
CISC 271 Class 13

SVD – Singular Value Decomposition

Text Correspondence: §7.1

Main Concepts:

• Eigenvectors of AAT : left singular vectors

• Eigenvectors of ATA: right singular vectors

• Non-zero eigenvalues are the same for AAT and ATA

• SVD describes “eigenvectors” of a non-square matrix

Sample Problem, Machine Inference: For a non-square data matrix, how can we

find “eigenvalues”?

So far in this course, we have found many uses for eigenvalues and eigenvectors of square

matrices. In practice, we often encounter non-square matrices of data, such as empirical findings

that are summarized in a table of numbers. How can we perform something like an eigenvalue

analysis of a data matrix? We can reason from what we know already and try to find an approach.

We know that, if A is a square invertible matrix, then the columns of A are linearly independent.

We can also infer that, for such a matrix A, that ATA is a square and symmetric positive-definite

matrix. What can we infer if A is not square?

13.1 Eigenvectors of the matrix [ATA]

Suppose that A is a ”tall thin” matrix of full rank. By this we mean that A ∈ R
m×n has more

rows than columns, so m > n, and that the rank of A is n. Using a result from the previous

class, we can infer that [ATA] is a square symmetric positive definite matrix. Because [ATA] is

symmetric, it can be diagonalized as the matrix decomposition

[ATA] = V ΛV T (13.1)

where

V =
[

~v1 ~v2 · · · ~vn
]

Λ =











λ1 0 0
0 λ2 · · · 0

0 0
. . .

...
...

... λn











(13.2)
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We have permuted the eigenvalues in Equation 13.2 so that λ1 ≥ λ2 ≥ · · · ≥ λn > 0. The rank

of the matrix [ATA] is n and we also have to permute the rows of V when we order the eigenvalues

by their magnitudes.

What if the matrix A is not full rank? We know that the diagonal matrix Λ of Equation 13.1 will

have some zero values on the diagonal entries. We will have to modify Equation 13.2 to account

for the zero eigenvalues, which would give us

Λ =

























λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . .

...
...

... λr

0
. . .

0


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


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











(13.3)

From Equation 13.3, we can see that the rank of the matrix [ATA] is r.

Suppose, instead, that the matrix A is a “short wide” matrix. Using the same kind of reasoning

as we used for a “tall thin” matrix, we can draw the same inference: the columns of the matrix V

in Equation 13.1 are eigenvectors of [ATA].

13.2 Eigenvectors of the matrix [AAT ]

What happens when we consider the other product of a matrix with its transpose, which is

AAT ? We begin with the clearest case and proceed to more complicated cases.

Suppose that A is a “short wide” full-rank matrix. The same kinds of reasoning allow us to

draw the same conclusions about the matrix [AAT ]. This will be a square symmetric matrix of size

m×m.

Suppose that A is either square and rank-deficient, or is a “tall thin” matrix. For such a matrix,

[AAT ] will also be positive semi-definite and can be diagonalized. The decomposition will be like

that in Equation 13.1 but the orthogonal matrix will have a different size. The decomposition can

be written as

[AAT ] = UΛUT
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The m×m orthogonal matrix U , and the diagonal matrix Λ, will be

U =
[

~u1 ~u2 · · · ~um

]

Λ =






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
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

λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . .

...
...

... λr

0
. . .

0 0 · · · 0










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





(13.4)

An important result, which we will prove at the end of these notes, is that the r non-zero

eigenvalues of AAT are the same as those of ATA. We can see this easily if A is square and

diagonalizable. What if A is square and not diagonalizable, or if A is rectangular?

13.3 The Singular Value Decomposition, or SVD

One of the most useful theorems of 20th–century linear algebra is the singular-value decompo-

sition, commonly called the SVD. It is a general result for rectangular complex matrices, but for

real matrices the unitary factors are simply orthogonal matrices.

For any real-valued matrix A ∈ R
m×n there is an orthogonal matrix U ∈ R

m×m, an orthogonal

matrix V ∈ R
n×n and a “diagonal” matrix Σ ∈ R

m×n such that

A = UΣV T (13.5)

where

Σ =












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σ1 0 · · · 0
0 σ2 · · · 0

0 0
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... σr

0
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





The matrix Σ has four crucial properties:
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(a) σj ∈ R

(b) σj > 0 for j ≤ r

(c) σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and

(d) r is the rank of A

The existence of the SVD was known in 1936 but the earliest reliable computation of the SVD

dates to approximately 1965.

13.4 Using the SVD

The SVD has a vast number of applications. It is widely used in linear algebra and is also found

in many applications that are formulated in linear algebra. It can be used to prove matrix properties,

find the “nearest” orthogonal matrix to a given square matrix, and determine the “best” orthonormal

basis vectors for a vector space. More recently, it was used in recommendation computations, such

as the Netflix algorithm for predicting user ratings of videos.

An example use is that, knowing the SVD, we can very easily prove the decompositions that

we deduced for the products of a matrix and its transpose. Using the rule of matrix transposition,

and the fact that the transpose of an orthogonal matrix is its inverse, we can see that

[AAT ] = [UΣV T ][UΣV T ]T

= [UΣV T ][V ΣTUT ]

= UΣ[V TV ]ΣTUT

= UΣΣTUT

= UΛUT

[

ATA
]

= [UΣV T ]T [UΣV T ]

= [V ΣTUT ][UΣV T ]

= V ΣT [UTU ]ΣV T

= V ΣTΣV T

= V ΛV T

This confirms that our reasoning was correct. It also demonstrates that the singular values of

the matrix A, in the “diagonal” matrix Σ, are the square roots of the eigenvalues of [AAT ] and

[ATA]; these eigenvalues are the same because of the SVD of the matrix A.
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