
CISC203, Fall 2019, Graph theory 1

1 Graph theory

There are many types of graphs. Graphs can be directed or undirected , they may be labeled

in different ways, sometimes edges that are self-loops are allowed, sometimes there may be

multiple edges between two vertices etc. The variety of definitions is caused by the situation

that graphs are used in very many different applications. Previously we have already used

directed graphs to represent relations. Here we begin by considering undirected graphs that

are called simply graphs.

1.1 Basic definitions on (undirected) graphs

A graph G is an ordered pair (V,E) where

1. V is a non-empty set of vertices, and,

2. E is a set of unordered pairs {u, v} that are called the edges of G (u, v ∈ V , u 6= v).

Note that in the above definition the edges are undirected, there can be at most one edge

between given vertices and there are no self-loops, i.e., edges from a vertex to itself. This

type of graphs are sometimes also called simple graphs. When referring to a “graph” we

mean a simple graph.

Note that an unordered edge (i.e., edge that doesn’t have a direction) is represented by a

two element set {u, v}.

The graph is finite if V is finite. Although the definition does not exclude infinite graphs,

unless otherwise mentioned, by a graph we always mean a finite graph.

An edge {u, v} can be denoted also as uv (or vu) for short. The vertices u and v are the

end points of the edge. We say also that the edge uv connects the vertices u and v or that

uv touches u and v (or u and v are incident to the edge uv). If u and v are connected by an

edge we say that u and v are adjacent vertices.

Graphs can be represented in the well-known way using a drawing. In the drawing the

vertices are represented by points (or small circles) on the plane and adjacent vertices are

CISC203, Fall 2019, Graph theory 2

1 2

3

4

5

Figure 1: A graph G.

connected by a line. Often such a figure is also called a “graph”. However, it is important to

remember that a graph is completely determined by the set of vertices and the set of edges,

and two very different looking figures may represent the same graph.

For computing applications various representations of graphs can be used, as discussed below

in subsection 1.4. Below we begin by defining the adjacency matrix representation.

Suppose V = {v1, . . . , vn}. The adjacency matrix of the graph G = (V,E) is a Boolean n×n

matrix AG = (ai,j)n×n defined by setting for 1 ≤ i, j ≤ n,

ai,j =

1, if vivj ∈ E,

0, if vivj 6∈ E.

When talking about undirected graphs, the matrix AG is symmetric and all elements on the

main diagonal are zeros.

Example 1.1 The graph ({1, 2, 3, 4, 5}, {12, 23, 24}) is represented by Figure 1.

The adjacency matrix of the graph is

0 1 0 0 0

1 0 1 1 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 0


While a graph G can be represented by very different looking figures, any two graphs that

are represented by the same figure are the same as abstract graphs: they may differ only in

the names of the vertices. This type of “similarity” of graphs is called an isomorphism.

CISC203, Fall 2019, Graph theory 3

1 2

3 4

t

v u

w

G
G’

Figure 2: Graphs G and G′.

Definition 1.1 An isomorphism beetween graphs G = (V,E) and G′ = (V ′, E ′) is a bijective

function ϕ : V → V ′ such that

{u, v} ∈ E iff {ϕ(u), ϕ(v)} ∈ E ′ for all u, v ∈ V.

The graphs G and G′ are isomorphic if there is an isomorphism from G to G′ and this is

denoted by G ' G′.

It is easy to verify that graph isomorphism is

1. reflexive (G ' G),

2. symmetric (G ' G′ implies G′ ' G), and,

3. transitive (G ' G′, G′ ' G′′ implies G ' G′′).

Thus, the isomorphism relation partitions graphs into equivalence classes and graphs in the

same equivalence class can be identified (i.e., considered to be the same graph).

Example 1.2 The graphs G and G′ depicted in Figure 2 are isomorphic. An isomorphism

ϕ between G and G′ is given by ϕ(1) = t, ϕ(2) = u, ϕ(3) = v and ϕ(4) = w.

A graph with n vertices that has all possible
(
n
2

)
edges is the complete graph of size n, Kn.

The other extreme is the null graph 0n that has n vertices and no edges. A graph with a

single vertex K1 (= 01) is called the trivial graph.

Definition 1.2 A graph G′ = (V ′, E ′) is a subgraph of graph G = (V,E) if V ′ ⊆ V and

E ′ ⊆ E. This is denoted G′ � G. If V ′ = V and E ′ ⊆ E, we say that the subgraph G′ spans

the graph G.

CISC203, Fall 2019, Graph theory 4

The complement of the graph G is the graph Gc = (V,Ec) where Ec = {uv | u, v ∈ V, u 6=

v, uv 6∈ E}.

Example 1.3 The leftmost graph, known as the Petersen graph, is used frequently as an

example or counterexample when proving results in graph theory. Observe that the Petersen

graph contains the two rightmost graphs as subgraphs.

Definition 1.3 The degree of a vertex v, d(v), is the number of edges touching v. A graph

is regular if all vertices have the same degree. If this degree is k, the graph is k-regular.

Example 1.4 The complete graph Kn is (n− 1)-regular and the null graph 0n is 0-regular.

K2 K3 K4 K5 K6

Example 1.5 For n ≥ 3, the n-cycle is the graph

Cn = ({0, 1, 2, . . . , n− 1}, E),

where E = {01, 12, 23, . . . , (n− 2)(n− 1), n0}. The n-cycle is 2-regular.

