
CISC 271 Class 5

Spanning Sets and Basis Vectors

Text Correspondence: §3.5

Main Concepts:

• Span: possibly redundant vectors that describe a vector space

• Basis: linearly independent span, a minimal description

• Orthogonal basis: a special and preferred basis set

Sample Problem, Data Analytics: What is a minimal description of a data space?

Previously, we looked at matrix subspaces to help us find complete solutions to a linear equa-

tion. We will now examine subspaces in greater detail, seeking a fuller description of the vectors

in the subspaces.

A span, or linear span, of a vector space is a set of vectors for which there is at least one linear

combination that equals each vector in the space. It is possible that a span has redundance, or more

vectors that are strictly needed; for a k-D vector space, this happens when a span has more than k

vectors.

A mathematical way to describe the redundance is as the opposite of linear independence. A

set of vectors {~u1, ~u2, . . . , ~un} is linearly independent can be defined as:

For real numbers w1, w2, . . . , wn, the vectors ~uj are linearly independent if and

only if the sum

w1~u1 + w2~u2 + · · ·+ wn~un

is the zero vector ~0 if and only if every number wj = 0

A dependent span is simply a span that is not linearly independent. This has two implications:

• For some set of numbers wj , at least one of which is non-zero, the sum

w1~u1 + w2~u2 + · · ·+ wn~un = ~0; and

• Any vector ~uj in the span can be expressed as the linear combination of the other vectors in

the span.
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Here are 5 examples of size-2 vectors that are variously linearly independent or not. The student

should understand why each of the examples is, or is not, linearly independent:

{[

1
0

] [

0
2

]}

{[

1
0

] [

1
0.0001

]}

{[

1
1

] [

−2
−2

]}

{[

1
1

] [

0
0

]}

{[

1
0

] [

0
2

] [

a

b

]}

for any values of a and b

A basis is another term for a linearly independent span. In this course we are most interested

in a basis as it relates to a matrix, especially the column basis and a basis for the null space.

We now have enough terminology to be able to relate concepts about vector spaces to concepts

about matrices. Consider a matrix that is composed as a set of vectors, that is, each column of

the matrix is a distinct vector in the set. Each vector is in R
m and there are n such vectors, so the

matrix is some A ∈ R
m×n. In such a case:

• The matrix is full rank if and only if rank(A) = min(m,n).

• The set of vectors are linearly independent if and only if rank(A) = n.

• If n > m then the set of vectors is redundant.

• If the null space is non-trivial, containing one or more non-zero vectors, then the set of

vectors is redundant.

• If the null space is trivial, containing only the zero vector, then the set of vectors is linearly

independent.

• If the matrix is full rank and invertible, then the vectors are a basis for Rm.

The final point is an important one. If a matrix is full rank, then the columns are linearly

independent. If the matrix is invertible, then the number of columns is the same as the size of each

column (m = n) and the columns are linearly independent. An invertible matrix provides a basis

for Rm and a basis for Rm provides an invertible matrix.
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This leads to a remarkable, fundamental result in linear algebra:

For a n-D vector subspace V ⊆ R
m with a basis set {~u1, ~u2, . . . , ~un}, any non-zero

vector ~w ∈ V can be written as a unique linear combination of the basis vectors.

The proof of this assertion is usually by contradiction, that is, by supposing that there are 2

distinct ways of writing ~w and showing that these ways are identical.

The typical application of the assertion is for a basis of the complete vector space Rm, in which

case m = n and the basis vectors can be composed into an invertible matrix A. Solving the linear

equation A~w = ~c for the coefficients wi gives a unique construction of ~c in the basis.

The student should work through examples in the text, both in the relevant section and in its

problem set, to ensure that these concepts are thoroughly understood.

5.1 Orthogonal Basis and Orthonormal Basis

A pair of vector is orthogonal when their dot product, or inner product, is zero. The extra

notes for Class #1 describes dot products and vector norms in more detail, so the student should be

already familiar with these concepts.

An orthogonal basis is a basis with mutually orthogonal vectors, that is, i 6= j ⇒ ~ui · ~uj =

0. Numerically, an orthogonal basis is usually preferable to “just” a basis, which is a linearly

independent span; but the span or non-orthogonal basis may have an intuitive or other appeal1.

When each vector in the orthogonal basis is of unit length, it is an orthonormal basis. (A con-

fusing but nearly universal usage is that a basis is orthonormal but, when the vectors are augmented

into a matrix, that matrix is called “orthogonal” but is not called orthonormal.)

