
CISC 271 Class 5

Diagonalizable Matrices

Text Correspondence: §6.2

Main Concepts:

• Diagonalizable: a matrix is similar to a diagonal matrix

• Similar matrices have the same eigenvalues

• Orthogonal: a matrix Q such that QQT = I

• Symmetric: a matrix B with bij = bji

• Symmetric matrices have only real eigenvalues

• Produces an especially useful decomposition

Sample Problem, Data Analysis: When are unit eigenvectors a basis?

For many matrices that we will encounter, the eigenvectors ~vj form a special basis. Let us try

to understand why.

First, a useful convention in mathematics is that an eigenvector is often assumed to be of unit

magnitude. We can see immediately that any non-zero vector can be forced to be of unit magnitude,

just by dividing each entry by the norm of the vector. From now on, we will assume that an

eigenvector ~v has the property

‖~v‖ = 1

5.1 Similar Matrices

In linear algebra, when we say that two matrices are similar, there is a specific meaning.

Definition: similar matrices

For any matrix A ∈ R
n×n, and for matrix C ∈ R

n×n, A is similar to C, or A ∼ C, is

defined as:

There exists an invertible matrix P ∈ R
n×n such that

A = P−1CP (5.1)

Because P in Definition 5.1 is invertible, we can also write

C = PAP−1
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5.2 Eigenvectors as a Basis

The idea of similarity is especially useful when a matrix is similar to a particular diagonal

matrix. Consider any matrix A ∈ R
n×n that has n linearly independent eigenvectors. For each

eigenvector ~vj , we know that

A~vj = λj~vj (5.2)

We can assemble these eigenvectors into a matrix V , which is

V =
[

~v1 ~v2 · · · ~vn
]

(5.3)

Applying Equation 5.2 to the columns of V , we get

AV =
[

λ1~v1 λ2~v2 · · · λn~vn
]

(5.4)

Consider ways that we can re-write the right-hand side of Equation 5.4. One way is to factor it,

which means expressing it as the product of two simpler matrices. We can decompose the matrix

as V Λ, where V is the matrix of eigenvectors and Λ is a diagonal matrix of the eigenvalues, so that

V Λ =
[

~v1 ~v2 · · · ~vn
]











λ1

λ2

. . .

λn











(5.5)

This means that AV and V Λ are the same. Because the eigenvectors are linearly independent, the

matrix V is full rank and invertible, so V −1 exists. Together, these results imply that

AV = V Λ

⇒ AV V −1 = V ΛV −1

⇒ A = V ΛV −1 (5.6)

Using a closely related line of reasoning, pre-multiplying by V −1, implies that

Λ = V −1AV (5.7)

A matrix A that can be converted into a diagonal matrix is called diagonalizable. A necessary

and sufficient condition for a matrix to be diagonalizable is that its eigenvectors are a basis, which

means that there are n eigenvectors that are linearly independent.
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A sufficient, but not necessary, condition for a matrix to be diagonalizable is that all of the

eigenvalues are distinct. This condition is not necessary because some matrices have repeated

eigenvalues and also have an eigenvector basis. A 3× 3 example is

A =





−1 3 −1
−3 5 −1
−3 3 1



 with λ1 = 1 λ2 = 2 λ3 = 2 and V ∼





1 1 −1
1 1 0
1 0 3





where we have multiplied the columns of V by real numbers that give us a “human-readable” set

of basis vectors.

A general rule is that distinct eigenvalues imply that the eigenvectors are a basis.

5.3 Eigenvector Basis

If a matrix A ∈ R
n×n is diagonalizable, then its eigenvectors are a basis. Using the convention

that eigenvectors are of unit magnitude, i.e., we require that ‖~vj‖ = 1, we can represent any given

vector ~u as

~u = α1~v1 + α2~v2 + · · ·αn~vn

=

n
∑

j=1

αj~vj

When we perform the multiplication ~y = A~u we get

A~u = α1A~v1 + α2A~v2 + · · ·+ αnA~vn

=

n
∑

j=1

αjλj~vj

=
n

∑

j=1

λj(αj~vj)

so each of the original terms αj~vj is multiplied by the eigenvalue λj . This is depicted in Figure 5.1

for n = 2 (2D, or the plane).

