
CISC 271 Class 8

Positive [Semi–]Definite Matrices

Text Correspondence: §6.3

Main Concepts:

• Positive Definite: each eigenvalue is greater than zero

• Positive Semi-Definite: each eigenvalue is at least zero

• Quadratic form for data matrix M: ~u TM~u

• Covariance matrix: positive definite matrix from statistics

Sample Problem, Machine Inference: For a set of data vectors, what vector basis

makes the data statistically independent?

One kind of symmetric matrix that is frequently encountered has every eigenvalue is greater

than zero, which can be written as λj > 0. These are of interest to us for at least two reasons:

• Such a matrix arises in many application domains

• It helps us to understand a generalization of eigenvalues to non-square matrices

It is helpful to recall some useful abbreviations for saying that a matrix has eigenvalues that are

all positive, or that are all negative. Assuming that B = B T is real, and that ~u ∈ R
n is a non-zero

vector ~u 6= ~0, these symbols and quadratic forms are equivalent:

Symbol Name Eigenvalues Quadratic Form

B ≻ 0 Positive definite ∀jλj > 0 ~u TB~u > 0
B � 0 Positive semidefinite ∀jλj ≥ 0 ~u TB~u ≥ 0
B ≺ 0 Negative definite ∀jλj < 0 ~u TB~u < 0
B � 0 Negative semidefinite ∀jλj ≤ 0 ~u TB~u ≤ 0

Indefinite (∃iλi > 0) ∧ (∃jλj < 0)

Of these abbreviations, we will often use B ≻ 0 and B � 0. We can easily investigate some

relationships between eigenvalues, eigenvectors, and quadratic forms for a real symmetric matrix.
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8.1 Quadratic Form of a Symmetric Matrix

For a real symmetric matrix B ∈ R
m×m, we know from the Spectral Theorem that B can be

decomposed into a product of factor matrices that have real entries, as

B = QΛQT (8.1)

Because B is diagonalizable, an eigenvector basis is the orthonormal vectors ~qj that are columns

of the matrix Q in Equation 8.1. Any non-zero vector ~u ∈ R
m can be written in this basis as a

linear combination

~u = α1~q1 + α2~q2 + · · ·+ αm~qm (8.2)

We assumed that ~u 6= ~0, so at least one scalar αj in Equation 8.2 must be non-zero.

Because each ~qj is an eigenvector of B, we know that B~qj = λj~qj . Because the vectors ~qj are

an orthonormal basis for Rm, we know that if i 6= j then ~q T
i ~qj = 0 and that ~q T

j ~qj = 1. Using

Equation 8.2 and these properties, we can first expand the product B~u and then the quadratic form

~u TB~u as

B~u = λ1α1~q1 + λ2α2~q2 + · · ·+ λmαm~qm

~u TB~u = λ1α
2

1
(~q T

1
~q1) + λ2α

2

2
(~q T

2
~q2) + · · ·+ λmα

2

m(~q
T
m~qm)

= λ1α
2

1
+ λ2α

2

2
+ · · ·+ λmα

2

m (8.3)

Because each scalar value α2
j ≥ 0, and because ~u is an arbitrary non-zero vector in R

m, we

can deduce that the quadratic form ~u TB~u > 0 if and only if each λj > 0, which we abbreviate as

B ≻ 0. We can likewise reason for B � 0.

8.2 Example: Product of a Full-Rank Matrix and its Transpose

Suppose that we are given a matrix A ∈ R
m×n that has column vectors that are linearly inde-

pendent. If we compute the RREF of A, we will find that the nullspace of A is empty: for every

non-zero vector ~u 6= ~0 we know that it transforms to a non-zero data vector ~y 6= ~0, so

[~y = A~u] ⇒ [A~u 6= ~0] ⇒ [‖A~u‖ > 0]
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One way to write ‖~y‖2 is to use the dot product of ~y with itself. Using this fact, and replacing the

dot product with the vector transpose, we have

‖~y‖2 = ~y · ~y

= ~y T~y

= [A~u]T [A~u]

= ~u T [ATA]~u > 0 (8.4)

The matrix ATA is symmetric, by construction. The inequality of Equation 8.4 implies that the

eigenvalues of the ATA must be greater than zero; it is easy to reason this out using proof by

contradiction, substituting the unit eigenvector for a negative eigenvalue into Equation 8.4. The

final term of Equation 8.4, which for a general square matrix M is written as ~u TM~u, is called the

quadratic form and has applications in the analysis of polynomials of several variables.

The reasoning we have used so far in this class gives us two important results:

• If A has linearly independent columns, then ATA is symmetric positive definite

• If, for a symmetric matrix B and every non-zero vector ~u 6= ~0 we have ~u TB~u > 0, then B

is positive definite

An important application of symmetric positive [semi–]definite matrices is in statistical analy-

sis of data. We will not explore such statistical analysis in detail. We can, however, use some of

the basic ideas to inform us as we explore our data.

8.3 Statistics of Vectors: Means and Variance

The mean of a vector ~a is defined as the sum of the entries divided by the number of entries.

This is also called the arithmetic mean, or the average, but we will simply use the word “mean”.

The mean is a scalar value that is commonly written as the vector symbol with a plain bar

overtop. Using this notation, we will define the mean of a vector ~x ∈ R
m as

x̄
def
=

1

m

m
∑

i=1

xi (8.5)
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The variance of a set of samples is a measure of how the samples vary from their mean value.

To find the sample variance, we begin by subtracting the mean value to find the zero-mean vector

~m =











x1 − x̄

x2 − x̄
...

xm − x̄











= ~x− x̄~1 (8.6)

where ~1 ∈ R
m is the “ones” column vector, which has each entry equal to unity.

