1. Solution. By Theorem 2.1 (in the notes on combinatorics) the number of 5 -permutations of a nine element set is

$$
P(9,5)=\frac{9!}{(9-5)!}=15120 .
$$

2. Solution. Following the hint, we begin with (b): There are $\binom{40}{20}$ ways to select 20 players for Kingston Frontenacs and this selection uniquely determines also the players for London Knights. The answer is: $\binom{40}{20}$.
(a): Now the names of the teams have not been specified. This means that selecting a particular 20 people denoted as set X gives exactly the same two teams as selecting the 20 people not belonging to set X. Thus, we should divide the answer from (b) by 2 and get:

$$
\binom{40}{20} / 2=\frac{40!}{(20!)^{2} \cdot 2} .
$$

3. Solution.

(a) Since ABC must be one block, the possible permutations rearrange the block ABC and the individual letters $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$. The number of permutations of 5 elements is $5!=120$.
(b) Now DEBC must be one block and the possible permutations rearrange this block and the letters A, F, G. The number of permutations is $4!=24$.
(c) Both strings AB and DC must appear as a block. The possible permutations rearrange these blocks and the three remaining letters. Number of permutations is $5!=$ 120.
(d) Both strings AB and BC occur in the sequence iff the sequence contains ABC . The number of permutations was calculated in case a): 120.
(e) If AC and DC were to appear in the sequence, the letter C would need to be immediately preceded by both A and D which is impossible. The number of permutations is 0 .
(f) The permutations rearrange blocks CBA and EFG with the letter D. The number of permutations is $3!=6$.
4. Solution.

$$
\binom{n+1}{m}=\frac{(n+1)!}{m!(n+1-m)!}=\frac{n+1}{m} \cdot \frac{n!}{(m-1)!(n-(m-1))!}=\frac{n+1}{m} \cdot\binom{n}{m-1} .
$$

5. Solution.

(a) Choosing the positions of the three 1's completely determines the bit string because there are only two bits. The number of ways to choose 3 positions out of 12 is

$$
\binom{12}{3}=\frac{12 \cdot 11 \cdot 10}{3!}=220 .
$$

(b) The number of ways to choose at most 3 positions out of 12 is

$$
\binom{12}{3}+\binom{12}{2}+\binom{12}{1}+\binom{12}{0}=220+66+12+1=299
$$

(c) The number of ways to choose at least 3 positions out of 12 is

$$
\begin{aligned}
\binom{12}{3} & +\binom{12}{4}+\binom{12}{5}+\binom{12}{6}+\binom{12}{7}+\binom{12}{8}+\binom{12}{9}+\binom{12}{10}+\binom{12}{11}+\binom{12}{12} \\
& =220+495+792+924+792+495+220+66+12+1=4017 .
\end{aligned}
$$

(The calculation is simplified by recalling that $\binom{n}{k}=\binom{n}{n-k}$.)
(d) As calculated above the number of ways to select 6 positions out of 12 is

$$
\binom{12}{6}=924
$$

6. Solution.

(a) The customer can select each variety more than once. The number of choices is the number of 6 -combinations of a set with 8 elements with repetition, that is,

$$
\frac{(6+8-1)!}{6!(8-1)!}=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{6!}=1716
$$

(b) Similarly to (a) above, now the number of choices is the number of 12-combinations of a set with 8 elements with repetition, that is,

$$
\frac{(12+8-1)!}{12!\cdot 7!}=\frac{19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}{7!}=50388
$$

(c) Now the number of choices is the number of 24 combinations of a set with 8 elements with repetition, that is,

$$
\frac{(24+8-1)!}{24!\cdot 7!}=\frac{31 \cdot 30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{7!}=2629575
$$

(d) We are required to take at least one donut of each kind, that is, the first 8 choices are fixed and only the last 4 donuts can be freely chosen.
The number of choices is the number of 4 combinations of a set with 8 elements with repetition, that is,

$$
\frac{(4+8-1)!}{4!\cdot 7!}=\frac{11 \cdot 10 \cdot 9 \cdot 8}{4!}=330
$$

7. Solution. Let the $n+1$ integers be a_{1}, \ldots, a_{n+1}. For $j=1, \ldots, n+1$, write $a_{j}=2^{k_{j}} \cdot b_{j}$, where $k_{j} \geq 0$ and b_{j} is odd.

The integers b_{1}, \ldots, b_{n+1} are all odd positive integers not exceeding $2 n$. Since there are only n odd integers not exceeding $2 n$ it follows from the pigeon-hold principle that there exist $1 \leq i<\ell \leq n+1$ such that $b_{i}=b_{\ell}$, denote this common value by b.
Now $a_{i}=2^{k_{i}} \cdot b$ and $a_{\ell}=2^{k_{\ell}} \cdot b$. Since $k_{i} \leq k_{\ell}$ or $k_{\ell} \leq k_{i}$ either a_{i} divides a_{ℓ} or vice versa.