Note that defining a cycle graph with n = 2 will result in more than one edge between two

vertices (a multi-graph).

C3 C4 C5 C6

A bipartite graph is a graph whose vertex set V can be partitioned into two subsets V1 and

V2 such that each edge joins a vertex in V1 to a vertex in V2. If V1 contains m vertices and

V2 contains n vertices, and if each vertex in V1 is joined to every vertex in V2, then we say

that the graph is a complete bipartite graph, denoted Km,n.

CISC203, Fall 2019, Graph theory 5

K2,1 K3,3 K4,2

Theorem 1.1 For any finite graph G = (V,E):∑
v∈V

d(v) = 2 · |E|.

Proof (outline two possibilities). The theorem can be proven using induction on the

number of edges of the graph and using the fact that each edge touches two vertices and

it increases both of their degrees by one. Alternatively the claim follows by observing the

adjacency matrix AG: the degree of a vertex is the number of 1’s on the row corresponding

to the vertex, and each edge is represented in the matrix by exactly two 1’s.

A vertex is called even or odd depending on whether the number d(v) is even or odd. From

Theorem 1.1 we get:

Corollary 1.1 A finite graph has always an even number of odd vertices.

The degrees of vertices are often useful for testing whether two graphs are isomorphic and for

finding possible isomorphisms between them. If a mapping ϕ : V → V ′ is an isomorphism

between graphs G = (V,E) and G′ = (V ′, E ′), it must be the case that d(ϕ(v)) = d(v) for

all v ∈ V .

1.1.1 More on graph isomorphism

Example 1.6 The following two graphs are isomorphic, as evidenced by the labels of vertices

in both graphs.

a

b

c

d

e

f

g

h

a

b

c

d e

f

g

h

CISC203, Fall 2019, Graph theory 6

How do we determine when two graphs are isomorphic? We could do so by inspection, but

this approach is suboptimal when dealing with graphs that contain more than a handful of

vertices and edges. Taking a more formalized approach, we shift our focus away from the

graphs G1 and G2 and toward the isomorphism f . If we can show that f is edge-preserving

(which is just a more concise way of saying that f preserves the property of vertex adjacency),

then we can conclude that f is an isomorphism.

We can determine whether f is edge-preserving by representing both G1 and G2 as adjacency

matrices. Then, G1 and G2 are isomorphic if and only if there exists a permutation matrix P

such that AG1 = P ·AG2 ·PT . In other words (or if you don’t remember your linear algebra

lectures), G1 and G2 are isomorphic if and only if we can rearrange the rows and columns

of AG2 to get AG1 .

Remark. Note that we choose to use adjacency matrices here because the property of edge-

preservation affects pairs of vertices, and the entries of an adjacency matrix relate pairs of

vertices. Using an adjacency matrix over an adjacency list also gives us the benefit of being

able to use matrix algebra to solve a problem.

A related question is how can we determine when two graphs are not isomorphic? We

could take the same approach we just saw, where we essentially try to prove that we cannot

permute the rows and columns of one adjacency matrix to obtain another, but this can be

tedious and difficult to do by hand.

An easier approach for showing that two graphs are not isomorphic is to compare the invari-

ants of each graph. An invariant of a graph is a property that identical graphs must share;

if this property does not match between the graphs, then we can conclude that the graphs

are not isomorphic. Three common invariants we can use to rule out isomorphism are:

• the number of vertices (since the isomorphism f must be a bijection, both graphs must

contain the same number of vertices);

• the number of edges (since the isomorphism f must be edge-preserving, both graphs

must contain the same number of edges); and

• the degrees of each vertex (since the isomorphism must be an edge-preserving bijection,

CISC203, Fall 2019, Graph theory 7

there must be a correspondence between vertices of the same degree in each graph).

However, we must be careful: although we can rule out isomorphism if an invariant does not

hold, we cannot conclude that two graphs are isomorphic if invariants do hold.

Example 1.7 Consider the following pair of graphs:

Both of these graphs contain 5 vertices and 6 edges, and within each graph there are two

vertices of degree 3 and three vertices of degree 2. However, these graphs are not isomorphic!

(To see why, observe that the right graph contains C3 as a subgraph, while the left graph does

not. Indeed, no bipartite graph contains C3 as a subgraph.)

Finally, it is worth mentioning another famous problem in computer science called (appro-

priately) the graph isomorphism problem. This problem asks whether two given graphs are

isomorphic to one another, but it has a number of applications outside of graph theory:

for instance, the graph isomorphism problem can determine matching patterns in images,

calculate matchings and measures on text strings, and construct layouts of electrical circuits

on boards. Although the graph isomorphism problem has been solved for certain types of

graphs, not much is known about the general problem. In fact, the general problem is one

of the few problems suspected to lie between the classes of “easy” and “hard” problems.

1.2 Walks and connected components

Definition 1.4 A walk in a graph G = (V,E) is a non-empty sequence of vertices

W = (v0, v1, v2, . . . , vk),

where k ≥ 0 and vivi+1 ∈ E for i = 0, 1, . . . , k− 1. The walk W connects the vertices v0 and

vk and they are the end points of the walk. If v0 = vk, W is a closed walk (and otherwise it

is open). The length of W is k.

CISC203, Fall 2019, Graph theory 8

If v0v1, v1v2, . . . , vk−1vk are all distinct edges the walk W is a trail. If v0, v1, . . . , vk are all

distinct vertices the walk W is a path.

