corner contact

pHomin—¢,—C,~a; < ¢, < ¢, b9, —C,

Xo = Xp=p1COS(6,+¢,)

Yo = Vp—pySin(8;+¢,)

where 6, is the smallest contact angle which will produce a corner feature,

As shown in Fig. 6(c), contact with a planar surface
without an edge present yields complete constraint on the
rotational component, but leaves the possibility of the ob-
ject being found anywhere along a line. Contact with a
curved surface is slightly more complicated, but still only
allows a limited range within one degree of freedom, as
shown in Fig. 6(d).

For each tactile feature F;, the members of the candi-
dates list C; are extended to include these surface trans-
formation constraints, which we denote as

Ci = {(01, 81, TI)’ e (dn’ Sns Trl)}

where (o0, s;, 7, ) is the jth object-surface candidate, with
7; being the transformational constraints. Taking into ac-
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count the transformational constraints, the constraining
relation among surface candidates is extended to

(o), 5, 1) € C; = (VFk)((asm)((()ja Sms Tm) € Ck)
AN 0T, = @))

The intersection of the two transformation constraints
7; N 7, is defined to be the values of the transformation
parameters for the object which satisfies both constraint
sets. This consistency requirement specifies that object-
surface candidates are retained only if all other features
retain some candidate which specifies a compatible trans-
formation of the object under consideration. This condi-
tion forms the fundamental constraining relation for the
operation of a network consistency algorithm adapted
from Mackworth’s [18] formulation. In this formulation
the nodes are the available features, with an initial set of
labels given by the feature’s candidate list. This algorithm
ensures that as each object-surface candidate is pruned due
to inconsistency, that all other candidates which rely on
it will be reconsidered.

In the implemented version of the tactile recognition
system, these transformational constraints are represented
as a list of values of the three parameters. Compatibility
is then determined by measuring the actual difference be-
tween parameter values and comparing this difference to
a threshold which indicates if the values are close enough
to be considered the same.

While this may appear as a somewhat ‘brute-force’”’
approach to implementing the constraints, there are two
advantages. First, those feature interpretations which are
found to be consistent may have their lists of transfor-
mation values reduced to exclude incompatible values.
This is effectively an enforcement of the constraining re-
lation on each of the transformation values in the list,
rather than on the entire range of transformation possibil-
ities. A second advantage is that the precision with which
interpretation is required may be reflected in terms of the
spacings used in generating the transformation values, and
in the size of the permissible discrepancy between values.

V. AN EXAMPLE

In order to illustrate the operation of the tactile object
recognition system, consider the initial configuration of
three features available from three separate sensor con-
tacts as shown in Fig. 2. As indicated in the first three
lines of Table VI, any of the three features (F4, F5, and
F6) offers between 49 and 61 different interpretations
when considered separately. The corner feature and the
flush-contact surface feature each allow slight variation in
one degree of freedom. The interpretations which include
the correct one' for each of these features are shown in
Fig. 7. The edge feature has 49 possible interpretations,
but each one has no variation permitted.

After the constraints of the corner and surface feature
are considered together, there are only six remaining

'Fig. 6(a)~(c) depicts other interpretations for these same three features.
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((object= test4) (side= s5})
(theta= valus 1.8)

{{object= tesis) (side= 87}}
{theta~ range -8.77 -8.47)

(x= lambda (theta) (- -8.36 (x 8.21 (cos (+ 2.36 theta)))))

{x= value -8.58)
{y= value -8.36)

{{object= test2) (side- e8).

{theta= vzlue ~2.61)

(x= range -8.46 -8.4)

(y= lambda (x) (- -8.3 (- -B.05 (s 1.56 {+ x 8.38))}))

(c)

{y= lambda (theta) (- -8.02 (x 8.21 (sin {+ 2.36 theta))}))

()

({(object= test2) (side= s4)}

{theta= range 2.46 -2.83)

{x= tambda (theta) (- -8.13 (x-arcp 8.21 -8.73 8.21 -2.36 8.5 2.96 theta)))
{y= lambda (thetal (- B.25 (y-arcp 8.21 -8.73 8.21 -2.36 8.5 2.96 theta)))

(]

Fig. 6. The transformational constraints for (a) an edge feature, (b) a cor-
ner feature, (c) a planar surface, and (d) a curve surface. The range of
possible values is demonstrated by plotting the object in several different

positions.

