CISC 271 Class6

Diagonalizable Matrices

Text Correspondence: §6.2

Main Concepts:

* Diagonalizable: a matrix is similar to a diagonal matrix
» Similar matrices have the same eigenvalues
* Produces an especially useful decomposition

Sample Problem, Data Analysis: When are unit eigenvectors a basis?

For many matrices that we will encounter, the eigenvectors U; form a special basis. Let us try

to understand why.

First, a useful convention in mathematics is that an eigenvector is often assumed to be of unit
length. We can see immediately that any non-zero vector can be forced to be of unit length, just by
dividing each entry by the norm of the vector. From now on, we will assume that an eigenvector v
has the property

il = 1

6.1 Similar Matrices

In linear algebra, when we say that two matrices are similar, there is a specific meaning.

Definition: similar matrices

For any matrix A € R™"*", and for matrix C' € R"*", A is similarto C,or A ~ C, is
defined as:

There exists an invertible matrix P € R™*" such that

A=P'CP (6.1)

Because P in Definition 6.1 is invertible, we can also write

C =PAP!
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6.2 Eigenvectors as a Basis

The idea of similarity is especially useful when a matrix is similar to a particular diagonal
matrix. Consider any matrix A € R™" that has n linearly independent eigenvectors. For each

eigenvector U;, we know that

We can assemble these eigenvectors into a matrix £, which is
E=[th ¥ - )] (6.3)
Applying Equation 6.2 to the columns of £, we get
AE = [\t Math -+ AT (6.4)

Consider ways that we can re-write the right-hand side of Equation 6.4. One way is to factor it,
which means expressing it as the product of two simpler matrices. We can decompose the matrix
as F'A, where FE is the matrix of eigenvectors and A is a diagonal matrix of the eigenvalues, so that

Al
A2

EN=[0 T - ) N (6.5)
An

This means that AE and E'A are the same. Because the eigenvectors are linearly independent, the
matrix E is full rank and invertible, so E~! exists. Together, these results imply that

AE = EA
= AEE! = EAE™!
= A = EAE™! (6.6)

Using a closely related line of reasoning, pre-multiplying by £~!, implies that
A=EAE (6.7)

A matrix A that can be converted into a diagonal matrix is called diagonalizable. A necessary
and sufficient condition for a matrix to be diagonalizable is that its eigenvectors are a basis, which

means that there are n eigenvectors that are linearly independent.
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A sufficient, but not necessary, condition for a matrix to be diagonalizable is that all of the
eigenvalues are distinct. This condition is not necessary because some matrices have repeated
eigenvalues and also have an eigenvector basis. A 3 x 3 example is

-1 3 -1 11 -1
A=|-3 5 -1 with \y=1 XA=2 X3=2 and E~ (1 1 O
-3 3 1 10 3

where we have multiplied the columns of E by real numbers that give us a “human-readable” set
of basis vectors.

A general rule is that distinct eigenvalues imply that the eigenvectors are a basis.

6.3 Eigenvector Basis

If a matrix A € R"*" is diagonalizable, then its eigenvectors are a basis. Using the convention
that eigenvectors are of unit length, i.e., we require that ||v;|| = 1, we can represent any given
vector u as

<y
I

CY1’171 + Oé2’172 +-- -anﬁn

n
= E :O‘J'Uj
Jj=1

When we perform the multiplication ¥ = Au we get

Au = OélA’(71 + OéQAUQ + -+ OénAUn

n
= ) A
j=1

= > NlaTy)
j=1

so each of the original terms «;7; is multiplied by the eigenvalue ;. This is depicted in Figure 6.1
for n = 2 (2D, or the plane).
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Figure 6.1: Distinct eigenvectors form a basis of a vector space, so any given vector in that space
can be expressed as a weighted sum of the eigenvectors. The linear transformation of the matrix
scales the eigenvectors and thus changes the given vector in a predictable manner. (A) The original
vector 4 is a weighted sum of two eigenvectors, so @ = a10; + asts. (B) The eigenvectors are
scaled by their corresponding eigenvalues so the original vector @ becomes a1 A\10; + asAaUs. In
general, both the direction and magnitude of the original vector are changed by the linear transfor-
mation of the matrix A.

6.4 Nondiagonalizable Matrices

In linear algebra, a square matrix that is not diagonalizable is historically called a defective
matrix. If we allow eigenvalues and eigenvectors to be complex — even when the entries of the
original matrix are real — then, in a special technical sense that involves the Lebesgue measure,
“almost no” matrix is defective.

A necessary condition for a matrix to be nondiagonalizable is that it must have repeated eigen-
values. For example, suppose that a matrix A is n X n and has £ distinct eigenvalues; if k& < n, then
at least one eigenvalue is repeated and we say that such an eigenvalue has an algebraic multiplicity
greater than one. This is another way of saying that there is a “multiple root” of the characteristic
equation F'(\) = 0 for the matrix A.

