
CISC 271 Class 9

Design Matrix and Standardized Data

Text Correspondence: ∼

Main Concepts:

• Design matrix: gathering data vectors

• Zero-mean data: difference from mean

• Standard score: multiple of standard deviation

• Standardized data: standard score of zero-mean data

Sample Problem, Data Analysis: What is an effective way to prepare a set of data

for linear analysis?

One guiding principle of this course can be caricatured as “see a set of vectors, gather them into

a matrix”. A caution is that it is often unclear whether an information source, such as a scientific

article or a fragment of code, is using the data as column vectors or as rows in a matrix. We must

always read a source carefully to determine how the data is represented. For example, the textbook

in this course – which is highly regarded – uses one convention whereas MATLAB – which is also

highly regarded – uses a different convention.

Here, we will adopt the MATLAB convention. We will interpret the values of independent

variables or dependent variables as columns, so each column has the same physical dimensions or

other semantics. We will interpret a set of such variables as observations, so an observation or a

“reading” is a matrix row that can have different semantics for each entry.

For example, historical data from Statistics Canada are available that describe basic body mea-

surements such as: gender, weight, height, the ratio of the waist circumference to the hip circum-

ference, and the sum of the measurements of flaps of skin. These measurements are available for

multiple years and the age group of the subjects is also known. We might want to interpret these

anthropomorphic measurements as independent variables, and interpret the age groups and the sur-

vey year as dependent variables. To reduce the problem to a single dependent variable, we might

try to analyze each year separately. The dependent data could be given numerical labels such as

those in Table 9.1.

For the first dependent value, which is ages 6 − 11, the actual mean values are provided in

Table 9.2.
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Table 9.1: Numerical codes for the dependent variable of age group.

Ages Code

6− 11 1

12− 19 2

20− 39 3

40− 59 4

60− 79 5

Table 9.2: Values of independent variables for Age Group #1. These are statistical means of a

sample population that was measured in 2009.

Variable Value

Gender Female

Mass 33.15 kg

Height 135.28 cm

Hip circ. 73.3 cm

Waist/hip 0.82

Net skinfold 52.8 mm

In statistics, data analytics, and machine learning, the values of the independent variables are

gathered into a data vector that we will write as ~xi. For example, we might write the values in

Table 9.2 as the data vector

~x1 =













33.15
135.28
73.3
0.82
52.8













There are two immediate problems that we have: how do we gather multiple data vectors into

a matrix, and how can we manage the disparate ranges of the values of the data.
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9.1 Data Matrix and Design Matrix

One common method of linear data analysis of a set of vectors is to use regression. Regression

is a term from statistics for estimating relationship between a number of independent variables and,

for this course, a single dependent variable. One such might be to try to find trends in a population.

The approximation problem for linear regression is: given a set of m independent observations

tk, and m dependent data ci, to find a weight vector ~w that approximates the dependent data values

as

t1w1 + t2w2 + · · ·+ tnwn ≈ ci

We can “vectorize” this approximation by gathering the independent observations tk into a data

matrix A, and gathering the dependent data ci into a data vector ~c. When we create the data matrix

A, we have two choices: a data vector ~ai can be the ith column of A, or a transpose as ~t T

i
can be

the ith row of A. We will follow the convention in statistics and in MATLAB that uses the second

version, so we will define the design matrix as

A
def
=











~t T

1

~t T

2

...
~t T
m











(9.1)

Using Equation 9.1, our regression problem is to find a weight vector ~w so that

A~w ≈ ~c (9.2)

We will assume that the observations ~t T

i
either exactly determine or over-determine the weight

vector ~w. Mathematically, we will assume that the data matrix A is full rank, so rank(A) = n.

This matrix A is the data matrix, which addresses the first of our two problems. The second

problem – how to manage the disparate ranges of values in data vectors – is addressed by using

another concept from statistics.