A closed walk (v0, v1, . . . , vk−1, v0) is a k-cycle if v0, v1, . . . , vk−1 are all distinct vertices. A

cycle is called even or odd depending on whether k is even or odd.

In the graph of Figure 1, (1, 2, 3, 2, 4) is an open walk of length 4. It is neither a trail or a

path.

The graph G′ of Figure 2 has 3-cycles (v, t, u, v) and (v, w, u, v) and a 4-cycle (v, t, u, w, v).

Definition 1.5 Vertices u and v of a graph G = (V,E) are connected (or reachable from

one another) if there is a walk whose end points are u and v. This is denoted u ≈ v. The

graph G is connected is any two vertices of G are connected.

Any vertex u of a graph G = (V,E) is connected with itself since u by itself is a walk of

length 0. This means that the relationg ≈ is reflexive. It is easy to verify that ≈ is also

symmetric and transitive, and thus an equivalence relation.

Each equivalence class [v]≈ (v ∈ V) defines a connected subgraph of G, ([v]≈, Ev) where

Ev = {uw ∈ E | u ≈ v and w ≈ v}.

These subgraphs are called the components of G. Obviously the graph G is connected if and

only if ≈ V × V , that is, G has only one component which is G itself.

If we take a graph G with m connected components, and if removing a vertex from G

produces a new graph G′ with more than m connected components, then we call that vertex

a cut vertex. If the same outcome occurs after removing an edge, then we call that edge a

cut edge.

The problem of determining cut vertices and cut edges in a connected graph is important,

since it tells us quite a bit about the structure of the graph. For instance, determining the

cut edges in a graph that models a highway system will reveal weak points in the system; if

the road corresponding to a cut edge becomes impassable, then traffic won’t be able to get

from one point to another point.

CISC203, Fall 2019, Graph theory 9

Example 1.8 The following graph is connected, since there exists a path between every pair

of vertices. If we delete edge e from the graph, then the graph will consist of two connected

components, but the graph itself will no longer be connected.

e

Example 1.9 The following graph is connected. If we delete vertex a from the graph, then

each edge will disappear and the graph will consist of four connected components: one for

each remaining vertex.

a

The shortest walk between two connected vertices u and v is called the geodetic line between

u and v. Obviously a geodetic line is always a path. The length of a geodetic line between u

and v is the distance between u and v, and it is denoted d(u, v). If u and v are not connected,

we define d(u, v) =∞. A distance function d : V ×V → N has the usual properties required

of a distance:

1. d(u, v) = 0 iff u = v,

2. d(u, v) = d(v, u),

3. d(u, v) ≤ d(u,w) + d(w, v) (triangle inequality).

The following property is proved easily using induction on n.

Lemma 1.1 If u and v are connected vertices of a graph with n vertices then d(u, v) ≤ n−1.

The following result is often useful. The result can be proved using induction on m.

Theorem 1.2 Consider a graph G = ({v1, . . . , vn}, E) and let AG = (aij)n×n be the adja-

cency matrix of G. For m = 1, 2, . . . let

Am
G = (aij[m])n×n

CISC203, Fall 2019, Graph theory 10

be the mth power of AG, where matrix multiplication is done using integers (and not as

Boolean matrices).

Then aij[m] is the number of walks of length m from vertex vi to vertex vj, 1 ≤ i, j ≤ m.

Using the matrices (aij[m])n×n we can also determine whether two vertices of a graph are

connected and what is their distance:

• vertices vi and vj are connected if and only if i = j or aij[m] 6= 0 for some value

m = 1, 2, . . . , n− 1, and,

•

d(vi, vj) =


0, if i = j;

min{m | aij[m] 6= 0, 1 ≤ m ≤ n}, if i 6= j and aij[m] 6= 0 for some m, 1 ≤ m ≤ n;

∞, otherwise.

1.2.1 Applications of Connectedness

A number of famous problems in computer science relate to the notions of paths, connect-

edness, and cuts in graphs. A selection of the most well-known are as follows.

• The graph reachability problem asks whether a path exists from one given vertex to

another given vertex within a graph. In an undirected graph, we can solve this problem

by simply finding the connected components of the graph. In a directed graph, a

number of approaches exist to solve the problem; it is possible to find the solution in

time proportional to |V |3 by using the Floyd-Warshall algorithm. (Other algorithms

are more efficient, but require some preprocessing work.)

• The shortest path and longest path problems, as the name suggests, ask you to find

the shortest path and longest path, respectively, between two vertices in a graph.

Here, the “length” of a path may be measured by the number of edges or by weights

associated with each edge. An abundance of algorithms exist for solving the short-

est path problem, including Dijkstra’s algorithm (which runs in time proportional to

|V | log(|V |) + |E|) and the Bellman-Ford algorithm (which runs in time proportional

CISC203, Fall 2019, Graph theory 11

to |V | · |E|). Interestingly, however, the longest path problem has no known efficient

solution.

• The min-cut and max-cut problems ask you to find the minimum number of edges and

maximum number of edges, respectively, that partition the vertices of a graph into two

components. To find a minimum cut, we can use techniques such as the Edmonds-Karp

algorithm, which runs in time proportional to |V | · |E|2. Unfortunately, we are not so

lucky when it comes to finding a maximum cut: this problem once again has no known

efficient solution.

