
CISC 271 Class 7

Normal Matrices and Spectral Decomposition

Text Correspondence: §6.3

Main Concepts:

• Normal: a matrix C such that CCT = CTC

• Orthogonal: a matrix Q such that QQT = I

• Symmetric: a matrix B with bij = bji

• Symmetric matrices have only real eigenvalues

• Spectral theorem: diagonalization uses matrix transpose

Sample Problem, Data Analysis: When is a set of data vectors guaranteed to have an

orthonormal basis?

Previously, we saw that the eigenvectors of a diagonalizable matrix A ∈ R
n×n are a basis for

the vector space R
n. This means that any vector ~u ∈ R

n can be represented as a linear sum of the

eigenvectors ~vj , written as

~u = α1~v1 + α2~v2 + · · ·αn~vn

=

n
∑

j=1

αj~vj (7.1)

7.1 Orthogonal Matrices

The “best” kind of basis is an orthonormal basis, in which each vector is of unit length and is

orthogonal to the other vectors. It is common to refer to such vectors as columns of a matrix Q, so

each such vector is written as ~qj . The defining properties of an orthonormal basis are

i 6= j ⇒ ~qi · ~qj = 0

i = j ⇒ ~qi · ~qj = 1

52 © R E Ellis 2024



By using the transpose to formulate the dot product, an orthonormal basis can also be defined as

i 6= j ⇒ ~q T
i ~qj = 0

i = j ⇒ ~q T
i ~qj = 1

From this it follows that

QTQ = I and QQT = I (7.2)

An orthogonal matrix, defined in Equation 7.2, commutes with itself. This is a slightly unusual

property; for example, the matrix

A =

[

1 2
0 1

]

does not commute because

AAT =

[

5 2
2 1

]

and ATA =

[

1 2
2 5

]

What other matrices commute with their transposes?

7.2 Symmetric Matrices

One form of matrix that is frequently encountered in applications is a symmetric matrix. This

is a matrix B for which

bij = bji (7.3)

It is easy to see that, if B is symmetric, then

BTB = BBT = B2

so the matrix commutes with its transpose.

What can we say about the eigenvalues and eigenvectors of a symmetric matrix B? As it

happens, we can say a great deal. The first major result is

For a real symmetric matrix, every eigenvalue is a real number.

This can be proved by using complex conjugates, but complex analysis is beyond the scope of this

course so the interested student should read the textbook and other sources for greater insight.

The second major result is
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For a real symmetric matrix, eigenvectors that have distinct eigenvalues are or-

thogonal.

To show this, we will consider two eigenvalue/eigenvector pairs and use the transpose as a way of

writing the dot product. We will be investigating whether

~v1 · ~v2 ?
= 0

or equivalently ~v T
1 ~v2

?
= 0

We begin with the statement that the eigenvectors are distinct. For any pair, labeling one as λ1 and

the other as λ2, we have

λ1 6= λ2

Consider the dot product of B~v1 with ~v2. Expanding the matrix-vector product, and factoring the

scalar out of the dot product, gives

(B~v1) · ~v2 = (λ1~v1) · ~v2
= λ1(~v1 · ~v2) (7.4)

Alternatively, we can express the dot product as a transposed multiplication; doing this, then re-

placing BT = B because B is symmetric, then converting back to the dot product, gives

(B~v1) · ~v2 = (B~v1)
T~v2

= (~v T
1 BT )~v2

= ~v T
1 (B~v2)

= ~v T
1 (λ2~v2)

= ~v1 · (λ2~v2)

= λ2(~v1 · ~v2) (7.5)

Because Equation 7.4 and Equation 7.5 have the same left-hand side, the right-hand terms are equal

so

λ1(~v1 · ~v2) = λ2(~v1 · ~v2) (7.6)

We began by assuming that λ1 6= λ2 so, for Equation 7.6 to hold, we must have

~v1 · ~v2 = 0 (7.7)

This proves that, for a symmetric matrix, the eigenvectors of distinct eigenvalues are orthogonal.
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7.3 Normal Matrices

We now come to the main point of this class, which is the Spectral Theorem:

Every normal matrix A has the factorization

A = QΛQT

where Q is an orthogonal matrix in which the columns are eigenvectors of A, and Λ is

a diagonal matrix in which the entries are the eigenvalues of A.

This has an important corollary, the Spectral Theorem for Symmetric Matrices:

Every real symmetric matrix B has the factorization

B = QΛQT

where Q is an orthogonal matrix in which the columns are eigenvectors of B, and Λ

is a real diagonal matrix in which the entries are the eigenvalues of B.

The difference between these two theorems is that a real-valued symmetric matrix has real eigen-

values and eigenvectors, whereas an asymmetric normal matrix might have complex eigenvalues

and eigenvectors.

We can now consider Equation 7.1 for a symmetric matrix (or other normal matrix). The

eigenvectors are a basis, and more importantly their unit forms are an orthonormal basis. We can

write Equation 7.1 concisely as

~u = Q~α (7.8)

Because Q is an orthogonal matrix, its inverse Q−1 is its transpose QT . We can therefore solve

Equation 7.8 by pre-multiplying both sides by Q−1 = QT , so

QT~u = ~α (7.9)

Consider expanding Equation 7.9 by rows. This gives

~q T
1 ~u = α1

~q T
2 ~u = α2 (7.10)

...

~q T
n ~u = αn

55 © R E Ellis 2024



For an orthonormal basis, particularly for one that arises from a symmetric matrix, we can solve

for the “weights” of the basis by using the dot-product form of each line in Equation 7.10 as

αk = ~qk · ~u (7.11)

This property of orthonormal basis vectors is one that we will use in studying large data sets

by principal components analysis.

7.4 Skew-Symmetric Matrices

A square matrix S is skew symmetric, or anti-symmetric, is defined as one for which

sij = −sji (7.12)

Another way to write this matrix is

ST = −S

We can confirm that a skew-symmetric matrix S is a normal matrix by expansion:

SST = S[−S] = [−S]S = STS (7.13)

From either definition, most clearly from Equation 7.12, the diagonal entries are zero so the

matrix S has the form

S =



















0 s12 s13 · · · s1n
−s12 0 s23 · · · s2n
−s13 −s23 0 · · · s3n

...
...

...
. . .

0 s(n−1),n

−s1n −s2n −s3n · · · −s(n−1),n 0



















The Spectral Theorem for Skew-Symmetric Matrices:

Every real skew-symmetric matrix S has the factorization

S = QΛQT

where Q is an orthogonal matrix in which the columns are eigenvectors of S, and Λ is

a diagonal matrix in which the entries are the eigenvalues of S and are either zero or

purely imaginary.
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Skew-symmetric matrices may have nontrivial eigenvectors associated with the zero eigenval-

ues. Other properties of skew-symmetric matrices can be explored by interested students.

Extra Notes

Extra Notes: Other Normal Matrices

Is it possible for a matrix to be normal but none of orthogonal, symmetric, and skew-symmetric?

The answer is positive and can be shown by example.

Consider the matrix

A =





1 2 0
0 1 2
2 0 1





This matrix has none of the usual properties, but it is a normal matrix because

AAT = ATA =





5 2 2
2 5 2
2 2 5





The eigenvalues are

λ1 = 5 λ2,3 = ±
√
3 i

and the eigenvectors (one real, two complex) are orthogonal. So this matrix has an orthonormal

eigenvector basis but is not one of the matrix forms above.

This is a circulant matrix, which in general are normal matrices and which have an orthonormal

eigenvector basis.

End of Extra Notes
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