
CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 1

Nonregular languages and minimization of DFAs

While the regular languages have nice properties (as we have seen in the early part of the

course), unfortunately many languages that we encounter in practice are nonregular. We

discuss a method to prove that a given language is nonregular. This material is from Section

9.4 in the textbook.

As the last topic on regular languages we consider an algorithm to minimize deterministic

state diagrams. More on this topic can be found in the textbook by P. Linz [3]. A link to

the text is given on the course web site.

Pumping lemma for regular languages

All regular languages L have the following property:

• corresponding to L there is a constant value called “pumping length” such that all

strings in the language of length at least the “pumping length” can be “pumped”,

that is, some substring can be repeated arbitrarily many times and the resulting string

remains in the language L.

The result is stated in the below pumping lemma. The pumping lemma gives a general

technique for showing that certain languages are not regular.

Pumping lemma. For every regular language L there exists a constant n such that any string

x ∈ L of length at least n can be written as

x = p · q · r

where

(P1) q ̸= ε

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 2

(P2) |p · q| ≤ n

(P3) pqkr ∈ L for all k ≥ 0.

Note: In the proof of the pumping lemma we can choose n to be the number of states of a

state diagram accepting L.

Examples. The following languages are not regular:

{0i1i | i ≥ 0}

{02i | i ≥ 0} (this language consists of all strings of 0’s having

a length that is a power of 2)

How would you use the pumping lemma to show that the above languages are not regular?

(Will be done in class.)

Note. If L is a finite language, any string x ∈ L cannot be written in three parts p · q · r

such that conditions (P1) and (P3) hold. Do finite languages satisfy the conditions of the

pumping lemma? Why or why not? Are all finite languages regular?

The general method of using the pumping lemma to show that a given language L is not

regular can be described as follows. We use proof by contradiction.

1. For the sake of contradiction we assume that L is regular. Then the pumping lemma

gives us the pumping length n. We don’t know what n is (it can be arbitrarily large),

we only know that it is a constant (positive) integer.

2. Choose a string x ∈ L of length at least n.

3. Consider all the possible decompositions of x into three parts (as in the pumping

lemma). If none of them satisfy the conditions (P1), (P2), (P3) from the pumping

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 3

lemma simultaneously, we obtain a contradiction and can conclude that L cannot be

regular.

The crucial part in using the pumping lemma is usually to select a suitable string x ∈ L

in 2. above. The string x should be selected so that it cannot be pumped (without going

“out” of the language L). Note that x ∈ L has to be specified using the “unknown” constant

n.

Above in stage 2., we can choose the string x ∈ L in a way that we expect to cause

problems with the “pumping property”. Note, however, that in the following stage 3. we

need to show that any decomposition of x into three parts does not satisfy the conditions

(P1), (P2), (P3). That is, it is not sufficient to consider one particular decomposition.

Sometimes in order to show that given languages are not regular, together with the

pumping lemma, we can rely on closure properties of the family of regular languages.

We observe the following: if S and T are regular languages then also the following

languages are regular:

S ∩ T

S = {w ∈ Σ∗ | w ̸∈ S}

How can you establish the above closure properties?

Example. Define S to consist of all strings over alphabet {0, 1} that have an equal number

of occurrences of 0’s and 1’s. We show that S is not regular.

Proof by contradiction: If S is regular, then also the language

S ∩ 0∗1∗ = {0i1i | i ≥ 0}

is regular. (Why?) We have in the earlier example shown that the language {0i1i | i ≥ 0} is

not regular. We conclude that S cannot be regular.

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 4

Minimizing deterministic state diagrams (DFAs)

A state diagram, whether deterministic or nondeterministic, may have states that cannot be

reached in computations on any input word, such states are called useless. Useless states

can be found using a straigthforward graph reachability algorithm. How? Once the useless

states are identified, they can be simply deleted from the state diagram.

A DFA with no useless states need not be minimal. Consider the example given in

Figure 1. Here states B and C are indistinguishable (as defined more precisely below) in

the sense that any string w takes the state B to an accepting state if and only if w takes C

to an accepting state. Indistinguishable states can be merged into one state. In the DFA of

Figure 1 also states A and D are indistinguishable.