1.3 Eulerian and Hamiltonian graphs

The below Theorem 1.3 holds also for so called multi-graphs. A multi-graph allows more

than one edge between two vertices. Most of the above notions can be extended in an obvious

way for multi-graphs. However, it should be noted that the edges of a multi-graph cannot

be defined by an (unordered) pair consisting of the two end points.

Definition 1.6 A walk in a graph (or multi-graph) G = (V,E) is an Eulerian trail if every

edge of G appears there exactly once. A closed Eulerian trail is called an Eulerian circuit. A

graph is Eulerian if it has an Eulerian circuit.

Example 1.10 The notion of Eulerian trail has its root in the Bridges of Königsberg problem

studied by Leonhard Euler in the 18th century.

When Euler studied this problem, he wanted to know whether there existed a route through

Königsberg that traversed each of the seven bridges exactly once. The bridge connections

are abstracted in the above graph. Euler wanted to find a walk through the given graph that

included each edge exactly once (that is, an Eulerian trail).

An Eulerian circuit naturally has to visit all vertices of the graphs, however, it may visit the

CISC203, Fall 2019, Graph theory 12

same vertex multiple times. As a consequence it follows that every Eulerian graph must be

connected.

On the other hand, a graph being in connected is not sufficient to guarantee that it must be

an Eulerian graph. The graph G of Figure 2 has an Eulerian trail (3, 4, 2, 3, 1, 2) but G is

not Eulerian (i.e., it does not have an Eulerian circuit).

The next result that characterizes Eulerian graphs is perhaps the “first theorem” of graph

theory. Leonhard Euler proved it originally for multi-graphs (1736).

Theorem 1.3 A finite connected (multi-)graph is Eulerian if and only if the degree of every

vertex is even.

Proof. The condition is necessary because an Eulerian circuit “arrives” and “departs” from

each vertex an equal number of times and always using a different edge. The sufficiency of

the condition is proved using induction on the number of edges. (Will be done in class, time

permitting.) 2

Now that we have a condition for Eulerian circuits, let’s try to modify this condition in order

to say something about when a graph contains an Eulerian trail. The condition is modified

in the sense that we may now have a certain number of odd-degree vertices in our graph.

Theorem 1.4 A connected graph G contains an Eulerian trail if and only if G contains

exactly two vertices of odd degree.

Proof. (⇒): Assume that G contains an Eulerian trail. Every time such a trail reaches a

vertex u of G, it contributes two to d(u) (one for entering u and one for leaving u). Since

we are dealing with a trail, the initial and final vertices are distinct, so both vertices have

degree 1 and they are, in fact, the only vertices in G of odd degree.

(⇐): Assume exactly two vertices of G are of odd degree; say, u and v. If we join u and v

by an edge, then every vertex in G will be of even degree. By Theorem 1.3, G contains an

Eulerian circuit. If we remove this added edge from G, then the Eulerian circuit becomes an

Eulerian trail. 2

CISC203, Fall 2019, Graph theory 13

With this result, we can finally conclude why no trail through Königsberg exists that crosses

each bridge exactly once. Note that, of the four vertices the graph of Example 1.10, three

of the vertices have degree 3 and one vertex has degree 5. Since none of the vertices are of

even degree, Theorem 1.4 tells us that no Eulerian trail can exist.

Next we consider paths and circuits that visit each vertex once.

Definition 1.7 A walk in a graph G is a Hamiltonian path if it visits every vertex of G

exactly once. A cycle of G is a Hamiltonian cycle if it first visits every vertex of G exactly

once and at the end returns to the original vertex. A graph G is Hamiltonian if it has a

Hamiltonian cycle.

Since we have previously seen conditions that tell us when a graph contains an Eulerian

path or an Eulerian circuit, we might assume that there exists another set of conditions

that allow us to determine if a graph contains a Hamiltonian path or a Hamiltonian circuit.

After all, the only difference between the concepts is that we’re considering vertices instead

of edges. As it turns out, however, we aren’t so lucky; no efficient method is known that

solves the problem of determining whether a given graph contains a Hamiltonian path or a

Hamiltonian circuit. Recall that Theorem 1.3 gives a simple characterization of graphs with

Eulerian circuits.

Example 1.11 Consider n ≥ 1 and a graph Gn = ({0, 1}n, En) where the edges of En are

defined by setting two vertices u and v (∈ {0, 1}n) to be adjacent if they differ from each

other in exactly one component (that is, the so called Hamming distance of u and v is one).

The graph Gn is called the n-cube. The graph Gn is Hamiltonian for all n ≥ 1 and its

Hamiltonian cycles correspond to the n-bit Gray codes of size 2n. With n = 3 a Hamiltonian

cycle of G3 is

((0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1), (1, 0, 1), (0, 0, 1), (0, 0, 0))

Determining whether a graph is Hamiltonian is a well known algorithmically hard problem

(a so call NP-complete problem). However, a problem being algorithmically hard does not

prevent us from solving it efficiently in special cases.

CISC203, Fall 2019, Graph theory 14

There are some basic observations that allow us to conclude immediately that a given graph

has a Hamiltonian circuit; for instance,

• every complete graph Kn, n ≥ 3, contains a Hamiltonian circuit;

• every cycle graph Cn contains a Hamiltonian circuit.

