1. Solution. (i) $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ : Suppose $x \in \overline{A \cap B}$. This implies $x \notin(A \cap B)$, that is, $x \notin A$ or $x \notin B$. The latter is the same as $x \in \bar{A}$ or $x \in \bar{B}$, that is $x \in \bar{A} \cup \bar{B}$.
(ii) $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$ : Suppose $x \in \bar{A} \cup \bar{B}$. This implies $x \notin A$ or $x \notin B$. Since $x$ cannot be an element of both $A$ and $B$, this means $x \notin A \cap B$, that is, $x \in \overline{A \cap B}$.

## 2. Solution.

(a) First note that both $R \odot\left(S_{1} \cap S_{2}\right)$ and $\left(R \odot S_{1}\right) \cap\left(R \odot S_{2}\right)$ are relations from set $A$ to set $C$.

The inclusion is proved by the following chain of implications:
$(a, c) \in R \odot\left(S_{1} \cap S_{2}\right)$ implies
$(\exists b \in B):(a, b) \in R$ and $(b, c) \in S_{1} \cap S_{2} \quad$ implies
$(\exists b \in B):(a, b) \in R$ and $(b, c) \in S_{1}$ and $(b, c) \in S_{2} \quad$ implies
$(\exists b \in B)\left(\left[(a, b) \in R\right.\right.$ and $\left.(b, c) \in S_{1}\right]$ and $\left[(a, b) \in R\right.$ and $\left.\left.(b, c) \in S_{2}\right]\right)$ implies
$(\exists b \in B)\left[(a, b) \in R\right.$ and $\left.(b, c) \in S_{1}\right]$ and $(\exists b \in B)\left[(a, b) \in R\right.$ and $\left.(b, c) \in S_{2}\right] \quad$ implies $(a, c) \in R \odot S_{1}$ and $(a, c) \in R \odot S_{2} \quad$ implies
$(a, c) \in\left(R \odot S_{1}\right) \cap\left(R \odot S_{2}\right)$.
(b) Below is one possible example - there exist infinitely many others.

Let $A=\{a\}, B=\left\{b_{1}, b_{2}\right\}, C=\{c\}$ and choose

$$
R=\left\{\left(a, b_{1}\right),\left(a, b_{2}\right)\right\}, \quad S_{1}=\left\{\left(b_{1}, c\right)\right\}, \quad S_{2}=\left\{\left(b_{2}, c\right)\right\} .
$$

Now $R \odot\left(S_{1} \cap S_{2}\right)=\emptyset$ because $S_{1} \cap S_{2}=\emptyset$. On the other hand, $(a, c) \in\left(R \odot S_{1}\right) \cap$ $\left(R \odot S_{2}\right)$.
3. Solution. (a) TRUE, (b) FALSE, (c) TRUE
(d) TRUE, (e) TRUE, (f) FALSE

## 4. Solution.

(a) The total number of strings of length 4 is $10^{4}$. There are 10 strings that have 4 identical digits. The number of strings of length 4 that do not have 4 identical digits is $10000-10=9990$.
(b) When choosing the first digit we have 10 choices. For a fixed first digit, we have 9 choices for the second digit (to avoid repetition). Similarly, for the 3rd digit we have 8 choices and for the 4 th digit 7 choices. The total number of strings that do no repeat a digit is $10 \cdot 9 \cdot 8 \cdot 7=5040$.
(c) There are 5 even digits that can be chosen as the last digit. Each of the first 3 digits has 10 choices and using the product rule the total number of choices is $10 \cdot 10 \cdot 10 \cdot 5=5000$.
(d) There are 4 ways to choose the positions of the digits $8(1,2,3$ or $1,2,4$, or 1,3 , 4 , or $2,3,4$ ). The remaining digit can be chosen in 9 ways. Using the product rule the total number of choices if $4 \cdot 9=36$.
5. Solution. We partition elements of $A$ into $|B|$ subsets as follows:
two elements $a_{1}$ and $a_{2}$ belong to the same subset iff $f\left(a_{1}\right)=f\left(a_{2}\right)$.
The pigeonhole principle (Theorem 1.2 in the second set of notes,) guarantees that some subset has $\left\lceil\frac{|A|}{|B|}\right\rceil$ elements.
6. Solution. (i) Suppose that $f$ has a right inverse $g: B \rightarrow A$. For any $b \in B$ we have

$$
b=1_{B}(b)=(f \circ g)(b) .
$$

Since $(f \circ g)(b)=f(g(b))$, this means that $b$ is the $f$ image of $g(b)$ and $f$ is onto.
(ii) Conversely suppose that $f$ is onto. For each $b \in B$, choose $a_{b} \in A$ such that $f\left(a_{b}\right)=b$. Define a function $g: B \rightarrow A$ by setting $g(b)=a_{b}$ for all $b \in B$.
We verify that $g$ is the right inverse of $f$. For any $b \in B$ we have

$$
(f \circ g)(b)=f\left(a_{b}\right)=b=1_{B}(b),
$$

that is, $f \circ g=1_{B}$.

