
CISC 271 Class 2

Graphs: Adjacency Matrix and Laplacian Matrix

Text Correspondence, Goodaire & Parmentier: §9.1–9.2, §10.3

Main Concepts:

• Graph G: structure in discrete mathematics

• Vertex set V: finite non-empty set

• Edge set E: set of distinct pairs of vertices

• Adjacency matrix: symmetric nonnegative matrix of a graph

• Degree matrix D of graph G: diagonal matrix, each entry is sum of rows/columns

• Laplacian matrix of graph G: L = D − A

• Laplacian matrix is symmetric positive semidefinite

• Fiedler vector: eigenvector of second-smallest eigenvalue

• Binary cluster: vertices classified by sign of Fiedler vector

Sample Problem, Data Analysis: How can we cluster a graph from a matrix?

A graph is a term for the abstract structure that represents many common drawings and ideas.

For example, when we look at a “map” of part of the London Underground subway system, com-

pany, we see subway stops as circles or ellipses that are connected by straight or curved lines; a

sample of such a “map” is shown in Figure 2.1.

Figure 2.1: A “map” of part of the underground rail system of London, Great Britain.

Subway stops are shown as circles, ellipses, or bars. Stops for which a train is directly

available are shown as various straight and curved lines. (This image is sourced from

https://www.visitlondon.com and is presented as “fair use”.)

A graph is used to represent many familiar complex relationships. Examples in computer

science include the network connectivity between computing nodes and the layout of transistors
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on a silicon chip. In this class, we are less interested in the applications of graphs or in the theory

of computation for graphs. Our interest is in the representation of a graph as a matrix and some

uses of linear algebra for a graph matrix.

In the intellectual field of discrete mathematics, a graph G is a structure that has two sets. We

must be careful when defining and using graphs because there is no effective standardization of

notation or meanings. When we read each text or other reference work, we need to read carefully

to ensure that we understand the meaning of the author(s).

The first set of a graph G, the vertices, is non-empty and finite. Each member of this set is a

vertex. We will write the vertex set as V and each vertex as vj .

The second set of a graph G, the edges, is finite. Each member of the set is a pair of vertices.

We will write the edge set as E and each edge as ek = {vi vj} or as ek = (vi vj), with the

understanding that the second notation is not an ordered set. We will generally write a graph as

G(V, E). We may use subscripts to distinguish graphs from each other.

We will make two assumptions about a graph that are important and that vary considerably

between authors. The first assumption is that a graph is undirected. In the subway example, this

implies that if it is possible to go from station vi to station vj without visiting any other station,

then it is likewise possible to go from station vj to station vi without visiting any other station. If

the graph represents city streets, then every street is “two-way” and there are no “one-way” streets.

The second important assumption that we will make is that there is no loop in a graph. By this,

we intend that for each vertex vj there is no edge of the form {vj vj}.

For example, suppose that we construct a graph G1(V, E) that has five vertices and four edges:

G1

def
=

{

V1 = {1 2 3 4 5}
E1 = {(1 2) (1 3) (2 3) (4 5)}

(2.1)

We can produce a diagram of the graph G1 in a similar way that the map in Figure 2.1 is drawn.

We can use a circle for each vertex and a line for each edge. The graph defined in Equation 2.1 can

be diagrammed as shown in Figure 2.2.

1 2

3

4

5

Figure 2.2: An illustration of the graph G1, having five vertices and four edges. The graph has two

distinct sub-graphs that have no shared edge.
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2.1 Relevant Definitions

In this course, we will use very limited graph theory. For our graphs, which are undirected and

have no loops, some relevant definitions are:

incident vertex and edge: a vertex vi and an edge e for which e = (vi vj) = (vj vi)

adjacent vertices: vertices vi and vj for which there exists an edge e = (vi vj)

edge weight: wij > 0 that represents “importance” or a related concept

degree: for a vertex vj , the weighted sum of edges ei that are incident to vj

multiple edge: distinct edges ep and eq that are equal, so that ep = eq

loop: an edge e = (vj vj)

pseudograph: a set {V E} that has at least one multiple edge and/or at least one loop

subgraph: for a graph G(V, E), a graph GS(VS, ES) is a subgraph of G is defined as: VS ⊆ V and