Moreover, a pair of theorems exist that relate the existence of Hamiltonian circuits to the

degrees of vertices in a graph. These theorems, which we will not prove here, were originally

proved by the mathematicians Gabriel Dirac and Øystein Ore. Both theorems essentially

state that a graph is Hamiltonian if it contains enough edges.

Theorem 1.5 (Dirac’s theorem) If a graph G = (V,E) with n ≥ 3 vertices is such that,

for every vertex u ∈ V , d(u) ≥ n/2, then G contains a Hamiltonian circuit.

The result by Ore is a strengthening of the result by Dirac.

Theorem 1.6 (Ore’s theorem) If a graph G = (V,E) with n ≥ 3 vertices is such that, for

every pair of nonadjacent vertices u, v ∈ V , d(u) +d(v) ≥ n, then G contains a Hamiltonian

circuit.

Keep in mind that all of the conditions we have seen in this section are only sufficient for

proving the existence of a Hamiltonian circuit. If some graph does not meet these conditions,

then that does not necessarily imply that the graph does not contain a Hamiltonian circuit.

Currently, no conditions are known that are both necessary and sufficient for the existence

of a Hamiltonian path or Hamiltonian circuit.

1.3.1 Applications of Special Paths and Circuits

Earlier we discussed the traveling salesperson problem in the context of permutations. The

traveling salesperson problem asks, given a list of n cities and a list of distances between

each city, what is the shortest route that both visits all cities and ends in the origin city.

If we model an instance of the traveling salesperson problem as a graph, where vertices are

cities and (weighted) edges are distances between cities, then it becomes evident that this

CISC203, Fall 2019, Graph theory 15

problem is a variant of the Hamiltonian circuit problem. Unfortunately, we already know

that no efficient method is known to solve the Hamiltonian circuit problem, so consequently

we have no efficient method of solving the traveling salesperson problem either.

So, if we have no efficient method of finding Hamiltonian paths or Hamiltonian circuits,

could we instead try to augment a given graph to make it Hamiltonian? This is known as

the Hamiltonian completion problem, which asks for the minimum number of edges we must

add to a graph to ensure it contains a Hamiltonian circuit. Both Dirac’s and Ore’s theorems

give conditions on the number of edges required for a simple graph to contain a Hamiltonian

circuit, and the Hamiltonian completion problem has been solved for particular classes of

graphs. However, in the general case, we still have no efficient method for determining this

minimum number.

1.4 Representing graphs

There are a number of methods of representing graphs apart from listing vertices and edges

as explicit sets. Depending on how we are using graphs in an application, representing graphs

using such methods could lead to ease-of-use or efficiency gains; for instance, storing vertices

and edges in a data structure will result in faster access times compared to storing such data

in separate locations on a disk.

The first method of representing graphs is known as an adjacency list. This method uses

both an array data structure and a linked list data structure: vertices are represented using

indices of the array, and for each array entry, the linked list stored at that index records all

vertices adjacent to the vertex at that index.

Using adjacency lists, we can access vertices in constant time by indexing into the array, and

we may determine all of the vertices adjacent to a given vertex by reading the elements of

the linked list, which can be done in time proportional to the degree of the vertex.

Example 1.12 The graph at left can be represented by the adjacency list at right.

CISC203, Fall 2019, Graph theory 16

a b c

d e

a d e

b c e

c b d

d a c e

e a b d

As mentioned previously, as common method of representing graphs is known as an adja-

cency matrix. As the name suggests, this method uses a matrix, or a two-dimensional

array, to store vertex and edge data. Given a graph G with n vertices, the adjacency matrix

of G (denoted G) is an n × n matrix where the entry at row i and column j is equal to 1

when vertices ui and uj are adjacent and equal to 0 otherwise.

Remark. Adjacency matrices can represent loops on a vertex ui by storing a 1 entry at

position (i, i) of the matrix. We can modify our implementation of an adjacency matrix to

handle graphs with multiple edges by storing the number of edges between vertices ui and

uj at position (i, j) of the matrix.

As mentioned previously, if the graph G is undirected, then the associated adjacency matrix

AG will be symmetric; that is, the entries at positions (i, j) and (j, i) will be equal for all i

and j. This is not always the case if G is a directed graph.

An adjacency matrix allows us to determine adjacent vertices by scanning a given row or

column, which can be done in time proportional to the number of vertices, |V |. For graphs

with many vertices and few edges, adjacency matrices perform worse than adjacency lists.

However, adjacency matrices are easier to implement than adjacency lists.

Example 1.13 The graph at left (identical to the graph from Example 1.12) can be repre-

sented by the adjacency matrix at right.

CISC203, Fall 2019, Graph theory 17

a b c

d e

a b c d e

a 0 0 0 1 1

b 0 0 1 0 1

c 0 1 0 1 0

d 1 0 1 0 1

e 1 1 0 1 0

The third method that we will see in this section also uses a matrix, but in a slightly different

way. Instead of using rows and columns to represent vertices in a graph as we did with the

adjacency matrix, we represent all vertices as rows and all edges as columns. The resulting

structure is known as an incidence matrix. Given a graph G with n vertices and m edges,

the incidence matrix of G (denoted EG) is an n ×m matrix where the entry at row i and

column j is equal to 1 if edge ej is incident to vertex ui and equal to 0 otherwise.