5.4 Orthogonal Matrices

The “best” kind of basis is an orthonormal basis, in which each vector is of unit magnitude and

is orthogonal to the other vectors. It is common to refer to such vectors as columns of a matrix Q,
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(A) (B)

Figure 5.1: Distinct eigenvectors form a basis of a vector space, so any given vector in that space

can be expressed as a weighted sum of the eigenvectors. The linear transformation of the matrix

scales the eigenvectors and thus changes the given vector in a predictable manner. (A) The original

vector ~u is a weighted sum of two eigenvectors, so ~u = α1~v1 + α2~v2. (B) The eigenvectors are

scaled by their corresponding eigenvalues so the original vector ~u becomes α1λ1~v1 + α2λ2~v2. In

general, both the direction and magnitude of the original vector are changed by the linear transfor-

mation of the matrix A.

so each such vector is written as ~qj . The defining properties of an orthonormal basis are

i 6= j ⇒ ~qi · ~qj = 0

i = j ⇒ ~qi · ~qj = 1

By using the transpose to formulate the dot product, an orthonormal basis can also be defined as

i 6= j ⇒ ~q T
i ~qj = 0

i = j ⇒ ~q T
i ~qj = 1

From this it follows that

QTQ = I and QQT = I (5.8)

An orthogonal matrix, defined in Equation 5.8, commutes with itself. This is a slightly unusual

property; for example, the matrix

A =

[

1 2
0 1

]
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does not commute because

AAT =

[

5 2
2 1

]

and ATA =

[

1 2
2 5

]

What other matrices commute with their transposes?

5.5 Symmetric Matrices

One form of matrix that is frequently encountered in applications is a symmetric matrix. This

is a matrix B for which

bij = bji (5.9)

It is easy to see that, if B is symmetric, then

BTB = BBT = B2

so the matrix commutes with its transpose.

What can we say about the eigenvalues and eigenvectors of a symmetric matrix B? As it

happens, we can say a great deal. The first major result is

For a real symmetric matrix, every eigenvalue is a real number.

This can be proved by using complex conjugates, but complex analysis is beyond the scope of this

course so the interested student should read the textbook and other sources for greater insight.

The second major result is

For a real symmetric matrix, eigenvectors that have distinct eigenvalues are or-

thogonal.

To show this, we will consider two eigenvalue/eigenvector pairs and use the transpose as a way of

writing the dot product. We will be investigating whether

~v1 · ~v2 ?
= 0

or equivalently ~v T
1 ~v2

?
= 0

We begin with the statement that the eigenvectors are distinct. For any pair, labeling one as λ1 and

the other as λ2, we have

λ1 6= λ2
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Consider the dot product of B~v1 with ~v2. Expanding the matrix-vector product, and factoring the

scalar out of the dot product, gives

(B~v1) · ~v2 = (λ1~v1) · ~v2
= λ1(~v1 · ~v2) (5.10)

Alternatively, we can express the dot product as a transposed multiplication; doing this, then re-

placing BT = B because B is symmetric, then converting back to the dot product, gives

(B~v1) · ~v2 = (B~v1)
T~v2

= (~v T
1 BT )~v2

= ~v T
1 (B~v2)

= ~v T
1 (λ2~v2)

= ~v1 · (λ2~v2)

= λ2(~v1 · ~v2) (5.11)

Because Equation 5.10 and Equation 5.11 have the same left-hand side, the right-hand terms are

equal so

λ1(~v1 · ~v2) = λ2(~v1 · ~v2) (5.12)

We began by assuming that λ1 6= λ2 so, for Equation 5.12 to hold, we must have

~v1 · ~v2 = 0 (5.13)

This proves that, for a symmetric matrix, the eigenvectors of distinct eigenvalues are orthogonal.

5.6 Skew-Symmetric Matrices

A square matrix S is skew symmetric, or anti-symmetric, is defined as one for which

sij = −sji (5.14)

Another way to write this matrix is

ST = −S

We can confirm that a skew-symmetric matrix S is a normal matrix by expansion:

SST = S[−S] = [−S]S = STS (5.15)
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From either definition, most clearly from Equation 5.14, the diagonal entries are zero so the

matrix S has the form

S =



















0 s12 s13 · · · s1n
−s12 0 s23 · · · s2n
−s13 −s23 0 · · · s3n

...
...

...
. . .

0 s(n−1),n

−s1n −s2n −s3n · · · −s(n−1),n 0



















5.7 Nondiagonalizable Matrices

In linear algebra, a square matrix that is not diagonalizable is historically called a defective

matrix. If we allow eigenvalues and eigenvectors to be complex – even when the entries of the

original matrix are real – then, in a special technical sense that involves the Lebesgue measure,

“almost no” matrix is defective.

A necessary condition for a matrix to be nondiagonalizable is that it must have repeated eigen-

values. For example, suppose that a matrix A is n×n and has k distinct eigenvalues; if k < n, then

at least one eigenvalue is repeated and we say that such an eigenvalue has an algebraic multiplicity

greater than one. This is another way of saying that there is a “multiple root” of the characteristic

equation F (λ) = 0 for the matrix A.

We must be careful here, because nontrivial algebraic multiplicity is not a sufficient condition

for a matrix to be nondiagonalizable. We must also examine the eigenvectors of the repeated eigen-

value to determine whether or not the matrix has geometric multiplicity, which is the dimension of

the nullspace of [A− λI].