D

C

B

A
ab

a

b

a

b

b

a

Figure 1: The states B and C can be merged into one state. Also states A and D can be

merged.

Based on the above idea of merging indistinguishable states we present an algorithm to

minimize an arbitrary DFA. More on this topic can be found in the textbook by P. Linz [3].

A link to the text is given on the course web site.

Recall that a DFA was defined as a tuple M = (Q,Σ, δ, s, F) where Q is the set of states,

Σ is the input alphabet, δ : Q × Σ → Q is the transition function, s ∈ Q is the start state

and F ⊆ Q is the set of accepting states. We extend δ as a function δ̂ : Q × Σ∗ → Q by

defining inductively

1. δ̂(q, ε) = q for all q ∈ Q, and,

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 5

2. δ̂(q, wa) = δ(δ̂(q, w), a) for all q ∈ Q, a ∈ Σ and w ∈ Σ∗.

In the following also the extended transition function δ̂ is denoted simply by δ. For a state

q ∈ Q and string w ∈ Σ∗, δ(q, w) is the unique state that the DFA M is in after reading the

string w assuming the computation starts in state q.

With the above notation we can now define that states q1 and q2 are indistinguishable if

(∀w ∈ Σ∗) δ(q1, w) ∈ F iff δ(q2, w) ∈ F.

The states q1 and q2 are distinguishable (via string v) if v violates the above condition, that

is, if δ(q1, v) ∈ F and δ(q2, v) ̸∈ F or vice versa.

The idea of the minimization algorithm is to find all pairs of distinguishable states. As

the starting point of the algorithm we note that any accepting state (an element of F) is

always distinguishable from a nonaccepting state (an element of Q−F). Why? Initially the

algorithm marks all such pairs as distinguishable.

Algorithm: Mark distinguishable pairs of states. The input for the algorithm is a DFA

M = (Q,Σ, δ, s, F) where all states are reachable from the start state. The algorithm marks

all pairs of states (q1, q2) such that q1 and q2 are distinguishable.

• Stage 0: Mark all pairs (q1, q2) where q1 ∈ Q− F and q2 ∈ F , or vice versa.

• Repeat the following until at some stage no new pairs are marked:

Stage i (i ≥ 1): For each unmarked pair (q1, q2) and each b ∈ Σ do the following. If

the pair (δ(q1, b), δ(q2, b)) has been marked distinguishable at stage i − 1, then mark

(q1, q2) as distinguishable.

Note that a pair (q1, q2) is distinguishable if and only if (q2, q1) is distinguishable. This

means that when implementing the algorithm (or when tracing the algorithm “by hand”) it

is sufficient to consider unordered pairs of states.

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 6

Example 1. Consider the DFA M1 of Figure 1. We have already observed that M1 is not

minimal.

When applying the marking algorithm to M1, at stage 0 we mark pairs (A,B), (A,C),

(B,D) and (C,D). As observed above, distinguishability is symmetric and hence marking

(A,B) implies that also (B,A) is marked.

At stage one of the algorithm we now need to consider the unmarked pairs (A,D) and

(B,C). We note that (δ(A, a), δ(D, a)) = (B,C) and (δ(A, b), δ(D, b)) = (C,B) where B and

C are indistinguishable at previous stage 0. Hence the pair (A,D) is not marked at stage

1. Similarly it is observed that neither the pair (B,C) will be marked and the algorithm

terminates after stage 1.

The minimized DFA is depicted in Figure 2.

a, b

a, b

A, D B, C

Figure 2: The minimized DFA equivalent to the DFA of Figure 1.

As indicated in the above example, the minimized DFA is obtained from the original

DFA M by merging together into one class all states q1, q2 such that the pair (q1, q2) remains

unmarked after the execution of the algorithm “mark distinguishable pairs of states”. When

merging q1 and q2, also the corresponding outgoing transitions are “merged” together. This

is always possible because the pair (q1, q2) remaining unmarked means that the states q1 and

q2 are indistinguishable, and hence, for any b ∈ Σ, the outgoing transitions from q1 and q2 on

symbol b end up in a pair of indistinguishable states (that are also merged into one state).