Remark 1.1 Just like with adjacency matrices, we can represent loops and multiple edges in

an incidence matrix by making the appropriate changes to entries of the matrix. If we want

to represent directed edges, we may use positive or negative entries depending on whether an

edge is pointing toward or away from a given vertex.

In order to determine adjacent vertices in an incidence matrix, we must scan both the

edge columns (to determine edges incident to our chosen vertex) and the vertex rows (to

determine other vertices to which our chosen vertex is adjacent). This can be done in time

proportional to the size of the matrix, |V | · |E|, making it extremely inefficient compared to

our previous methods. However, incidence matrices have their advantages; as an example,

incidence matrices can distinguish multiple edges, while adjacency matrices cannot.

Example 1.14 The graph at left (identical to the graph from Example 1.12 with added edge

labels) can be represented by the incidence matrix at right.

CISC203, Fall 2019, Graph theory 18

a b c

d e

e
1

e
2

e3

e
4

e5

e6

e1 e2 e3 e4 e5 e6

a 1 1 0 0 0 0

b 0 0 1 1 0 0

c 0 0 1 0 1 0

d 1 0 0 0 1 1

e 0 1 0 1 0 1

Finally, keep in mind that this section is not exhaustive: there are many other methods to

represent graphs, and certain methods lend themselves better to certain graphs. However,

the three methods presented here are among the most commonly used methods of graph

representation.

2 Planarity

We often informally refer to the process of depicting a graph on paper as “drawing”. However,

simply saying that we have “drawn” a graph allows some undesirable properties to sneak in

that might make our graph confusing to look at. Thus, we want to formalize the notion of

drawing in some way to ensure that our depictions of graphs are clear.

Mathematicians have a name for such a formalism: an embedding of a graph G on a surface

(for our purposes, a two-dimensional plane) is a representation of the vertices and edges of

G that meet the following criteria:

• each vertex u ∈ V is assigned a point on the surface, and no two vertices share the

same point;

• each edge e ∈ E is assigned a curve on the surface, and no two edges share the same

curve;

• the endpoints of some curve e are exactly the two incident vertices u and v; and

• no vertex other than the two incident vertices u and v lie on the edge e.

Essentially, an embedding ensures that we are able to see all of the vertices and edges of a

CISC203, Fall 2019, Graph theory 19

graph and that no vertices or edges overlap one another.

Observe that edges overlapping (that is, one edge covering another edge entirely) is different

from edges crossing (that is, one edge intersecting another edge at some point on the surface,

which includes an edge intersecting itself). Many graphs have edges that cross, and we have

seen such graphs throughout these notes. But a special subset of graphs have edges that do

not cross, and that subset is the topic of this section.

Definition 2.1 (Planar graph) A graph G = (V,E) is planar if G has an embedding in

the plane that is crossing-free.

Often, if we are given a graph with crossing edges, we can redraw the edges in such a way

that no edges cross one another. If we can redraw a graph G into a crossing-free graph G′,

then we say that G′ is a planar representation of G.

Example 2.1 The embedding of the graph K4 at left is not crossing-free. However, the

embedding of the graph at right is both crossing-free and isomorphic to K4. Therefore, K4 is

a planar graph.

In the same way that borders on Earth divide land into countries, the edges of a planar

graph divide a surface into faces. Faces need not be confined to the interior of a graph;

there always exists one exterior, unbounded face that surrounds the graph.

Just like vertices, faces have degrees. The degree of a face is equal to the number of edges

making up the boundary of that face. Intuitively, the degree of a face can be thought of as

the number of lines you would need to draw, without lifting your pencil, to trace out the

face on paper and end up at the point where you started.

Example 2.2 Recall the planar embedding of K4 from Example 2.1. This planar graph

consists of four faces, each labelled in the following figure. Observe that one face, f1, is an

exterior face. Further observe that each face of the graph has degree 3, since each face is

bounded by three edges.

CISC203, Fall 2019, Graph theory 20

f1
f2

f3

f4

Long ago, Euler discovered a relationship between the numbers of vertices, edges, and faces

of certain planar graphs. Summing these numbers in a particular way produces a constant

value, known as the characteristic.

Theorem 2.1 (Euler’s formula) Given a connected planar graph G = (V,E) with v ver-

tices, e edges, and f faces,

v − e+ f = 2.

Proof. Let G be a connected planar graph. We will prove the claim using the principle of

mathematical induction on the number of edges of G. Let P (e) be the statement “given a

graph G with v vertices and e edges, v − e+ f = 2”.

When e = 0, we know that G is an edgeless graph. Since G is connected, it must consist

of only one vertex, and as a result, G contains one exterior face. This gives v − e + f =

1− 0 + 1 = 2. Therefore, P (0) is true.

Assume that P (e′) is true for some e′ ∈ N.

We now show that P (e′ + 1) is true; that is, we add one edge to the graph G and check

whether the statement holds. The new edge can be added in one of two ways:

• If the edge is incident to one existing vertex, then we must add a new vertex to G.

This increases both the number of vertices and the number of edges by one, which

gives (v + 1)− (e′ + 1) + f = v + 1− e′ − 1 + f = v − e′ + f = 2.

• If the edge connects two existing vertices to one another, then we divide some face

within G into two faces. This increases both the number of edges and the number of

faces by one, which gives v − (e′ + 1) + (f + 1) = v − e′ − 1 + f + 1 = v − e′ + f = 2.