TABLE VI
INTERPRETATION POSSIBILITIES FOR THREE TACTILE FEATURES CONSIDERED
SEPARATELY, AND WHEN CONSIDERED TOGETHER

features type 9, X, Vp interpretations
F00004 flush-0 4.14 | -0.18 | -0.33 | 61

F00005 corner 072 | -0.36 | -0.02 | 59

F00006 rightedge-0 | 3.36 | -0.32 | -0.52 | 49

F00004 & | flush-0 4.14 | -0.18 | -033

F00005 corner 072 | -036 | -0.02 | 6

F00004 & | flush-0 4.14 | -0.18 | -033

F00005 & | corner 0.72 | -0.36 | -0.02

F00006 rightedge-0 | 3.36 | -0.32 | -0.52 | 1

interpretations, each with very little or no variation of
placement permitted. Fig. 8 shows three examples of these
remaining possibilities. Consideration of the third, edge
feature reduces the interpretation set down to a single ob-
ject in a fixed position which corresponds to the starting
configuration, as shown in Fig. 8(d). For the set of ob-
jects shown in Fig. 1, the results of this example are typ-
ical. Usually only two or three tactile features are suffi-
cient to correctly identify and position the object.

VI. CoNcLUSIONS AND FUTURE ISSUES

This paper has summarized an approach to tactile-based
object recognition. The techniques rely on the availability
of detailed array force-sensed images, which are pro-
cessed to extract a small set of tactile features, supple-
mented with additional information about properties of the
features. The set of objects being considered for recog-
nition is preprocessed to determine which of their surfaces
and corners may give rise to members of the set of tactile
features. Thus an initial object consistency phase will
eliminate consideration of any object which may not give
rise to the features found. Each obtained tactile feature
also carries with it proprioceptive information about the
location and orientation of the sensor at the time of con-
tact. This information, along with positional constraint
templates associated with each feature type, is used to de-
rive surface transformation constraints which specify the
positioning of each possible object in the workspace that
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({object= test3) (side= 82)) ((object= test3) (side= 84))

(theta~ range 8.8 1.44) {theta= value 1.8)

(x= lambda (theta) (- -8.36 (x 8.28 (cos (+ 8.79 theta))}}) {x= range -8.33 -8.25)

{y= tambda (theta) (- -8.82 (x 8.28 (sin (+ B.79 theta))}}) (y= lambda (x) (- -8.3 (- -8.1 (x 1.56 (+ x 8.24)))}))

Fig. 7. Examples of interpretation possibilities for two of the features
shown in Fig. 2.

((object= testS) (side= 88)) ((object= testd) (side= s84))
(theta= value 2.57) (theta= value 1.8)
{x= range -B.34 -8.23} (x= range -8.33 -8.25)
(y= lambda (x) (-~ -8.3 {- -B.12 (x 1.56 (+ x £.28))))) (y= lambda (x} (- -8.3 (- -8.1 (& 1.56 (+ x 8.24)))))
(a) (b)
-
((object= testl) (side= 84)) ({object= testd) (side= 89))
(theta= vatue 3.83) (theta« value 1.8)
(x= range -8.27 -8.25) (x= value -8.3)
(ys lambda (x) (- -8.3 (- -8.16 (x 1.56 (+ x 8.24))))) (ye value -8.3)
(c) (d)

Fig. 8. Interpretations remaining after the constraints of multiple features
have been considered together. (a)-(c) Three of the interpretation pos-
sibilities for two features. (d) The remaining correct solution after all
three features are considered.

would be consistent with the tactile contacts. For several developed from each separate tactile feature may operate
tactile contacts, the test set of nine objects often yields independently. No explicit consideration needs to be made
only one, correct, interpretation. of the relative positions of the sensors. Also, the system

One advantage of this approach is that the constraints  can operate with sparse information. In fact, usually only
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two contacts are sufficient to identify an object and its
position from the test set of nine objects. When infor-
mation from several features is used to constrain the inter-
pretation, the system is indifferent to whether the features
are obtained from the same tactile image, or from separate
images. Whether the features are derived simultaneously
from several different sensors, or from sequential appli-
cation of the same sensor also makes no difference to the
operation of the system.

This independence of the feature source has also been
extended to include visual information. A version of the
system has been devised which visually extracts straight
line segments, and generates constraints on object identity
and placement in the same form as the tactile constraints,
thereby providing a mechanism for the integration across
the senses for recognition purposes [19].

The system as described here makes a number of sim-
plifying assumptions about the nature of the sensing sit-
uation.

1) Only one object is contacted.

2) The object is not movable or deformable.

3) The object has a uniform cross-section.

4) Object placement is defined with three degrees of
freedom.

There are extensions necessary to lift each of these as-
sumptions.

It will also be important to incorporate other tactile-
based techniques such as the maintenance of a model of
open space as proposed by Gaston and Lozano-Perez [11].
Of immediate concern is an extension which permits the
system to draw conclusions about locations which are
most likely to offer useful constraining features [20]. An
examination of the three remaining possibilities in Fig. 8
indicates that some locations would be better than others
for subsequent feature extraction. Of course these percep
tual demands would have to be integrated with the plan-
ning of task accomplishment within the robotic applica-
tion.
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