
CISC 271 Class 6

Diagonalizable Matrices

Text Correspondence: §6.2

Main Concepts:

• Diagonalizable: a matrix is similar to a diagonal matrix

• Similar matrices have the same eigenvalues

• Produces an especially useful decomposition

Sample Problem, Data Analysis: When are unit eigenvectors a basis?

For many matrices that we will encounter, the eigenvectors ~vj form a special basis. Let us try

to understand why.

First, a useful convention in mathematics is that an eigenvector is often assumed to be of unit

length. We can see immediately that any non-zero vector can be forced to be of unit length, just by

dividing each entry by the norm of the vector. From now on, we will assume that an eigenvector ~v

has the property

‖~v‖ = 1

6.1 Similar Matrices

In linear algebra, when we say that two matrices are similar, there is a specific meaning.

Definition: similar matrices

For any matrix A ∈ R
n×n, and for matrix C ∈ R

n×n, A is similar to C, or A ∼ C, is

defined as:

There exists an invertible matrix P ∈ R
n×n such that

A = P−1CP (6.1)

Because P in Definition 6.1 is invertible, we can also write

C = PAP−1
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6.2 Eigenvectors as a Basis

The idea of similarity is especially useful when a matrix is similar to a particular diagonal

matrix. Consider any matrix A ∈ R
n×n that has n linearly independent eigenvectors. For each

eigenvector ~vj , we know that

A~vj = λj~vj (6.2)

We can assemble these eigenvectors into a matrix E, which is

E =
[

~v1 ~v2 · · · ~vn
]

(6.3)

Applying Equation 6.2 to the columns of E, we get

AE =
[

λ1~v1 λ2~v2 · · · λn~vn
]

(6.4)

Consider ways that we can re-write the right-hand side of Equation 6.4. One way is to factor it,

which means expressing it as the product of two simpler matrices. We can decompose the matrix

as EΛ, where E is the matrix of eigenvectors and Λ is a diagonal matrix of the eigenvalues, so that

EΛ =
[

~v1 ~v2 · · · ~vn
]











λ1

λ2

. . .

λn











(6.5)

This means that AE and EΛ are the same. Because the eigenvectors are linearly independent, the

matrix E is full rank and invertible, so E−1 exists. Together, these results imply that

AE = EΛ

⇒ AEE−1 = EΛE−1

⇒ A = EΛE−1 (6.6)

Using a closely related line of reasoning, pre-multiplying by E−1, implies that

Λ = E−1AE (6.7)

A matrix A that can be converted into a diagonal matrix is called diagonalizable. A necessary

and sufficient condition for a matrix to be diagonalizable is that its eigenvectors are a basis, which

means that there are n eigenvectors that are linearly independent.
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A sufficient, but not necessary, condition for a matrix to be diagonalizable is that all of the

eigenvalues are distinct. This condition is not necessary because some matrices have repeated

eigenvalues and also have an eigenvector basis. A 3× 3 example is

A =





−1 3 −1
−3 5 −1
−3 3 1



 with λ1 = 1 λ2 = 2 λ3 = 2 and E ∼





1 1 −1
1 1 0
1 0 3





where we have multiplied the columns of E by real numbers that give us a “human-readable” set

of basis vectors.

A general rule is that distinct eigenvalues imply that the eigenvectors are a basis.

6.3 Eigenvector Basis

If a matrix A ∈ R
n×n is diagonalizable, then its eigenvectors are a basis. Using the convention

that eigenvectors are of unit length, i.e., we require that ‖~vj‖ = 1, we can represent any given

vector ~u as

~u = α1~v1 + α2~v2 + · · ·αn~vn

=
n

∑

j=1

αj~vj

When we perform the multiplication ~y = A~u we get

A~u = α1A~v1 + α2A~v2 + · · ·+ αnA~vn

=

n
∑

j=1

αjλj~vj

=

n
∑

j=1

λj(αj~vj)

so each of the original terms αj~vj is multiplied by the eigenvalue λj . This is depicted in Figure 6.1

for n = 2 (2D, or the plane).
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(A) (B)

Figure 6.1: Distinct eigenvectors form a basis of a vector space, so any given vector in that space

can be expressed as a weighted sum of the eigenvectors. The linear transformation of the matrix

scales the eigenvectors and thus changes the given vector in a predictable manner. (A) The original

vector ~u is a weighted sum of two eigenvectors, so ~u = α1~v1 + α2~v2. (B) The eigenvectors are

scaled by their corresponding eigenvalues so the original vector ~u becomes α1λ1~v1 + α2λ2~v2. In

general, both the direction and magnitude of the original vector are changed by the linear transfor-

mation of the matrix A.

6.4 Nondiagonalizable Matrices

In linear algebra, a square matrix that is not diagonalizable is historically called a defective

matrix. If we allow eigenvalues and eigenvectors to be complex – even when the entries of the

original matrix are real – then, in a special technical sense that involves the Lebesgue measure,

“almost no” matrix is defective.

A necessary condition for a matrix to be nondiagonalizable is that it must have repeated eigen-

values. For example, suppose that a matrix A is n×n and has k distinct eigenvalues; if k < n, then

at least one eigenvalue is repeated and we say that such an eigenvalue has an algebraic multiplicity

greater than one. This is another way of saying that there is a “multiple root” of the characteristic

equation F (λ) = 0 for the matrix A.

