
CISC/CMPE-223, Winter 2021, Parsing 1

Parsing

This material is covered in Chapter 11 of the textbook.

• Parsing is the process of determining if a string of tokens can be generated by a

grammar.

Parsing in an important step in the compilation of programming languages. Two direc-

tions:

• Attempt to construct reasonably efficient parsers for general context-free languages.

• Define subclasses of context-free grammars which yield efficient parsers.

A “brute-force” parsing method for general context-free grammars systematically tries

all possible derivations that could produce the given string. This is extremely inefficient.

Using a dynamic programming technique we can get a significantly improved parsing

algorithm for general context-free grammars, with time complexity O(n3). However, this is

still not good enough for compilers which need to handle large size programs.

A recursive descent parser associates a procedure to each nonterminal of the grammar.

The parse tree is constructed top-down by recursively calling the procedure of the current

left-most nonterminal.

We consider a special case of recursive descent parsing, called predictive parsing. In

predictive parsing the current input token (look-ahead symbol) uniquely determines the pro-

cedure chosen for the nonterminal, that is, the first token of the remaining input determines

the production chosen for the nonterminal.

A recursive descent (predictive) parser does not explicitly construct the parse tree, al-

though it does so implicitly.

CISC/CMPE-223, Winter 2021, Parsing 2

Example. Grammar for balanced strings:

< balanced > → < empty > | 0 < balanced > 1

< empty > → ε

• The recursive descent parser defines a function Balanced() that makes a recursive call:

MustBe(ZERO)

Balanced()

MustBe(ONE)

See page 229 in the textbook.

• The function MustBe() advances to the next token if the argument matches the look-

ahead symbol.

• Consider the input: 000111

Initially we call procedure Balanced() and the next token determines that we execute

the sequence

MustBe(ZERO); Balanced(); MustBe(ONE)

Now the token 0 is consumed by MustBe(ZERO) and then Balanced() is called again.

Predictive parsing may be performed using a pushdown stack, that is, a deterministic

pushdown automaton:

• Initially the stack holds the start nonterminal.

• At each step in the parse, terminal symbols which appear on top of the stack are

“popped” and matched with the next input symbols.

Whenever a nonterminal appears on top of the stack, using lookahead on the input

and a parsing table, the parser predicts the production that is used to replace the

nonterminal.

CISC/CMPE-223, Winter 2021, Parsing 3

A recursive-descent parser uses a stack implicitly to implement recursive calls of the func-

tions.

Now we consider properties of grammars that may prevent the use of (predictive) recursive-

descent parsing. Certain context-free grammars cannot be parsed using recursive-descent.

In some cases we may transform the grammar into an equivalent one for which we can

use recursive-descent parsing but there exist context-free languages that do not have any

grammar that can be parsed using recursive-descent.

Example. The language of palindromes:

{w ∈ {0, 1}∗ | w = wR}

This is generated by the grammar:

< palindrome > → < empty > | 0 | 1 | 0 < palindrome > 0 | 1 < palindrome >

1

< empty > → ε

Here we have the following problem: the right sides of different productions for the same

nonterminal begin with the same token. Consequently, the grammar cannot be parsed using

predictive recursive descent. In fact, it can be shown that the language of palindromes

cannot be generated by any context-free grammar for which we can use recursive descent.

On the other hand, a grammar for centered palindromes avoids the above problem:

< CenPal > → $ | 0 < CenPal > 0 | 1 < CenPal > 1

The language of centered palindromes generated by the above grammar is

{w$wR | w ∈ {0, 1}∗}

CISC/CMPE-223, Winter 2021, Parsing 4

As we have seen, (predictive) recursive descent parsing cannot be used with all context-

free grammars. A necessary condition is that the director sets associated with any two

productions for the same nonterminal must be disjoint.1 The director sets are defined using

“first” and “follow” sets which we define next.

We consider a context-free grammar G = (V,Σ, P, S) where V is the set of nonterminals,

Σ is the set of terminals, P is the set of productions and S ∈ V is the start nonterminal.

• For α ∈ (V ∪ Σ)∗ the set

first(α) ⊆ Σ ∪ {ε}

consists of all terminals b that can begin a string derived from α. Additionally, if α

derives the empty string, ε is in first(α).

• For a nonterminal N ∈ V , the set

follow(N) ⊆ Σ ∪ {EOS}

consists of all terminals that can appear immediately to the right of N at some stage

of any derivation. The pseudo-terminal EOS is used to denote the end of the input

and EOS ∈ follow(N) if N may appear as the rightmost symbol of some string that

occurs in a derivation.

Example. Let V = {S,A}, Σ = {a, b, c} and the grammar has the following productions:

S → aAa | bAa | ε

A → Ac | cA | bA | ε

1The description of these conditions on p. 238 in the textbook contains minor inaccuracies. Please see the

corrections posted on the textbook’s web site (a link to the corrections can be found on CISC223 homepage).