ES ⊆ E

bipartite graph: a graph G(V, E) such that: (a) V can be partitioned into two disjoint non-empty

sets VL and VR, and (b) each edge ek is incident with a vertex vi ∈ VL and is incident with a

vertex vj ∈ VR

From these definitions, we can make a few observations on the graph G1, such as:

• edge (1 2) is incident with vertex 1

• vertex 3 is not incident with (1 2)

• the degree of vertex 3 is 2 and the degree of vertex 4 is 1

• vertex 2 is adjacent to vertex 3

• vertex 2 is not adjacent to vertex 4

• no edge is adjacent to vertex 4 and to any of vertices 1–3

• the graph G1 is not bipartite
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The observation that graph G1 is not bipartite follows from the “triangle” formed by the first

three vertices.

An example of a bipartite graph is the graph G2 that has six vertices and five edges:

G2

def
=

{

V2 = {1 2 3 4 5 6}
E2 = {(1 2) (2 3) (2 4) (4 5) (4 6)}

(2.2)

The graph defined in Equation 2.2 can be drawn as shown in Figure 2.3. One way to partition the

vertices of graph G2 is as VL = {2 5 6} and VR = {1 3 4}.

1 2

3

4

5

6

Figure 2.3: An illustration of the bipartite graph G2, having six vertices and five edges.

An observation on the graph G2 is that every nontrivial sub-graph is also a bipartite graph; this

is a fact about all bipartite graphs, which we will not prove. The interested reader is encouraged to

explore graph theory for more on these topics.

2.2 Adjacency Matrix of a Graph

Although the intellectual field of discrete mathematics uses a graph G(V, E) directly, we are

more interested in using a matrix representation of a graph. There are two fundamental ways of

representing a graph G(V, E) in linear algebra: as a square adjacency matrix that has a size that

varies according to the number of vertices in V; and as an incidence matrix that has a size that

varies according to the number of vertices in V and the number of edges in E . We will work with

the adjacency matrix and recognize that the incidence matrix is also useful.

Definition: adjacency matrix A(V, E) of a graph G(V, E)

For any graph G(V, E) that has n vertices in V labeled v1, v2, . . . , vn and that has m

edges labeled (vi vj), the adjacency matrix A(G) is the n × n matrix for which each

entry is defined as

aij =

{

1 if (vi vj) ∈ E
0 if (vi vj) /∈ E

(2.3)

According to Definition 2.3, any adjacency matrix A of a graph G(V, E) must have these prop-

erties:
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• A is real, because either aij = 0 or aij = 1

• A is symmetric, because if (vi vj) ∈ E then aij = aji = 1; this is true of all undirected

graphs, which is the kind of graph that we are using

• A has diagonal entries ajj = 0, because the kind of graph that we are using has no loop

• The eigenvalues of A are real, because A is a real symmetric matrix

• The eigenvalues of A add up to zero, because tr(A) = 0

We can easily create the adjacency matrices for the two graphs that we have defined so far in

this class. The matrix for graph G1(V1, E1) is

A1 =













0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0













(2.4)

The adjacency matrix for graph G2(V2, E2) is

A2 =

















0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
0 1 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

















(2.5)

A simple calculation that we can perform is to multiply an adjacency matrix and the “ones”

vector. The “ones” vector, which has n entries and each entry is 1, is written as

~1
def
=











1
1
...

