
CISC 271 Class 8

Orthogonal Projection

Text Correspondence: §4.2

Main Concepts:

• Projection using a normal vector

• Scalar weight for a single vector

• Weight vector for a subspace

• Normal equation for projection

Sample Problem, Data Analysis: For a new data vector, how do we “best” represent

it as a sum of known vectors?

In this course, so far we have explored data as being in “clusters”. Another important way to

explore data is to seek linear relationships between data columns. For example, in PCA we learned

how to produce one or more “scores” that we computed as linear sums of the data columns. One

explanation of PCA is that it is a projection from a higher-dimensional space – spanned by the

columns of the data matrix – to a lower-dimensional space that is spanned by the columns of the

score matrix.

In general, one of the meanings of the word “projection” is a systematic transformation of

an object to a known, or preferred, description. Usually this means taking an object of a certain

dimension and describing it using a lower number of dimensions. One common usage is to trans-

form a 3D point on a sphere – such as an approximation of the Earth – to a 2D point on a planar

cartographic map.

In linear algebra, the preferred description is a basis of some ND vector subspace. The object

to be transformed is a vector of higher dimensions, so we want to systematically transform the

higher-D vector to a lower-D vector. In this class we will examine how to do this by finding the

vector in the vector subspace that is geometrically nearest to the given vector.

8.1 Projecting to a 1D Subspace: Vector to Vector

The simplest non-trivial case is that we have a description of a 1D subspace as a single non-

zero data vector, which we will write as ~a. The problem is: given a new data vector ~c, find a scalar

multiple of ~a that is geometrically nearest to ~a.
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We can illustrate this problem with size 2 vectors, as shown in Figure 8.1. There is some vector

~p that is geometrically nearest to ~c such that ~p is a scalar multiple of ~a; this is another way of saying

that the vector ~a is a basis for a 1D subspace.

Figure 8.1: Vector ~c projects to ~p, which is a scalar multiple of ~a.

Let us formalize the problem and solve it. By “~p is a scalar multiple of ~a” we mean that there

is some real number, a weight w, such that

~p
def
= w~a (8.1)

By “geometrically nearest” we mean that ~c and ~p are, respectively, the hypotenuse of a right

triangle and one leg of the triangle. We can define an error vector ~e as the vector that starts at ~p and

ends at ~c, so

~e
def
= ~c− ~p (8.2)

The constraint of ~e being a leg of the right triangle, or that the ~e is perpendicular to ~a, can be

written as

~a⊥~e ≡ ~a · ~e = 0 ≡ ~aT~e = 0 (8.3)

Expanding the constraint of Equation 8.3 with the definitions of Equation 8.1 and Equation 8.2,

we can solve for the weight w as

~aT~e = 0

⇒ ~aT (~c− ~p) = ~0

⇒ ~aT~c− ~aT~p = ~0

⇒ ~aT~p = ~aT~c

⇒ ~aT [w~a] = ~aT~c

⇒ (~aT~a)w = ~aT~c

⇒ w =
~aT~c

~aT~a
(8.4)
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Knowing the value of the scalar weight w from equation 8.4, the projection of the data vector ~c to

the 1D subspace described by ~a is

~p = w~a

=
~aT~c

~aT~a
~a (8.5)

8.2 Projecting to a 2D Subspace: Vector to Basis

Suppose that we know two data vectors, ~a1 and ~a2, that are linearly independent. They are a

basis for some 2D subspace V. Our problem becomes: what vector ~p ∈ V is nearest to a new data

vector ~c?

The vector ~p ∈ V can be written as a linear sum of the data vectors ~a1 and ~a2 because these

vectors are a basis for V. This entails that, for weights w1 and w2, we can write ~p as

~p
def
= w1~a1 + w2~a2 (8.6)

If we are given a new data vector ~c, we want to find a vector ~p that is in the span of {~a1,~a2} and

that is “closest” to ~c. This is illustrated in Figure 8.2.

Figure 8.2: Vector ~c projects to ~p, which is in a 2D subspace that is spanned by ~a1 and ~a2.

A numerical example may be helpful. Suppose that the data vectors are size 3 and that the

known vectors span a plane that is described by the first two coordinates. Suppose also that the

new data vector is ~c. Examples of such vectors are

~a1 =





1
0
0



 ~a2 =





1
2
0



 ~c =





1
1
1




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We know that if we “drop” a perpendicular line in space, into the plane of the first two coordi-

nates, that the result is “closest” to the new data vector ~c that we are studying1. In this example,

we expect that the entries of ~p will be

~p =





1
1
0





We cannot, in general, deal with the vectors ~a1 and ~a2 separately. If we tried projecting ~c into

the 1D subspace spanned by ~a1, and also tried projecting ~c into the 1D subspace spanned by ~a2,

and combined the result, we would not get the expected projection. For the numerical examples

above, the projections into the separate 1D subspaces are

~p1 =





1
0
0



 ~p2 =





0.6
1.2
0



 ⇒ ~p1 + ~p2 =





1.6
1.2
0



 6= ~p

The correct method is to deduce the “closest” vector ~p from geometry. We can begin by writing

Equation 8.6 in matrix-vector form. Combining the data vectors ~a1 and ~a2 into a data matrix A, we

can write the vector ~p as

~p =
[

~a1 ~a2
]

[

w1

w2

]

= A~w (8.7)

We require the difference vector ~e = ~c − ~p to be orthogonal to the 2D subspace V that has ~a1

and ~a2 as a basis. If ~e⊥V, then ~e is orthogonal to the basis vectors of V. From this we can deduce

that

~a1⊥~e
~a2⊥~e

⇒
~aT

1
~e = 0

~aT

2
~e = 0

⇒

[

~aT

1

~aT

2

]

~e = ~0 ⇒ AT~e = ~0 (8.8)

Using a matrix-vector form of the reasoning that we used for Equation 8.4, we find that

AT~e = ~0

⇒ AT (~c− ~p) = ~0

⇒ AT~c−AT ~p = ~0

⇒ AT ~p = AT~c

⇒ AT [A~w] = AT~c

⇒ [ATA]~w = AT~c (8.9)

1In graphics this is called the orthographic projection of ~c into the plane
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Equation 8.9 is called the normal equation for the data matrix A and the data vector ~c. This

equation describes how to find the weight vector ~w that projects the data vector ~c into the subspace

V that has the columns of A as a basis.

By using the SVD of the matrix A, we know that if the columns of A are linearly independent

then [ATA] is a symmetric positive definite matrix. This implies that Equation 8.9 has a single

solution and the inverse [ATA]−1 exists. We can express the solution as a computation

~w = [ATA]−1AT~c (8.10)

To generalize Equation 8.5 to a higher-dimension subspace, we can abbreviate the process of

projection as a linear transformation. The higher-dimension data vector ~c is projected to a lower-

dimension subspace by a matrix P . From the expression for ~p in Equation 8.7, and the solution of

the weight vector ~w in Equation 8.10, we can formulate the projection as

~p = A~w

= A[ATA]−1AT~c (8.11)

= P~c

⇒ P = A[ATA]−1AT

Equation 8.11 describes how the projection works, from any vector of size m – that is, from any

~c ∈ R
m – to any n-D subspace that has the columns of A as a basis.
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