The sample variance of the data in ~x is the sum of the squares differences from the mean x̄,

divided by the degrees of freedom in the difference vector. This sometimes written as a function,

var(~x), and sometimes as σ2 or as s2. We will define the sample variance as

var(~x) =
1

m− 1

n
∑

j=1

(xj − x̄)2 =
(~x− x̄~1) · (~x− x̄~1)

m− 1
=

~m · ~m

m− 1
=

~mT ~m

m− 1
(8.7)

We can use examples to calculate means and variances. Suppose that we have two data vectors

~x1 =





1
2
3



 ~x2 =





4
5
6



 (8.8)

Using Equation 8.5, the means of the data in Example 8.8 are x̄1 = 2 and x̄2 = 5. the zero-

mean vectors for these data vectors are

~m1 =





−1
0
1



 ~m2 =





−1
0
1



 (8.9)

We can see, in Example 8.9, that the zero-mean versions are the same for distinct data vectors. The

reason for this is that we have “lost” one degree of freedom for each zero-meran, which is in the

mean value x̄j .

To better understand variances, suppose that we have two data vectors

~x3 =





1
−1
3



 ~x4 =





1
3
2



 (8.10)

The variances of the data vectors in Example 8.10 can be calculated as var(~x3) = 4 and var(~x4) =

1. We would say that the data in vector ~x3 vary more than do the data in vector ~x4.
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8.4 Example: Covariance Matrix in Statistics

A concept that is related to variance is how much two sets of samples differ from each other.

The process is similar: mean-correct each data set and take the inner product. If the zero-mean

vector for the data ~x1 is ~m1 and the zero-mean vector for the data ~x2 is ~m2, then the covariance of

~x1 and ~x2 is

cov(~x1, ~x2) =
(~x1 − x̄1

~1) · (~x2 − x̄2
~1)

m− 1
=

~m1 · ~m2

m− 1
=

~mT
1
~m2

m− 1
(8.11)

The dot product is commutative, so for any ~u and ~v in the same vector space,

˚ cov(~u,~v) = cov(~v, ~u)

Consider writing the variance of ~x1 as c11, the covariance of ~x1 and ~x2 as c12, and so on. These

terms can be gathered into a variance-covariance matrix

B
def
=

[

c11 c12
c21 c22

]

(8.12)

Because the covariance is commutative, the matrix C in Equation 8.12 is symmetric.

Another way to write the covariance matrix for two vectors is to combine Equation 8.7 and

Equation 8.11. We can write Equation 8.12 as

B =

[

var(~x1, ~x1) cov(~x1, ~x2)
cov(~x2, ~x1) var(~x2, ~x2)

]

=
1

m− 1

[

~mT
1 ~m1 ~mT

1 ~m2

~mT
2
~m1 ~mT

2
~m2

]

=
1

m− 1

[

~mT
1

~mT
2

]

[

~m1 ~m2

]

=
1

m− 1
M TM (8.13)

Because the matrix B in Equation 8.13 is constructed from a matrix M , the matrix B is sym-

metric and positive semidefinite. If the zero-mean vectors that are the columns of M are linearly

independent, then the covariance matrix B is symmetric and positive definite.

We will use the covariance matrix later in this course, when we perform principal components

analysis on potentially very large sets of data.
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Extra Notes

8.5 Example: Linear Elastic Structures

One example of a symmetric positive definite matrix arises when we try to model either a

“uniform” physical material or a simple robotic device. Let us look at how springs can be used to

model a material, and what the equations looks like.

A linear spring is one that follows Hooke’s Law, which says that a displacement of a spring

produces a force that is a constant multiple of the displacement. The usual terminology is:

Symbol Meaning

x Displacement of the spring from the zero position

f Force that the spring exerts at the displacement x

k The stiffness constant of the spring

Hooke’s Law, stated using these symbols, is

f = kx (8.14)

where the energy, or work, performed is force times distance or E = fx. An illustration of a linear

spring, a displacement, and a force are given in Figure 8.1.

Figure 8.1: A scalar Hookean spring, where x is the displacement and f is the spring force.

What if there are multiple springs acting in a plane? The displacements will be x1 in one

axis and x2 in the other axis, with resulting forces f1 and f2 respectively. This is illustrated in

Figure 8.2.

The mathematical model of a planar spring system is a vector version of Equation 8.14, where

the displacement is ~x and the resulting force is ~f . These are related by the stiffness matrix, K, as

~f = K~x (8.15)

A basic result in materials science is the Maxwell-Betti Law, which for our purposes states that the

stiffness matrix K is symmetric1.

1The law is usually stated and proved using stress tensors, which are higher-dimensional extensions of matrices.
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Figure 8.2: A set of springs acting on a body in the plane, where the body can only translate and

cannot rotate. Displacements x1 and x2, acting together, result in forces f1 and f2.

The energy is still the product of the force and the displacement. Energy is a scalar and the

other terms are vectors, so the energy is usually be written as the dot product E = ~f · ~x. Using the

commutative property of the dot product, and using the vector transpose to replace the dot product,

we find that

E = ~f · ~x

= ~x · ~f

= ~xT ~f (8.16)

When we substitute Equation 8.15 into Equation 8.16 we get

E = ~xT ~f

= ~xTK~x (8.17)

Energy cannot be destroyed, so the value E in Equation 8.17 must be greater than zero. This

implies that the eigenvalues of the stiffness matrix K must be greater than zero; it is easy to reason

this out using proof by contradiction, substituting the unit eigenvector for a negative eigenvalue

into Equation 8.17.

This implies that the stiffness matrix K is symmetric positive definite.

End of Extra Notes
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