
Random Variables continued

Now let’s look at the coin flipping example described previously:

Let S = {result of tossing a coin 5 times} = {HHHHH, HHHHT, ..., TTTTT}

Let X(s) = the number of Heads in s     

So X(HHHHH) = 5,  X(THHTT) = 2,   etc.

Now we can ask questions such as “What is the probability that X = 2?” or equivalently, 

“What is P(X = 2)?”

At this point, many people (who should know better) make a crucial mistake: they assume 

without any justification that the coin we are flipping is balanced (i.e. H and T have equal 

probability of coming up on each toss).  We can’t make that assumption, so we deal with the 

more general case.  Suppose the coin has probability p of coming up H, and therefore 

probability (1-p) of coming up T.

What is P(X = 2) with X(s) defined as the number of Heads in s?

The coin tosses are independent (the coin has no memory), so the probability of tossing the 

outcome HHTTT (2 heads and then 3 tails) is 

This is one of the outcomes that gives X = 2

But so is TTHTH, which has probability 

and in fact we can see that every outcome containing exactly 2 H’s will have probability

   , and P(X=2) will just be the sum of all of these.   How many are there?

The two heads can occur in any of the five positions, so a simple counting argument tells us 

there are  different outcomes with exactly 2 H’s.  The final answer is:



Similarly we can compute 

Exercise:  Suppose we are tossing a coin with P(H) = 1/3, P(T) = 2/3.   If we toss the coin four 

times and X(s) is the number of Heads we see in outcome s, what is P(X=2)?

Independent Random Variables

Recall that we say the two events A and B on sample space (S,P) are independent if

 .  Remember that this means that knowing A has occurred does 

not affect the probability that B has occurred (ie  P(B | A) = P(B) ) , and vice versa.

We say random variables  and  are independent if

   and  ,  

This deserves some careful explanation.  We are referring to an outcome s of the experiment, 

and asking for the probability that  and .   Here  and  are possible 

values that  and  can give.  We can only say  and  are independent if the equation 

shown above holds for all possible values for  and .

This will be clarified by some simple examples.  

Example 1:   We return to one of our previous examples:  S = {10,11,12,13,14,15} and

Let X be a random variable defined on (S,P) by X(s) = s % 4

Let Y be a random variable defined on (S,P) by X(s) = s % 5



Here is the situation:

s X(s) Y(s)

10 2 0

11 3 1

12 0 2

13 1 3

14 2 4

15 3 0

Are X and Y independent?

If they are then the equation   must hold for

all values of a and b

Consider a = 0 , b = 0    .  P(X = 0)  =     and P(Y = 0)  =     =   

There is no s such that X(s) = 0 and Y(s) = 0, so P( X(s) = 0 and Y(s) = 0 ) = 0

But P(X=0) * P(Y=0)  =      So the equation does not hold for a = 0, b = 0 .... so X and Y are not

independent.

Exercise :  Let S be the set of possible outcomes of tossing a coin 5 times.  Let X be the number 

of Heads, and let Y be the number of Tails.   I claim these two random events are not 

independent – demonstrate that this claim is correct.

Example 



2:  Here’s our old friend S = {10,11,12,13,14,15}, with   

Let X(s) = s % 3

Let Y(s) = 1  if  s   12

               = 2  if  s  >  12

s X(s) Y(s)

10 1 1

11 2 1

12 0 1

13 1 2

14 2 2

15 0 2

Claim:  X and Y are independent random variables.   To show this completely we could go 

through all six combinations of values for a and b   (    )

I’m not going to do them all, but we’ll do one case:  

Let a = 1 and b = 2.   P(X=1)  =   .    P(Y=2)  =  

There is exactly one s for which X(s) = 1 and Y(s) = 2   (it’s 13), so P(X=1  and  Y=2)  =   

Also, P(X=1) * P(Y=2)  =   

So the equation holds in this case.  You can do the other 5 cases but I predict you will soon get

bored – they all work out exactly the same way.

In practice we are often told that random variables are independent, or it may be obvious 

from the physical properties of the sample space.  For example, S may consist of the outcomes

of tossing two separate dice (say, a red one and a blue one) and we may accept that the two 

dice do not influence each other in any way.  If X is a random variable based only on the value

of the red die and Y is a random variable based only on the value of the blue die, then X and 

Y are independent.



This exercise shows how we can take advantage of knowing that two random variables are 

independent.

Exercise:   Suppose X and Y are independent random variables, and we know two things:

P(X=23 and Y=8) = 0.6

P(X=23) = 0.8

What is P(Y=8) ?

Expectation

The concept of the expected value of a random variable is a formalization of our intuitive 

understanding of “average”.

Suppose the ages of students in this class are all in the set {16, 17, 18, 19, 20}  Can we conclude

that the average age in the class is 18?   Of course not.  To compute the average age we need 

to include all the instances of each value.  If there are 4 people with age 16, 5 with age 17, 3 

with age 18, 1 with age 19 and 1 with age 20, then the average is



It works exactly the same way with random variables.   Suppose X is a random variable that 

maps some sample space to the the set {1,2,3,4,5}   with the following probabilities:

X(s) P

1

2

3

4

5

Then the expected value of X is given by 

 

where the denominator is 1 because it is just the sum of all the probabilities.

So in general, the expected value of a random variable X is



Linearity of Expectation

Suppose X and Y are random variables defined on the same sample space (S,P)

Define a new random variable Z on (S,P) as  Z(s) = X(s) + Y(s)

(remember, X and Y are functions, so we are just defining a new function by adding the 

previous ones together)

Theorem:  If Z(s) = X(s) + Y(s)   then   E(Z) = E(X) + E(Y)

Proof:

   

More fun facts about expected values of random variables (we didn’t cover these facts in 

class, but you should have no trouble verifying them!)

 Let X and Y be random variables.  Let c  and d be any constant numbers.  Then

E(X + c)   =  E(X) + c

E(c*X)   = c * E(X) 

E(c*X + d*Y)  = c*E(X) + d*E(Y)



Expectation of X*Y

Let X and Y be random variables defined on sample space (S,P) and define Z(s) = X(s)*Y(s)

Can we show that E(Z) = E(X)*E(Y)  ?      Not necessarily!

It turns out that if X and Y are independent random variables, then E(X*Y) = E(X)*E(Y)

The following material is optional – I won’t test you on it, but it is useful information so I am 

including it in these notes in hopes that you will find it useful some day.

The text gives an equivalent formulation for E(X):      

To see that these two formulas give the same value, remember that 

so we can write 

and in this, since we are specifying that  in each term, we can replace  in the 

expression by , giving

which we can rewrite as



Well this is looking worse and worse.   But if we think about what is happening here, we can 

see that we are actually just taking all terms of the form  and grouping them 

together by their  values.  We don’t change the sum by “ungrouping” them, so we end 

up with

  and if we now discard the irrelevant subscripts on the  values – 

which were only introduced to clarify the equivalences – we end up with

         ... as claimed.

You should make sure you understand why these are equivalent.

The text also gives this formulation    .  If you are interested, the text 

gives a complete proof that this is equivalent to the previous formulation.



Expectation of X*Y

Let X and Y be random variables defined on sample space (S,P) and define Z(s) = X(s)*Y(s)

Can we show that E(Z) = E(X)*E(Y)  ?      Not necessarily!

It turns out that if X and Y are independent random variables, then E(X*Y) = E(X)*E(Y)