We must be careful here, because nontrivial algebraic multiplicity is not a sufficient condition
for a matrix to be nondiagonalizable. We must also examine the eigenvectors of the repeated eigen-
value to determine whether or not the matrix has geometric multiplicity, which is the dimension of
the nullspace of [A — AI].

A specific example of a nondiagonalizable matrix is the 2 x 2 matrix
11
A= ] o5
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The matrix A in Equation 6.8 has a single eigenvalue A = 1 and a single eigenvector v = Ll)}

A general example of a nondiagonalizable matrix, of which Equation 6.8 is an instance, is any
matrix with a nontrivial Jordan block of size 2 x 2. This is a bidiagonal matrix of the form

1 -

A= (6.9)

1

0
The matrix A in Equation 6.9 has a single eigenvalue A = a and a single eigenvector v =

6.5 Matrix Powers

Diagonalizable matrices, especially ones with distinct eigenvalues, are common in practice and
have easily described matrix powers. We can raise a square matrix A to an integer power A* using
a simple recursive rule based on the identity matrix /:

A° = 1
Ak+1 — AkI

Because A is diagonalizable, we can see that

A* = AA=FEAE'EAE™!
= EAN’E!

A® = AA* = EAE'ENE™!
= EAE!

and so on for A”.

Consider: a diagonalizable matrix A for which each eigenvalue is non-negative. For such a
matrix, we can write the eigenvalue matrix A in terms of a diagonal matrix D so that

A=DD
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Each entry of the diagonal matrix D is, by definition, d;; = \/\; and is a real number. so it is
easy to compute a new matrix C' that is

C =EDE™! (6.10)

The matrix C' in Equation 6.10 is constructed so that
A=CC=C?

This implies that, for a diagonalizable matrix A that has non-negative eigenvalues, there is a

square root matrix C".

C = AY/? 6.11)

The method of solving Equation 6.11 by using the decomposition of Equation 6.10 is, numeri-
cally, not the way that MATLAB currently performs the computation of

C=sqgrtm(A)

In practice there are multiple solutions for a matrix C' such that A = C'C' and MATLAB finds a
solution that is numerically reasonable.

Extra Notes

6.6 Extra Notes: Small Perturbations

The eigenvalue/eigenvector decomposition of a matrix can be used to analyze the numerical
stability of the matrix. We can consider three examples, with extensive analysis being beyond the
scope of this course.

Example: stable 2 x 2 matrix; consider

[ 4101 —90
A= [+110 —98]

The eigenvalues of this matrix are {+1, +2} and the respective eigenvectors are, approximately,

L | 0.6727 _ | 0.6690
17 0.7399 271 0.7433
Any given vector u will be transformed to § = Au as
]7 = )\10&1’(71 + )\20&2’(72

= Oél’l_fl + 2(12172
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so the transformed ¢/ is relatively insensitive to small changes in .

Example: unstable 2 x 2 matrix; consider

A— +100.999 +90.001
| +110 —98

For this matrix, the eigenvalues are approximately { —139.2134, 4142.2134} and the respective
unit eigenvectors are, approximately,

_ [ -0.3508 _ [ +0.9092
"= 1 4+0.9364 Y27 104163

<

Any given vector ¢ will be transformed to ¢/ = Au as, approximately,

¥ = Aoqli + deaots

Q

—1390[1171 + 1420&2’172

so the transformed w is highly sensitive to small changes in .

Example: nearly singular 2 x 2 matrix; consider

4 _ [ +10100 +89.99
= | +109.99 +98.00

For this matrix, the eigenvalues are approximately {—5.0251 x 10~7, +199} and the respective
unit eigenvectors are, approximately,

Vo =

S

[ —0.6652 L [ +0.6764
~ | +0.7466 +0.7366

Any given vector ¢ will be transformed to ¢/ = Au as, approximately,

¥ = Mol + Aot

~ 1990&1171

so the transformed v is highly sensitive to small changes in the direction of ¢ and insensitive to
changes in the direction of .
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Example: stability analysis of a symmetric linear system; consider
Suppose that the matrix A is symmetric and that we seek a numerical solution to the matrix-
vector equation Ax = b. How stable is the solution, that is, how sensitive is the solution to small

changes in the entries of b?

We know that the analytic solution to the system is & = A~1b. Because A is symmetric, So is
A~ finding the eigenvector decomposition of the matrix A gives

7= (QAQ") b

where () is orthogonal and A is diagonal. Expanding the factorization produces

7 = QA(QTQ

— QAZ
_ )\101 -
)\202
— Q )\303
. Ancn -

If |\, | is large, then small perturbations in ¢,, will result in large perturbations in Z.

End of Extra Notes
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