In either case, P (e′+ 1) is true. By the principle of mathematical induction, P (e) is true for

all e ∈ N. 2

CISC203, Fall 2019, Graph theory 21

Note that the fact that G is connected is crucial to the correctness of Theorem 2.1. Graphs

that are not connected have a slightly different formula.

So, why do we care about Euler’s formula? Using this result, we can derive a number of

conditions that must be met in order for a graph to be planar.

If a graph has no planar representation, then we say that it is nonplanar. Proving the

nonplanarity of a graph often reduces to showing that the graph does not meet the conditions

set out by Euler’s formula (or by some corollary of Euler’s formula). As illustrative examples

of such proofs, we will focus on proving the nonplanarity of two graphs with which we are

already familiar: K5 and K3,3.

Theorem 2.2 The complete graph K5 is nonplanar.

Proof. Assume by contradiction that K5 is planar. Then K5 satisfies Euler’s formula. Since

the graph consists of 5 vertices and 10 edges, we know that there should exist f = 2−5+10 =

7 faces in the graph.

Let b denote the number of “boundary edges” surrounding each face of the graph. Any face

must be bounded by at least three edges, so we know that b ≥ 3f . However, since each edge

in the graph is a boundary edge for exactly two faces, we also know that b = 2e. Therefore,

we have that 2e ≥ 3f .

However, since e = 10 and f = 7, this inequality asserts that 20 ≥ 21, which is impossible.

Therefore, K5 is nonplanar. 2

Theorem 2.3 The complete bipartite graph K3,3 is nonplanar.

Proof. Assume by contradiction that K3,3 is planar. Then K3,3 satisfies Euler’s formula.

Since the graph consists of 6 vertices and 9 edges, we know that there should exist f =

2− 6 + 9 = 5 faces in the graph.

Again, let b denote the number of “boundary edges” surrounding each face of the graph. We

CISC203, Fall 2019, Graph theory 22

know once more that b = 2e. Since K3,3 is a complete bipartite graph, we also know that C3

is not a subgraph (by Example 1.7), so each face must be bounded by at least four edges,

giving b ≥ 4f .

However, since e = 9 and f = 5, this inequality asserts that 18 ≥ 20, which is impossible.

Therefore, K3,3 is nonplanar. 2

At this point, you might wonder why we chose to prove that these two specific graphs were

nonplanar. There was a hidden motive for our choices of proofs: we actually require these

results to prove the final result of this section. First, however, we require just one more bit

of terminology.

It is possible to define an operation on a graph that, given an edge e incident to vertices u

and v, divides the edge into two edges e1 and e2, where e1 is incident to u and a new vertex

w and e2 is incident to w and v. This operation changes nothing about the graph apart from

the number of vertices and edges and, in particular, it does not affect the planarity of the

graph. We call this operation a subdivision.

u v

e

u vw

e1 e2

Now, we are ready to see a fascinating theorem due to the Polish mathematician Kazimierz

Kuratowski. This theorem gives us a pair of conditions that identify when certain graphs

are nonplanar. Put simply, if we can obtain a graph G by taking subdivisions of either of

the nonplanar graphs K5 or K3,3, then G itself is nonplanar.

Theorem 2.4 (Kuratowski’s theorem) A graph G is nonplanar if and only if G contains

a subdivision of K5 or a subdivision of K3,3 as a subgraph.

Proof. (⇒): Omitted.

(⇐): If G contains a subdivision of K5 or a subdivision of K3,3 as a subgraph, then G is

nonplanar by Theorem 2.2 or Theorem 2.3, respectively. 2

Kuratowski’s theorem is biconditional, so we must prove two statements in order to prove

the overall theorem. Although one direction of the proof (⇐) followed immediately from

CISC203, Fall 2019, Graph theory 23

other results we proved, the other direction (⇒) is a long proof and we omit it here, but

many textbooks dedicated to graph theory contain the full proof.

Example 2.3 We can show that the Petersen graph is nonplanar by using Kuratowski’s

theorem. First, delete one vertex from the Petersen graph to obtain the following subgraph,

then label the vertices.

f

i h

j g

a

d c

e

Next, consider the graph at left, which is isomorphic to the complete bipartite graph K3,3.

Take a subdivision of this graph to obtain the graph at right, and again label the vertices.

e i h

f d j

a g

c

Finally, observe that the given labelings establish an isomorphism between the two graphs,

meaning that the Petersen graph contains a subdivision of K3,3 as a subgraph. By Kura-

towski’s theorem, the Petersen graph is nonplanar.

3 Graph colourings

In this section, we will be doing something that we don’t usually get to do in a university-level

course: colouring. (Hopefully you remembered to bring your crayons!)

In some of the graphs we have seen, we labelled vertices with symbols like a, b, u, and v.

Importantly, each of these symbols had to be unique, since we wanted to distinguish between

vertices. A graph colouring, on the other hand, is like a method of nonunique labelling. We

can colour any aspect of a graph, such as vertices, edges, or faces.

Remark. For the remainder of this section, we will focus on vertex colourings. Similar

definitions and results exist for both edge colourings and face colourings, but we will not

CISC203, Fall 2019, Graph theory 24

discuss either topic here.

Instead of giving each vertex a symbolic label, we can assign a “colour” to each vertex that

distinguishes it from nearby vertices. These colours need not be unique; we can label more

than one vertex with the same colour.

In our formal definition, we use numerical values to represent colours.