A design matrix for observations ~t T

i
, usually written as X , has two important statistical prop-

erties. The first property is that each column of the matrix X has an average value of 0, which is

called a zero-mean column. The second property is that the standard deviation of the values of a

column is 1. These two properties are used to standardize data for subsequent processing.
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9.2 Standardized Data or Z Score

In regression – especially for methods that are developed from a statistical point of view – it is

usual practice to use standard or standardized data. These are data that have a mean of zero and a

variance of one. Historically, the concept seems to have been suggested, at around 1900, by Karl

Pearson when he introduced the concept of a probability “ellipsoid”, in which data were scored by

their number of standard deviations from the mean in each relevant direction.

We can derive a standardization transformation for a single vector ~a ∈ R
m and then generalize

to a matrix of data. Previously, we defined the mean of a vector ~a as

ā
def
=

1

m

m
∑

i=1

ai (9.3)

For a matrix A, we will define the mean as a “row” matrix, which is called a 1-form. The

entries of the mean 1-form are the means of the columns. We will define the mean of a matrix A,

which is a generalization of Definition 9.3, as

Ā
def
=

[

ā1 ā2 · · · ān
]

(9.4)

Statistically, the variance of a set of data has two definitions: the sample variance and the

population variance. Here, we will use the sample variance; we will be cautious because other

writings and code may explicitly or implicitly use the population variance.

For a vector ~a, the sample variance is the sum of the squares of the entries of the vector divided

by one less that the size of the vector. Using the conventional statistical symbol σ2, we will define

the sample variance of a vector as

σ2

~a

def
=

1

m− 1

m
∑

i=1

(ai − ā)2 =
‖~a−~1 ā‖2

m− 1
(9.5)

We will define the standard-deviation of a matrix A as a diagonal matrix D. The jth diagonal

entry of D is the sample standard deviation of the jth column of A. The definition of the sample

variance of a matrix A, using Definition 9.5, is

DA

def
=











σ~a1
σ~a2

. . .

σ~an











(9.6)
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We can use these definitions to concisely state how we will standardize data. Suppose that we

are given a regression problem with a matrix of independent data A and a vector of dependent data

~c, that is to be approximated as

A~w ≈ ~c (9.7)

We want to convert Equation 9.7 to a standardized form, which implies that we seek:

• A design matrix X with columns that are zero-mean and unit variance

• A vector of dependent data ~y with zero mean and unit variance

• A linear model of the data that is

X~u = ~c (9.8)

For the independent data in A, we must subtract the mean of A from A and scale the difference

to have a sample variance of one. We must likewise modify the dependent data in C. These

operations can be expressed as

X = [A− [~1Ā]]D−1

A
(9.9)

~y = [~c− [~1c̄]]D−1

~c

Observation: Equation 9.7 and Equation 9.8 solve different problems

We can explore some effects of using zero-mean data by considering a problem where the

sample variances are one, that is, where DA = I and D~c = 1. For any such unit-variance problem,

we would estimate a solution of Equation 9.8 to be the vector û. We would then estimate the

dependent data, which are in the vector ~c of Equation 9.7, from the zero-mean independent data in

the matrix X as

ĉ = Xû+ [~1ȳ] (9.10)

In general, the solution û of Equation 9.8 is not the same as a solution ŵ of Equation 9.7.

Methods that are derived from the statistical point of view generally try to find solutions that

are based on standard data, as stated in Equation 9.8. In particular, we generally want to avoid

problems where a constant offset term is stated. We can see that the transformation in Equation 9.9

will produce a division by zero when any column of A is a constant value, because we would be

trying to invert a scaling matrix that refers to the variance of the zero vector ~0.
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Extra Notes

Extra Notes: Example of a Standardized Data Vector

Consider the vector ~a =













15
17
31
19
3













The mean value of ~a is 17, so the zero-mean vector is ~m =













−2
0
14
2

−14













The variance of ~a is the sum of the squares of the entries of ~m, divided by (5 − 1) =, so

σ2 = 100

The standardization of ~a is ~m divided by σ = 10, which is ~x =













−0.2
0.0
1.4
0.2

−1.40













End of Extra Notes
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