1











If we compute [A1]~1, we find that the result is the vector

~d1 = [A1]~1 =













2
2
2
1
1













(2.6)
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Each entry of the vector ~d1 in Equation 2.6 is the degree of the vertex that has the corresponding

row number. This makes sense because multiplication of a matrix and the “ones” vector takes the

sum of the rows of the matrix; the sum of a row of an adjacency matrix is the number of edges that

are incident with the vertex, which is the definition of the degree of the vertex.

We can likewise compute [A2]~1 for graph G2(V2, E2), to get

~d2 = [A2]~1 =

















1
3
1
3
1
1

















(2.7)

A new graph can be derived from graph G1(V1, E1) by adding one vertex and two edges. This

graph G3(V3, E3) can be defined as

G3

def
=

{

V3 = {1 2 3 4 5 6}
E3 = {(1 2) (1 3) (2 3) (4 5) (5 6)}

(2.8)

The graph G3(V3, E3) defined in Equation 2.8 can be diagrammed as shown in Figure 2.4.

1 2

3

4

5

6

Figure 2.4: An illustration of the graph G3, having six vertices and five edges. The graph has two

distinct sub-graphs that have no shared edge.

The graph G1(V1, E1) and the G3(V3, E3) have a common property: each graph has two distinct

components. In graph theory, a component is a subgraph of a graph G(V, E) with two special

properties:

• For any two vertices of the component, there is a “walk” along incident edges between the

vertices; and

• Each vertex of the component is not adjacent to any non-component vertex of G
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The adjacency matrix for graph G3(V3, E3) is

A3 =

















0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

















(2.9)

The graph property of having two distinct components has a correspondence in the adjacency

matrix. In general, a graph that has distinct components can be partitioned with non-zero diagonal

blocks and zero off-diagonal blocks.

We can modify graph G3(V3, E3), creating a new graph G4(V4, E4), by adding two edges. This

new graph can be defined as

G4

def
=

{

V4 = {1 2 3 4 5 6}
E4 = {(1 2) (1 3) (2 3) (2 4) (4 5) (4 6) (5 6)}

(2.10)

The graph G4(V4, E4) defined in Equation 2.10 can be diagrammed as shown in Figure 2.5. The

1 2

3

4

5

6

Figure 2.5: An illustration of the graph G4, having six vertices and seven edges. The graph has no

distinct sub-graphs, but there are two “clusters” of vertices in the graph.

adjacency matrix for graph G4(V4, E4) is

A4 =

















0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
0 1 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

















(2.11)

The graph G4(V4, E4) is not bipartite, because there are two “triangles” that prevent the ver-

tices from being appropriately partitioned. Graph G4 also cannot be partitioned into components,

because there is always a “path” from any subgraph to a vertex that is not in the subgraph.

The graph G4(V4, E4) is interesting to us because it suggests that there are “clusters” of vertices;

in this instance the clusters appear, visually, to be {1 2 3} and {4 5 6}. Although they are
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not components, the vertices of each “cluster” have a higher connectivity within the cluster than to

outside the cluster.

We will use a different matrix, which is derived from the adjacency matrix, to explore clustering

of vertices in graphs.

2.3 Weighted Adjacency Matrix of a Graph

For some graphs, one edge may have a greater “importance”, or weight, than another edge.

This is represented by a positive value wij > 0. The weights are in a set W where there is a 1:1

correspondence between the weights and the edges. The definition of a weighted adjacency matrix

is an extension of the above adjacency matrix.

Definition: weighted adjacency matrix A(V, E ,W) of a graph G(V, E ,W)

For any graph G(V, E ,W) that has n vertices in V labeled v1, v2, . . . , vn, m edges

labeled (vi vj), and exactly one weight wij > 0 for each edge, the weighted adjacency

matrix A(G) is the n× n matrix for which each entry is defined as

aij =

{

wij if (vi vj) ∈ E
0 if (vi vj) /∈ E

(2.12)

We can see, from Definition 2.12, that a simple adjacency matrix is a weighted adjacency

matrix where wij = 1.