We must be careful here, because nontrivial algebraic multiplicity is not a sufficient condition

for a matrix to be nondiagonalizable. We must also examine the eigenvectors of the repeated eigen-

value to determine whether or not the matrix has geometric multiplicity, which is the dimension of

the nullspace of [A− λI].

A specific example of a nondiagonalizable matrix is the 2× 2 matrix

A =

[

1 1
0 1

]

(6.8)
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The matrix A in Equation 6.8 has a single eigenvalue λ = 1 and a single eigenvector ~v =

[

1
0

]

A general example of a nondiagonalizable matrix, of which Equation 6.8 is an instance, is any

matrix with a nontrivial Jordan block of size 2× 2. This is a bidiagonal matrix of the form

A =















a 1
a 1

. . .
. . .
. . . 1

a















(6.9)

The matrix A in Equation 6.9 has a single eigenvalue λ = a and a single eigenvector ~v =











1
0
...

0











6.5 Matrix Powers

Diagonalizable matrices, especially ones with distinct eigenvalues, are common in practice and

have easily described matrix powers. We can raise a square matrix A to an integer power Ak using

a simple recursive rule based on the identity matrix I:

A0 = I

Ak+1 = AkI

Because A is diagonalizable, we can see that

A2 = AA = EΛE−1EΛE−1

= EΛ2E−1

A3 = AA2 = EΛE−1EΛ2E−1

= EΛ3E−1

and so on for Ak.

Consider: a diagonalizable matrix A for which each eigenvalue is non-negative. For such a

matrix, we can write the eigenvalue matrix Λ in terms of a diagonal matrix D so that

Λ = DD
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Each entry of the diagonal matrix D is, by definition, djj =
√

λj and is a real number. so it is

easy to compute a new matrix C that is

C = EDE−1 (6.10)

The matrix C in Equation 6.10 is constructed so that

A = CC = C2

This implies that, for a diagonalizable matrix A that has non-negative eigenvalues, there is a

square root matrix C:

C = A1/2 (6.11)

The method of solving Equation 6.11 by using the decomposition of Equation 6.10 is, numeri-

cally, not the way that MATLAB currently performs the computation of

C=sqrtm(A)

In practice there are multiple solutions for a matrix C such that A = CC and MATLAB finds a

solution that is numerically reasonable.

Extra Notes

6.6 Extra Notes: Small Perturbations

The eigenvalue/eigenvector decomposition of a matrix can be used to analyze the numerical

stability of the matrix. We can consider three examples, with extensive analysis being beyond the

scope of this course.

Example: stable 2× 2 matrix; consider

A =

[

+101 −90
+110 −98

]

The eigenvalues of this matrix are {+1,+2} and the respective eigenvectors are, approximately,

~v1 =

[

0.6727
0.7399

]

~v2 =

[

0.6690
0.7433

]

Any given vector ~u will be transformed to ~y = A~u as

~y = λ1α1~v1 + λ2α2~v2

= α1~v1 + 2α2~v2
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so the transformed ~y is relatively insensitive to small changes in ~u.

Example: unstable 2× 2 matrix; consider

A =

[

+100.999 +90.001
+110 −98

]

For this matrix, the eigenvalues are approximately {−139.2134,+142.2134} and the respective

unit eigenvectors are, approximately,

~v1 =

[

−0.3508
+0.9364

]

~v2 =

[

+0.9092
+0.4163

]

Any given vector ~u will be transformed to ~y = A~u as, approximately,

~y = λ1α1~v1 + λ2α2~v2

≈ −139α1~v1 + 142α2~v2

so the transformed ~w is highly sensitive to small changes in ~u.

Example: nearly singular 2× 2 matrix; consider

A =

[

+101.00 +89.99
+109.99 +98.00

]

For this matrix, the eigenvalues are approximately {−5.0251×10−7,+199} and the respective

unit eigenvectors are, approximately,

~v1 =

[

−0.6652
+0.7466

]

~v2 =

[

+0.6764
+0.7366

]

Any given vector ~u will be transformed to ~y = A~u as, approximately,

~y = λ1α1~v1 + λ2α2~v2

≈ 199α1~v1

so the transformed ~y is highly sensitive to small changes in the direction of ~v1 and insensitive to

changes in the direction of ~v2.
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Example: stability analysis of a symmetric linear system; consider

Suppose that the matrix A is symmetric and that we seek a numerical solution to the matrix-

vector equation A~x = ~b. How stable is the solution, that is, how sensitive is the solution to small

changes in the entries of~b?

We know that the analytic solution to the system is ~x = A−1~b. Because A is symmetric, so is

A−1; finding the eigenvector decomposition of the matrix A gives

~x =
(

QΛQT
)

~b

where Q is orthogonal and Λ is diagonal. Expanding the factorization produces

~x = QΛ
(

QT~b
)

= QΛ~c

= Q















λ1c1
λ2c2
λ3c3

...

λncn















If |λn| is large, then small perturbations in cn will result in large perturbations in ~x.

End of Extra Notes
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