Definition 3.1 (Vertex colouring) Given a graph G = (V,E) and a set of k colours

{1, 2, . . . , k}, a vertex colouring of G is a function f : V → {1, 2, . . . , k}.

If a vertex colouring f has the property that, for all edges {u, v} ∈ E, f(u) 6= f(v), then

we say that the vertex colouring is proper. A proper vertex colouring is one in which no

adjacent vertices share the same colour.

If we can construct a proper vertex colouring of a graph using at most k colours, then we

say that the graph is k-colourable.

Example 3.1 Each of the following graphs depicts a vertex colouring. However, only the

two rightmost graphs depict a proper vertex colouring. Since we can obtain a proper vertex

colouring using three colours, this graph is 3-colourable.

3.1 Chromatic Numbers

The question we typically want to answer is how many colours are required in order to

construct a proper vertex colouring of a graph G. This idea leads to the notion of the

chromatic number of G.

Definition 3.2 (Chromatic number) Given a graph G, the chromatic number of G, de-

noted by χ(G), is equal to the smallest number of colours required to construct a proper vertex

colouring of G.

We can attain both the upper bound and the lower bound on the chromatic number if we

CISC203, Fall 2019, Graph theory 25

consider particular classes of graphs.

• Given a complete graph Kn with n vertices and n(n−1)
2

edges, we have that χ(Kn) = n.

This is because each vertex is adjacent to every other vertex in the graph.

• Given an edgeless graph 0n with n vertices and zero edges, we have that χ(0n) = 1.

This is because no vertices are adjacent to one another in the graph.

Thus, we know that for any graph G with n vertices, we have that 1 ≤ χ(G) ≤ n.

With a little work, we can obtain a few more results about the chromatic numbers of given

graphs. Our first result relates the chromatic number of a graph to the maximum degree of

any vertex in the graph, denoted by ∆.

Theorem 3.1 If a graph G has maximum degree ∆, then χ(G) ≤ ∆ + 1.

Proof. Assume we have a set of ∆ + 1 colours. Choose an arbitrary vertex, say v1, from

the graph G and assign to it a colour. Repeat this process of assigning colours to arbitrary

vertices of G under the condition that, if two vertices vi and vj are adjacent, then both

vertices should be assigned different colours.

Since the maximum degree of G is ∆ and since we have ∆+1 colours available to use, we will

not encounter the issue of running out of colours to assign to adjacent vertices. Therefore,

χ(G) ≤ ∆ + 1. 2

A stronger result, proved by the English mathematician R. Leonard Brooks, reduces the

bound given in Theorem 3.1 to χ(G) ≤ ∆, unless G = Kn or G = C2n+1. However, Brooks’

result is harder to prove.

Our next result relates the chromatic number of a graph to the chromatic numbers of its

subgraphs.

Theorem 3.2 If a graph G contains a subgraph H, then χ(H) ≤ χ(G).

Proof. Given a proper vertex colouring of the graph G, we can copy those colours to the

corresponding vertices of H. Thus, a proper vertex colouring of H requires at most χ(G)

colours. 2

CISC203, Fall 2019, Graph theory 26

Next, recall the notion of a bipartite graph from our discussion on special graph classes. A

bipartite graph is a graph whose vertex set V can be partitioned into two subsets V1 and V2

such that each edge joins a vertex in V1 to a vertex in V2. The following result characterizes

the set of bipartite graphs in terms of their chromatic number.

Theorem 3.3 A graph G is a bipartite graph if and only if χ(G) = 2.

Proof. (⇒): Given a bipartite graph G, colour each of the vertices in V1 one colour (say,

red), and colour each of the vertices in V2 another colour (say, blue). No vertices in V1 are

adjacent to vertices in the same set, and the same is true for vertices in V2. Thus, χ(G) = 2.

(⇐): Given a graph G with χ(G) = 2, partition each of the vertices of the first colour into

one set V1, and partition each of the vertices of the second colour into another set V2. Since

no two adjacent vertices of G share the same colour, vertices in V1 are only adjacent to

vertices in V2 and vice versa, making the graph bipartite. 2

Finally, let’s investigate chromatic numbers of planar graphs. We do so in the context of

maps: a paper map is a plane, land areas are vertices of a graph, and adjacent land areas

are connected by non-crossing edges.

In the early days of graph theory, a South African mathematician named Francis Guthrie

made a conjecture while trying to colour a map of England. Guthrie asserted that one

needs only four colours to colour in any map, no matter how many regions the map de-

picts. In 1879, an English mathematician named Alfred Kempe claimed to have a proof of

Guthrie’s conjecture, and for this he received many awards and accolades. However, 11 years

later, another English mathematician named Percy Heawood found a flaw in Kempe’s proof.

Heawood gave his own proof that five colours are in fact sufficient.

After the late 19th century work on map colouring lay dormant for many years. Then, in

1976, Kenneth Appel and Wolfgang Haken proved that, indeed, four colours are sufficient

to colour any map. The proof of Appel and Haken was a landmark result, since it was

one of the first major mathematical theorems to be proved with the aid of a computer; the

CISC203, Fall 2019, Graph theory 27

complete proof consisted of 1 936 different cases. Since then, the proof has been shortened

considerably—to a mere 633 cases—but it is still too lengthy to reproduce here.

Theorem 3.4 (Four colour theorem) If a graph G is planar, then χ(G) ≤ 4.