2.4 Laplacian Matrix of a Graph

In graph theory, a commonly used matrix is derived from the adjacency matrix. The Laplacian

matrix is usually written as L, despite the fact that it is a symmetric matrix and is not a lower-

triangular matrix. We can define the Laplacian matrix of a graph by using some of the extensions

that are defined in the extra notes for Class 1. First, we will define the commonly used degree

matrix by using the diag(·) operator of Definition 1.13.

Definition: degree matrix of a graph
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For any graph G(V, E) that has an adjacency matrix An×n(G), the degree matrix D(G)

is the n× n diagonal matrix that is defined as

D(G)
def
= diag([A]~1) (2.13)

The Laplacian matrix is most often defined as the difference between the degree matrix of

Equation 2.13 and the adjacency matrix of Equation 2.3.

Definition: Laplacian matrix of a graph

For any graph G(V, E) that has an adjacency matrix An×n(G) and a degree matrix

Dn×n(G), the Laplacian matrix L(G) is the n× n matrix that is defined as

L(G)
def
= D(G)−A(G) (2.14)

Observation: The graph that is used to define the Laplacian matrix is usually understood by con-

text, so it is common to abbreviate Equation 2.14 as

L = D − A

Let us re-visit the graph G1 that is specified in Equation 2.1 and that has the adjacency matrix

A1 that is specified in Equation 2.4. The degree matrix D1 for the graph G1 is

D1

def
=













2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1













(2.15)

The Laplacian matrix of the graph G1 is the difference between the degree matrix and the

adjacency matrix, so

L1

def
= D1 −A1 =













2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 2 0 0
0 0 0 1 −1
0 0 0 −1 1













(2.16)

We previously observed that the graph G1 has two components, which are distinct subgraphs.

We can easily verify that the Laplacian matrix for the graph G1 can be partitioned as diagonal
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blocks that are non-zero matrices and off-diagonal blocks that are zero matrices, so

L1 =

[

L1S1 0

0 L1S2

]

(2.17)

Each diagonal block of the Laplacian matrix L1, described in Equation 2.17, is a Laplacian

matrix of a subgraph of G1.

We can also compute the Laplacian matrix for the graph G2 that is specified in Equation 2.2

and that has the adjacency matrix A2 that is specified in Equation 2.5. Omitting the presentation of

the degree matrix, the Laplacian matrix of the graph G2 is

L2

def
= D2 − A2 =

















1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 1 0 0 0
0 −1 0 3 −1 −1
0 0 0 −1 1 0
0 0 0 −1 0 1

















(2.18)

Consider: re-ordering the vertices of the graph G2. From the diagram in Figure 2.3, we can see

that the integer that is assigned to each vertex must be distinct but that there is no required order.

An alternative graph G5 can be defined as

G5

def
=

{

V5 = {1 2 3 4 5 6}
E5 = {(1 4) (1 5) (1 6) (6 2) (6 3)}

(2.19)

The graph defined in Equation 2.19 can be drawn as shown in Figure 2.6. One way to partition the

vertices of graph G5 is as VL = {1 2 3} and VR = {4 5 6}.

1

2

34

5

6

Figure 2.6: An illustration of the bipartite graph G5, having six vertices and five edges.

The adjacency matrix for graph G5(V5, E5) is

A5 =

















0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
1 1 1 0 0 0

















(2.20)

19 © R E Ellis 2025



It is easy to see that the adjacency matrix A5 of graph G5 can be partitioned into diagonal blocks

that are zero matrices and off-diagonal blocks that are non-zero matrices, so that

A5 =

[

0 A5S

AT
5S 0

]

(2.21)

2.5 Eigenvalues of a Laplacian Matrix

By definition, a Laplacian matrix is symmetric, real, and diagonally dominant. Such a matrix

is guaranteed to be positive semidefinite, so its eigenvalues are non-negative. Let us explore these

properties with some computational experiments.

