1. (a) The initial value is $A_{0}=1000$. The recurrence for A_{n} is

$$
A_{n}=1.0 x \cdot A_{n-1}-y
$$

(b) Using the iteration method from page 152 in the text (or page 15 in the notes) we get:

$$
A_{n}=1000 \cdot(1.0 x)^{n}-\frac{(1.0 x)^{n}-1}{1.0 x-1} \cdot y
$$

Note that $1.0 x-1 \neq 0$ because x is at least 1 .
2. The initial values are $t_{0}=1$ and $t_{1}=3$.

By a correct string we mean a ternary string that does not contain two consecutive 0s. Thus t_{n} is the number of correct strings of length n.

To get a recurrence for t_{n} we note the following. A correct strings of length n either (i) begins with a 0 , (ii) begins with a 1 or (iii) begins with a 2 .
(i) If a correct string of length n begins with a 0 , the second symbol must be a 1 or 2 (because otherwise have two consecutive 0 s) and the last $n-2$ symbols can be any correct string. Thus, the number of correct strings of length n that begin with 0 is $2 \cdot t_{n-2}$.
(ii) If a correct string of length n begins with a 1 , the remaining $n-1$ symbols can be any correct strings of length $n-1$. Thus the number of correct strings of length n that begin with a 1 is t_{n-1}.
(iii) Similarly as in (ii), the number of correct strings that begin with a 2 is t_{n-1}.

Since the cases (i)-(iii) are disjoint, the value of t_{n} is the sum of the values from (i)-(iii) and we get the recurrence

$$
t_{n}=2 \cdot t_{n-1}+2 \cdot t_{n-2}
$$

Using the recurrence (and the initial values) we calculate $t_{2}=8, t_{3}=22, t_{4}=60$ which then gives $t_{5}=164$.
3. The characteristic equation for the recurrence for b_{n} is

$$
r^{2}+2 r+1=0 .
$$

The characteristic equation has only one repeated root $r=-1$. Therefore the recurrence has a solution of the form

$$
b_{n}=\alpha_{1}(-1)^{n}+\alpha_{2} \cdot n \cdot(-1)^{n}
$$

To find the values of the constants α_{1} and α_{2} we use the initial values of b_{n}. We have

$$
b_{0}=\alpha_{1}+\alpha_{2} \cdot 0=5, \text { and },
$$

$$
b_{1}=\alpha_{1}(-1)+\alpha_{2} \cdot 1 \cdot(-1)=1
$$

From the first equation we get $\alpha_{1}=5$ and substituting this value to the second equation we get $\alpha_{2}=-6$. This gives the solution

$$
b_{n}=5(-1)^{n}-6 n(-1)^{n} .
$$

4. The characteristic equation for the recurrence for a_{n} is

$$
r^{2}-2 r-2=0 .
$$

The two distinct roots for the characteristic equation are $1+\sqrt{3}$ and $1-\sqrt{3}$. Therefore the recurrence relation has a solution of the form

$$
a_{n}=\alpha_{1}(1+\sqrt{3})^{n}+\alpha_{2}(1-\sqrt{3})^{n}
$$

To find the values of the constants α_{1} and α_{2} we use the initial values of a_{n}. We have

$$
\begin{gathered}
a_{0}=\alpha_{1}(1+\sqrt{3})^{0}+\alpha_{2}(1-\sqrt{3})^{0}=\alpha_{1}+\alpha_{2}=1, \text { and, } \\
a_{1}=\alpha_{1}(1+\sqrt{3})+\alpha_{2}(1-\sqrt{3})=3 .
\end{gathered}
$$

Subtracting both sides of the first equation from the second equation yields:

$$
\left(\alpha_{1}-\alpha_{2}\right) \cdot \sqrt{3}=2
$$

Solving the last equation together with $\alpha_{1}+\alpha_{2}=1$ yields:

$$
\alpha_{1}=\frac{1}{2}+\frac{1}{\sqrt{3}}, \quad \alpha_{2}=\frac{1}{2}-\frac{1}{\sqrt{3}} .
$$

A closed form expression for a_{n} is then

$$
a_{n}=\left(\frac{1}{2}+\frac{1}{\sqrt{3}}\right)(1+\sqrt{3})^{n}+\left(\frac{1}{2}-\frac{1}{\sqrt{3}}\right)(1-\sqrt{3})^{n}
$$

5. (a) The rows and columns in the adjacency matrices are ordered 1, 2, 3, 4, 5. The adjacency matrix for G_{1} is

$$
A_{G_{1}}=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

The adjacency matrix for G_{2} is

$$
A_{G_{2}}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

(b) The graphs G_{1} and G_{2} are not isomorphic. This follows from the observation that the vertex 2 of G_{2} has degree four and G_{1} has no vertex of degree four. A possible graph isomorphism has to preserve the degree of vertices.
(c) The graphs H_{1} and H_{2} are isomorphic. A possible graph isomorphism that maps H_{1} to H_{2} can be defined as

$$
\varphi(2)=5, \varphi(4)=3, \varphi(3)=2, \varphi(1)=1, \varphi(5)=4
$$

6. (a) The vertices e and c have odd degree. Since not all vertices of H_{3} have even degree, H_{3} has no Eulerian circuit.
(b) H_{3} has two vertices of odd degree (e, c) and all other vertices have even degree. This means that H_{3} has an Eulerian trail. One possible Eulerian trail is

$$
(e, a, d, e, b, a, f, d, c, f, b, c)
$$

(Note that the end points of the Eulerian trail must be the two vertices of odd degree.)
7. (a) H_{4} does not have a Hamiltonian cycle. This can be justified as follows. Consider an arbitrary closed walk W of H_{4} that visits all the vertices - W has to begin and end with the same vertex. The edge $\{c, f\}$ is a cut-edge and hence the edge $\{c, f\}$ would need to be traversed two times in the closed walk W. This means that one of the vertices c or f would need to occur more than once in W (where the two occurrences are not the begin and the end of the walk). This means that W cannot be a Hamiltonian cycle.
(b) One possible Hamiltonian path of H_{4} is

$$
(a, b, c, f, d, e)
$$