The below discussion follows the corrected version.

CISC/CMPE-223, Winter 2021, Parsing 5

Determine what are the following sets (in class):

• first(S) = . . .?

• first(A) = . . .?

• first(Aa) = . . .?

• follow(S) = . . .?

• follow(A) = . . .?

Now we can define the director sets of productions. Let

N → w1 | w2 | . . . | wn

be all the productions for the nonterminal N . The director set of the production N → wi,

1 ≤ i ≤ n, consists of the following:

• The set first(wi).

• If the empty string can be derived from wi, the director set additionally contains

follow(N).

In order to be able to use recursive descent parsing2, the grammar must satisfy the

condition that the director sets for different productions for the same nonterminal must be

disjoint.

Thus, the grammar can be parsed using recursive descent if for any two productions

having the same nonterminal on the left side

N → α | β

the following conditions hold:

2Here we always refer to recursive descent with “look-ahead one”. In more advanced courses you may

encounter parsing algorithms that use longer look-ahead.

CISC/CMPE-223, Winter 2021, Parsing 6

(i) No terminal b ∈ Σ can begin both a string w1 derived from α and a string w2 derived

from β.

(ii) At most one of α and β can derive the empty string ε.

(iii) If β ⇒∗ ε then first(α) ∩ follow(N) = ∅.

Note that in condition (iii) the role of α and β is symmetric, that is, if α derives the

empty string then first(β) and follow(N) must be disjoint.

In simple examples, like the one above, we can determine the “first” and “follow” sets by

hand. In real-life situations we must use an algorithm to compute these sets, see for instance

the text on compilers by Aho, Sethi and Ullman mentioned on page 241 in our textbook.

If the grammar does not satisfy the above criterion, it may be possible to transform the

grammar into an equivalent grammar for which we can use recursive descent. Below we

describe some commonly used transformations.

If the grammar contains productions

A → αβ1 | αβ2

where α ̸= ε, then the sets first(αβ1) and first(αβ2) are (generally) not disjoint and conse-

quently also the director sets of the productions A → αβ1 and A → αβ2 are not disjoint.

Left factoring is a transformation that attempts to fix the above problem. Consider

productions

A → αβ1 | αβ2 | . . . | αβm | γ1 | . . . | γn

where α ̸= ε is not a prefix of γ1, . . . , γn and, furthermore, β1, . . . , βm do not have any

common prefix.

Then we replace the above productions by

A → αA′ | γ1 | . . . | γn

CISC/CMPE-223, Winter 2021, Parsing 7

A′ → β1 | . . . | βm

where A′ is a new nonterminal. We repeat the transformation until no two alternatives for

a nonterminal have a common prefix.

Example.

S → iEtS | iEtSeS | a

E → b

This grammar illustrates the ambiguity in if-statements with optional “else” parts. Here S

is a nonterminal for “statement”, E is a nonterminal for “expression”, and i (respectively, t,

e) stands for “if” (respectively, “then”, “else”). Apply left-factoring to the above grammar

(in class).

Note: The above left factoring algorithm always terminates and produces a grammar where

the “immediate problem” has been fixed, that is, no nonterminal has two productions where

the right sides have a common nonempty prefix. However, the left factoring method does

not always produce a grammar that can be used for predictive recursive descent parsing.

Left-recursive productions

Left-recursive productions have the form A → Aα. These may cause a recursive-descent

parser to go into an infinite loop. Consider our earlier example of a grammar for simple

expressions:

<expr> → <term> | <expr> + <term>

<term> → <factor> | <term> × <factor>

<factor> → (<expr>) | a

CISC/CMPE-223, Winter 2021, Parsing 8

On the basis of the next terminal symbol there is no way to determine the production to

be used.

The rules can be modified as follows:

<expr> → <term> <expTail>

<expTail> → + <term> <expTail> | ε

Here <expTail> is a new nonterminal. We use a similar transformation for productions for

<term>.

The general method to eliminate left-recursion is as follows. Suppose we have produc-

tions

A → Aα1 | . . . | Aαm | β1 | . . . | βn (1)

where strings βi do not begin with A and αj ̸= ε, j = 1, . . . ,m. We replace (1) by productions

A → β1A
′ | . . . | βnA

′

A′ → α1A
′ | . . . | αmA

′ | ε

When the method goes though all the different nonterminals, this method eliminates all

immediate left recursion.

However, the above method does not handle left recursion involving two or more deriva-

tion steps, that is, if we have a situation

A ⇒ Bβ ⇒ . . . ⇒ Aα, B ̸= A.

There is a general algorithm to eliminate also above type of multi-step left recursion, but we

do not discuss it here.