Consider: multiplying a Laplacian matrix and a “ones” vector ~1. As we discovered in the

previous class, the resulting vector is the sum of the rows of the matrix. By definition, each

diagonal entry of a Laplacian matrix is the sum of the corresponding row of the adjacency matrix,

which is the degree of the graph. The remaining entries of each row of the Laplacian matrix are

the negation of the corresponding row of the adjacency matrix. Consequently, the product of each

row of a Laplacian matrix and the “ones” vector must be zero!

This can be verified for the above Laplacian matrices, for which we can compute

[L1]~1 = ~0

[L2]~1 = ~0
(2.22)

We can see, from Equation 2.22, that the “ones” vector ~1 must be an eigenvector of the Lapla-

cian matrix, with the corresponding eigenvalue being λ1 = 0.

Let us try a numerical experiment on the graph G1. If we use MATLAB to find the eigenvalues

of the Laplacian matrix L1, we find that these are approximately

λ1 = 0
λ2 = 0
λ3 = 2
λ4 = 3
λ5 = 3

Observation: The graph G1 has two components and there are two zero eigenvalues of the Lapla-

cian matrix. In this case, the dimension of the nullspace of the Laplacian matrix is equal to the

number of components.
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If we are curious, we might want to see whether this is also true of graph G3, because it also

has two components. The Laplacian matrix for graph G3 is

L2

def
= D2 − A2 =

















2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 1 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

















(2.23)

By now we are unsurprised by the block structure of the Laplacian matrix L3 in Equation 2.23

and we are keen to find its eigenvalues. Again using MATLAB, we get

λ1 = 0
λ2 = 0
λ3 = 2
λ4 = 3
λ5 = 3
λ6 = 3

The pattern persists and we can consult external reference material to determine that this is a

fact about the Laplacian matrix of a graph:

The dimension of the nullspace of the Laplacian matrix is equal to the number of

components of the graph

What can we discover by numerical experiments on our other graphs? We can try graph G2,

which has eigenvalues that can be numerically approximated as

λ1 = 0
λ2 ≈ 0.4384
λ3 = 2
λ4 = 3
λ5 = 3
λ6 ≈ 4.5616

This is not especially fruitful, so let us examine one of the eigenvectors. The eigenvector for
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the second-smallest eigenvalue, λ2, is approximately

~v2 ≈

















−0.4647
−0.2610
−0.4647
0.2610
0.4647
0.4647

















(2.24)

For the eigenvector ~v2 of Equation 2.24, the absolute values of the entries do not seem to

be informative. However, the sign (±) of the entries correspond to the visual clusters that we

previously observed, which were {1 2 3} and {4 5 6}. Is this true for the other clustered graph,

G4?

Another graph that we have written is G5, which is a re-ordering of the graph G2. Doing the

same computations, we find that eigenvalues and the eigenvector ~v2 are

λ0

λ2 ≈ 0.4384
λ3 = 1
λ4 = 1
λ5 = 3
λ6 ≈ 4.5616

~v2 ≈

















0.2610
−0.4647
−0.4647
0.4647
0.4647

−0.2610

















(2.25)

The sign (±) of the entries of ~v2 for graph G5 correspond to the visual clusters, which were

{1 4 5} and {2 3 6}.

2.6 The Fiedler Vector of a Graph

The eigenvector of the second-smallest eigenvalue is called the Fielder vector, named after

Miroslav Fiedler who presented its use in 1989. His term for the property was “algebraic connec-

tivity”.

Currently, the signs of the entries of the Fiedler vector are used as a binary clustering of a graph

G. The process for graph clustering is the same as we used in our numerical experiments above:

1. Compute the Laplacian matrix L(G) of the graph G

2. Compute the Fiedler vector as the eigenvector of the second-smallest eigenvalue

3. Determine the positive-negative sign of each entry
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4. Assign negative entries to Set -1 and non-negative entries to Set +1

Now that we have many examples of how eigenvectors of a matrix can help us to analyze data,

we will find it useful to explore the kinds of matrices to which we can apply these methods.