More formally, assume that the original DFA M has a transition from state q to state p

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 7

on input symbol b. Then the minimized DFA has a transition on input b from the “merged

together class” containing q to the class containing p. The start state of the minimized

DFA is the class that contains the start state of the original DFA. All classes consisting of

accepting states are accepting. (Note that an accepting state can never belong to the same

class as a non-accepting state.)

Example 2. As a slightly bigger example, we use the algorithm to minimize the DFA M2

of Figure 3. Here Σ = {a, b}. The details will be done in class.

1 2

3

4

5

6
a

a b

a

b a

b

b

a

b

a, b

Figure 3: DFA M2

It is easy to see that if a DFA M has n states the minimization algorithm always termi-

nates after the (n− 1)th stage.1

It can be shown that the algorithm produces a minimal DFA equivalent to the original

DFA M and, furthermore, the minimal DFA is unique for any regular language [3]. That

is, if M and M ′ recognize the same language, by applying the minimization algorithm to M

and M ′, respectively, yields the same minimal DFA.

1At stage i the unmarked pairs define a partition of the state set into subsets where any two states in

the same subset cannot be distinguished by any string of length at most i. At stage i + 1 the partition is

a refinement of the stage i partition and, if the total number of states is n, the refinement cannot be done

more than n− 1 times.

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 8

a, c

a

a, b

a, c

a

a, b

R

Q

P

Figure 4: States P and Q can be merged or states Q and R can be merged. However, P , Q,

R cannot all be merged.

A naive implementation of the minimization algorithm runs in cubic time. A considerably

more sophisticated variant can be made to run in O(n · log n) time [2].

Simplification of NFAs and regular expressions

Exactly as for deterministic state diagrams, in a given NFA we can identify and eliminate

the useless states using a simple graph reachability algorithm. Here by useless states we

mean states that cannot be reached from the start state on any string, or states from which

an accept state cannot be reached on any string.

Naturally we may attempt to reduce the number of states of an NFA also by merging

together “equivalent” states. However, the end result may depend on the order in which we

choose to merge the states and, furthermore, a nonminimal NFA need not have any mergible

states. This is illustrated by the two examples given in Figures 4 and 5.

The simple NFAs of Figures 4 and 5 can be easily minimized using exhaustive search.

However, the phenomena illustrated by these examples imply that NFA minimization be-

comes a combinatorial problem and minimization, in general, is known to be intractable [1].2

Also the simplification of regular expressions is a hard problem. The regular expressions

produced by the “state elimination algorithm” discussed in the previous section are often

2Using technical language, the algorithmic problem of NFA minimization is PSPACE-complete.

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 9

b

a

c

b

a, b

a

Figure 5: No two states can be merged, however, the NFA is not minimal.

a, ba, ba

a, b

Figure 6: An NFA A0 for which the equivalent minimal DFA has 8 states.

very large. The state elimination algorithm is implemented in the software package Grail.

Using Grail we can determinize the NFA A0 depicted in Figure 6 and the resulting DFA

has 8 states. When, again using Grail, we apply the state elimination algorithm to the 8

state DFA, the regular expression has size over 32000 bytes. For this language the “obvious”

regular expression is (a+ b)∗a(a+ b)(a+ b), however, when given the corresponding DFA as

input, the state elimination algorithm cannot find any regular expression of reasonable size.

The size of the regular expressions produced by the state elimination algorithm can be

reduced by various heuristic simplification techniques. There is no known general simplifi-

cation algorithm and regular expression simplification is a current research topic.

References

[1] M. Holzer and M. Kutrib, Descriptional and computational complexity of finite au-

tomata — A survey. Information and Computation 209 (2011) 456–470.

CISC/CMPE-223, Winter 2021, Minimization of DFAs and nonregular languages 10

[2] J.E. Hopcroft, An n · log n algorithm for minimizing the states in a finite automaton.

In: Z. Zohavi, A. Paz (Eds.), International Symposium on the Theory of Machines and

Computations, Academic Press, 1971, pp. 189–196.

[3] P. Linz, An Introduction to Formal Languages and Automata, (section 2.4). Jones

and Bartlett Publishers. A link to the on-line edition can be found on the

course web page.