A specific example of a nondiagonalizable matrix is the 2× 2 matrix

A =

[

1 1
0 1

]

(5.16)

The matrix A in Equation 5.16 has a single eigenvalue λ = 1 and a single eigenvector ~v =

[

1
0

]

A general example of a nondiagonalizable matrix, of which Equation 5.16 is an instance, is any
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matrix with a nontrivial Jordan block of size 2× 2. This is a bidiagonal matrix of the form

A =















a 1
a 1

. . .
. . .

. . . 1
a















(5.17)

The matrix A in Equation 5.17 has a single eigenvalue λ = a and a single eigenvector ~v =











1
0
...

0










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Extra Notes

5.8 Extra Notes: Matrix Powers

Diagonalizable matrices, especially ones with distinct eigenvalues, are common in practice and

have easily described matrix powers. We can raise a square matrix A to an integer power Ak using

a simple recursive rule based on the identity matrix I:

A0 = I

Ak+1 = AkI

Because A is diagonalizable, we can see that

A2 = AA = EΛE−1EΛE−1

= EΛ2E−1

A3 = AA2 = EΛE−1EΛ2E−1

= EΛ3E−1

and so on for Ak.

Consider: a diagonalizable matrix A for which each eigenvalue is non-negative. For such a

matrix, we can write the eigenvalue matrix Λ in terms of a diagonal matrix D so that

Λ = DD

Each entry of the diagonal matrix D is, by definition, djj =
√

λj and is a real number. so it is

easy to compute a new matrix C that is

C = EDE−1 (5.18)

The matrix C in Equation 5.18 is constructed so that

A = CC = C2

This implies that, for a diagonalizable matrix A that has non-negative eigenvalues, there is a

square root matrix C:

C = A1/2 (5.19)

The method of solving Equation 5.19 by using the decomposition of Equation 5.18 is, numeri-

cally, not the way that MATLAB currently performs the computation of

C=sqrtm(A)

In practice there are multiple solutions for a matrix C such that A = CC and MATLAB finds a

solution that is numerically reasonable.
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5.9 Extra Notes: Small Perturbations

The eigenvalue/eigenvector decomposition of a matrix can be used to analyze the numerical

stability of the matrix. We can consider three examples, with extensive analysis being beyond the

scope of this course.

Example: stable 2× 2 matrix; consider

A =

[

+101 −90
+110 −98

]

The eigenvalues of this matrix are {+1,+2} and the respective eigenvectors are, approximately,

~v1 =

[

0.6727
0.7399

]

~v2 =

[

0.6690
0.7433

]

Any given vector ~u will be transformed to ~y = A~u as

~y = λ1α1~v1 + λ2α2~v2

= α1~v1 + 2α2~v2

so the transformed ~y is relatively insensitive to small changes in ~u.

Example: unstable 2× 2 matrix; consider

A =

[

+100.999 +90.001
+110 −98

]

For this matrix, the eigenvalues are approximately {−139.2134,+142.2134} and the respective

unit eigenvectors are, approximately,

~v1 =

[

−0.3508
+0.9364

]

~v2 =

[

+0.9092
+0.4163

]

Any given vector ~u will be transformed to ~y = A~u as, approximately,

~y = λ1α1~v1 + λ2α2~v2

≈ −139α1~v1 + 142α2~v2

so the transformed ~w is highly sensitive to small changes in ~u.

Example: nearly singular 2× 2 matrix; consider

A =

[

+101.00 +89.99
+109.99 +98.00

]
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For this matrix, the eigenvalues are approximately {−5.0251×10−7,+199} and the respective

unit eigenvectors are, approximately,

~v1 =

[

−0.6652
+0.7466

]

~v2 =

[

+0.6764
+0.7366

]

Any given vector ~u will be transformed to ~y = A~u as, approximately,

~y = λ1α1~v1 + λ2α2~v2

≈ 199α1~v1

so the transformed ~y is highly sensitive to small changes in the direction of ~v1 and insensitive to

changes in the direction of ~v2.

Extra Notes: Other Normal Matrices

Is it possible for a matrix to be normal but none of orthogonal, symmetric, and skew-symmetric?

The answer is positive and can be shown by example.

Consider the matrix

A =





1 2 0
0 1 2
2 0 1





This matrix has none of the usual properties, but it is a normal matrix because

AAT = ATA =





5 2 2
2 5 2
2 2 5





The eigenvalues are

λ1 = 5 λ2,3 = ±
√
3 i

and the eigenvectors (one real, two complex) are orthogonal. So this matrix has an orthonormal

eigenvector basis but is not one of the matrix forms above.

This is a circulant matrix, which in general are normal matrices and which have an orthonormal

eigenvector basis.

End of Extra Notes
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