Extra Notes

2.7 Extra Notes: Incidence Matrix of a Graph

Another commonly used matrix of a graph is the incidence matrix. There are two ways to write

this matrix – the ways are transposes of each other – so we must be careful when we read a source

to determine which way the matrix is written. Here, we will use the MATLAB convention for the

incidence matrix.

Suppose that a graph G(V, E) has n vertices and m edges. The incidence matrix is an n × m

matrix that we will write as Cn×m(G), or in context simply as C. Each row of the incidence

matrix C corresponds to an edge ei ∈ E of the graph G and each column the incidence matrix C

corresponds to a vertex vi ∈ V of the graph G.

Definition: incidence matrix C(V, E) of a graph G(V, E)

For any graph G(V, E) that has n vertices in V labeled v1, v2, . . . , vn and that has m

edges labeled (vi vj), the incidence matrix C(G) is the n ×m matrix for which each

entry is defined as

cij =

{

1 if vi ∈ ej
0 if vi /∈ ej

(2.26)

It is often easier to understand Definition 2.26 from examples. For the graph G1 that is specified

in Equation 2.1, the incidence matrix is

C1

def
=













1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 1













(2.27)

From the first row of C1 in Equation 2.27, we can say that vertex v1 is incident with edge e1,

and edge e1 also is incident with edge e2. From the second column of C1 in Equation 2.27, we can

say that edge e2 is incident with vertex v1, and edge e2 also is incident with vertex v3.
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For the bipartite graph G2 that is defined in Equation 2.2, the incidence matrix is

C2

def
=

















1 0 0 0 0
1 1 1 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

















(2.28)

The columns of C2 in Equation 2.28 correspond with the edges in graph Gset2, and each non-

zero entry of a column corresponds with a vertex to which the edge is incident.

In this course, we will not make practical use of the incidence matrix. There are many powerful

applications of the incidence matrix, particularly for directed graphs, that the interested student is

encouraged to explore.
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2.8 Extra Notes: Properties of a Laplacian Matrix

A Laplacian matrix L(G) of a graph G has, among others, these properties:

• L is real and symmetric

• L is diagonally dominant

• From the above, L is positive semidefinite; written as L � 0

• Both the row sum [L]~1 and the column sum ~1T [L] are zero

• From the above, ~1 is an eigenvector of the eigenvalue λ1 = 0

• The number of connected components in the graph G is: (a) the dimension of the nullspace

of the Laplacian matrix, which is the geometric multiplicity of the zero eigenvalue, and (b)

is the algebraic multiplicity of the zero eigenvalue

• The eigenvector of the second-smallest eigenvalue, called the Fiedler vector, is a binary

clustering of the vertices of the graph G

• If the graph G has k components, then the Laplacian matrix of G is similar to a Laplacian

matrix that has k non-zero diagonal blocks and zero off-diagonal blocks

• If the graph G is bipartite, then then the Laplacian matrix of G is similar to a Laplacian matrix

that has two zero diagonal blocks and two non-zero off-diagonal blocks; from the above, the

off-diagonal blocks are transposes of each other

• The trace of the Laplacian matrix, tr(L), is two times the number of edges in the graph G

The Laplacian matrix is also closely related to the incidence matrix of a graph G. For a graph G

that has an adjacency matrix A(G) as specified in Definition 2.3, a degree matrix D(G) as specified

in Definition 2.13, and an incidence matrix C(G) as specified in Definition 2.26, a matrix identity

is

L = 2D − CC T (2.29)

From the definition of the Laplacian matrix as L = D − A, the degree matrix can be deduced

from the incidence as

D = diag(diag(CC T )) (2.30)

Combining Equation 2.29 and Equation 2.30, we can compute the adjacency matrix from the

incidence matrix as

A = CC T −D (2.31)

End of Extra Notes
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