With this new terminology, we can now make better assertions about what Matlab returns when

operating on a matrix. Some assertions, for a matrix A in Matlab object A, are:

orth(A) Orthonormal basis for the column space; returned as a matrix, the columns of which

are orthogonal vectors of unit length

null(A) Orthonormal basis for the null space

1The astute student will have noticed that this is the first time we have used the dot product or vector norm. There is

a specialization in mathematics and mathematical physics – called differential geometry – that is devoted to the study

of non-linear spaces in the presence and absence of vector norms, but this specialization is beyond the scope of this

course.
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ortc(null(A)) Orthonormal basis for the row space; computed as the orthogonal complement

of the null space

ortc(orth(A)) Orthonormal basis for the column complement, also called to co-kernel or left

null space of A

An orthogonal matrix, which represents an orthonormal basis set of spanning vectors, has

special properties that will be useful later in the course. These properties come from the mutual

orthogonality of the vectors and that they are of unit length. To begin, we will observe that for any

two vectors having the same number of entries, ~u and ~w, the dot product ~u · ~w can be written as the

matrix product of a transpose:

~u · ~w = ~u T ~w (5.1)

Suppose that the vectors of an orthonormal basis are written as {~qj}. Using Equation 5.1 to express

mutual orthogonality,

i 6= j ⇒ ~q T
i ~qj = 0 (5.2)

Using Equation 5.1 to express unit length,

i = j ⇒ ~q T
i ~qj = 1 (5.3)

If we assemble the basis vectors ~qj into a square matrix Q, then the matrix product A = QTQ can

be found using Equation 5.2 and Equation 5.3 as:

mij =

{

1 if i = j

0 if i 6= j
(5.4)

Because the entries described in Equation 5.4, we have shown that QTQ = I which means that

QT = Q−1, or:

The inverse of an orthogonal matrix is its transpose.

5.2 Rank-Nullity Theorem

The link between the rank of a matrix and the dimension of its null space it known as the rank-

nullity theorem. We will take the rank r of a matrix A ∈ R
m×n to be the number of independent

columns, which is the dimension of its column space, or the number of vectors in its basis. The

dimension of the null space is the number of independent vectors in its null space. Here, the rank

is determined from the image space (range space) Rm and the null space is determined from the

domain space R
n.
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The rank-nullity theorem states:

The rank, plus the dimension of the null space, equals the dimension of the domain

space: r + dim(null(A)) = n

There are many ways to prove the rank-nullity theorem. In this course we do not concentrate on

proofs, so we will be content to make observation on how the proof can proceed and the interested

student is encouraged to read other source for proof details.

We can begin to appreciate the rank-nullity theorem by considering some examples of 3 × n

matrices, for small n. We will think of each matrix as being block-partitioned into columns; a

vector ~u in its domain acts on the matrix columns by weighting the sum of the columns, which we

recall to be

A~u =
n

∑

j=1

uj~aj = u1~a1 + u2~a2 + · · ·+ un~an

The simplest case is a 3× 1 matrix, such as

A =





1
4
1



 null(A) = {} (5.5)

The matrix of Equation 5.5 needs n = 1 coefficients to create the weighted sum. The column is

not the zero vector, so the rank of the matrix is r = 1. The null space is empty: if u1 6= 0 then

u1~a1 6= ~0, so there are no non-zero vectors ~u that are mapped to the zero vector.

The next simple case is a 3× 2 full-rank matrix, such as

A =





1 1
4 −4
1 1



 null(A) = {} (5.6)

The matrix of Equation 5.6 needs n = 2 coefficients to create the weighted sum, so the domain is

R
2. The columns are non-zero and linearly independent, meaning that this matrix has rank r = 2.

The null space is empty, which can be verified by seeing that if both u1 6= 0 and u2 6= 0, then

u1~a1 + u2~a2 6= ~0.

A 3× 2 matrix might be rank-deficient, such as

A =





1 −2
4 −8
1 −2



 null(A) =

[

−2
1

]

(5.7)
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The matrix of Equation 5.7 also needs n = 2 coefficients to create the weighted sum, so the

domain is R2. The columns are non-zero but they are linearly dependent because ~a2 is −2 times

~a1, meaning that this matrix has rank r = 1. The null space is spanned by one vector, with

dim(null(A)) = 1; this can be verified by seeing that if u1 = −2 and u2 = 1, then u1~a1+u2~a2 = ~0.

Each student is encouraged to use Matlab or other software to create other sample matrices

and verify the rank-nullity properties. Because random real-valued matrices are almost always full

rank, linear dependence can be imposed by additional calculations.

5.3 Orthogonal Subspaces

A concept that we will use often in this course is orthogonality. For two vectors, ~u and ~v, we

say that they are orthogonal if and only if their dot product is zero. We can write this as

~u · ~v = ~v · ~u = ~u T~v = ~v T~u = 0 (5.8)

We can also say that vector subspaces are orthogonal. What we mean is that every vector in

one space is orthogonal to every vector in the other space; the zero vector is, by specification,

orthogonal to any vector because the dot product of the zero vector and any vector is zero.

Definition: orthogonal subspaces

For any vector subspace U ⊆ R
n, and any vector subspace V ⊆ R

n, and any vector

~u ∈ U, and any vector ~v ∈ V, U and V are orthogonal subspaces is defined as

~u T~v = 0 (5.9)

An important related concept is the orthogonal complement of a vector subspace. This is the

subspace of every vector that is orthogonal to the original subspace. For a vector subspace U, we

will sometimes write the orthogonal complement as U⊥ and pronounce the symbol a “Uperp.

Definition: orthogonal complement

For any vector subspace U ⊆ R
n, the orthogonal complement is defined as the vector

subspace U⊥ such that, for any vector ~u ∈ U,

(

~u T~v = 0
)

→
(

~v ∈ U
⊥
)

(5.10)
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