
CISC 271 Class 13

Cross-Validating Linear Regression

Texts: Hastie et al. [6] pp. 241–249

Main Concepts:

• Cross-validation: assessing a linear regression

• Leave-one-out: simplest cross-validation

• K-fold cross-validation: common in practice

• Monte Carlo cross-validation: useful for large data sets

Sample Problem, Machine Inference: How “good” is a linear regression for given

data?

So far in this course, we have implicitly assumed that we should measure the quality of a

linear regression by examining the overall error, such as the RMS value of the residual error.

One conceptual difficulty in doing this is that we used the entire data to compute the regression

coefficients and then used the entire data to estimate the residual error.

13.1 Training and Testing

In machine learning, there is usually a distinction between the process of recognizing a pattern

and of determining how well the pattern applies to the data.

Training, for us, is the process of finding parameters or coefficients of a function. In the

literature, this is most often accomplished by specifying an objective, which is a formula to be

optimized. The process of fitting a curve, or approximating a function, is training a machine to

recognize a specific pattern in the sparse data.

Testing, for us, is the process of evaluating how well the approximation performs. Testing is

usually performed with a score that may be categorical, such as pass/fail, or may be continuous

such as a goodness of fit. For linear regression we will test the goodness of fit.

An unsolved problem in artificial intelligence is how to divide data into a set for training and

a set for testing. In this course, so far we have used the same data for training as for testing, with

the understanding that there are serious concerns about doing so. Better methods would divide the

data into a training set and a testing set (the Matlab default for neural networks is 85% training,

15% testing), or use a cross-validation method such as “leave-one-out”.
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13.2 Linear Regression and the Design Matrix X

In linear regression, we are provided with observations of the independent variables. So far in

this course, we have written each observation as a data vector ~aj and the dependent data are written

as a vector ~c. We are assuming that the data are linearly correlated and so we are trying to solve a

problem in linear regression.

Recall, in Section 12.5 of these notes, that we observed that there were two choices for how to

pose the problem of linearly related data: the “plain” data for linear regression with no intercept,

and “augmented” data linear regression with an intercept. For the remainder of this course, we

will assume that each observation has enough variables that we do not need to consider the inter-

cept term explicitly. We will adopt some conventions from machine learning and we will write a

problem in linear regression as

Xŵ ≈ ~y (13.1)

To optimize Equation 13.1, we need to formulate a single error variable that can be minimized.

The usual way to assess linear regression is to measure the error between the model and the data.

The objective in an ordinary least squares (OLS) solution to linear regression is the squared error,

which is the Euclidean norm of the error vector. Because the Euclidean norm of an error vector can

be expected to increase with the number of entries in the error vector, it is common to correct for

the number of entries and use the RMS error. For a proposed solution ~w to the problem X ~w ≈ ~y,

we can write the RMS error of Equation 12.19 as

RMS(X, ~y; ~w)
def
=

√

[X ~w − ~y]T [X ~w − ~y]

m
(13.2)

13.3 Measuring Error in Linear Regression

One difficulty with using the RMS error of a regression is that this is a measure of the fit of a

model to data. it does not measure how good a linear model is at predicting new data.

To measure prediction – which we will call the test – we would need to acquire some number l

of new data vectors ~xi=n+1...n+l and the corresponding values yi. We would presumably use RMS

error as an evaluation of the test. We could modify Equation 13.2 by using a design matrix derived

from the new data in place of X , and a new data vector in place of ~y; this would give us the RMS

error of testing new data with the linear model described by the weight vector ~w.
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Rather than acquiring new data, a common method in machine learning is to divide the given

data into two sets:

1. a training set of some size, and

2. a test set of the remaining data vectors

The proportions of the sizes of these data sets vary considerably, depending on the source of

the data and the proposed application.

An immediate question we might have is: does the computed performance of linear regression

depend on exactly which data we use for training? To address this question, we might perform the

division more than one time and assess the repeated performance.

There are two general methods used to perform the division into multiple paired sets training

data and testing data:

1. in cross-validation, the data are partitioned

2. in a Monte Carlo method, the data are randomly assigned

We will examine these general methods in turn.

13.4 Cross-Validation of Linear Regression: Leaving Data Out

There are three common ways of performing cross-validation of linear regression. These are

leave-one-out, leave-many-out, and k-fold validation.

Leave-One-Out Validation

The simplest method of performing cross-validation of linear regression is to repeatedly hold

out one data pair (~xj , yj). These would be written as the “new” data pair (~uj, cj).

The regression would be trained, or computed, to the m − 1 other data and the fit would be

assessed using the RMS error of Equation 13.2. The hold-out data pair (~uj, cj) would be assessed

using Equation 13.2 for l = 1.

We could examine the training-subset errors for the m hold-outs and, separately, the testing-

subset errors for the same m hold-outs.

The main advantages of leave-one-out validation are simplicity, speed, and the ability to detect

a single statistical outlier in the given data (~xi, yi). The main disadvantage is that real data seldom

seem to have a single statistical outlier.
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Leave-Many-Out Validation

We could modify the leave-one-out algorithm by increasing the number l of hold-out data pairs.

This increases the robustness of the validation but at an exponentially increasing cost: to leave out

l data pairs from m given data, we would need to perform
(

m

l

)

computations. This is seldom feasible for large data sets.

13.5 Cross-Validation of Linear Regression: K-Fold Analysis

For medium-sized sets of data, a currently common method is k-fold cross-validation. We can

explore this method by imagining a simple scenario.

Suppose that we are given all of the data at once; that is, the data do not come sequentially over

time. We could divide the data into two sets, S1 and S2, of equal size. We could then:

1. train the regression on set S1 and test the regression on set S2, and then

2. train the regression on set S2 and test the regression on set S1

This two-fold validation would give us some idea of how well a linear model can be fit to the

given data. A shortcoming is that only 1/2 of the data are used to train the regression; in practice,

this is not sufficient to capture the richness of real data.

We could extend this by blending the concept of leave-one-out with the concept of two-fold

validation. Suppose that we partition the data into k data sets: S1, S2, . . ., Sk. We could then, for

each data set Sj ,

1. train the regression on the combined data in all of the sets i 6= j, and then

2. test the regression on the data in set Sj

This process is commonly performed using k = 5 for small-size data sets and k = 10 for

medium-size data sets.

The advantages of k-fold cross-validation are that it requires k passes through the m data pairs,

which is linear in the size of the data set, and that it is reasonably robust in the presence of multiple

statistical outliers in the given data. If k = m, then this reduces to leave-one-out so it is not clear

that “bigger is better” for k-fold cross-validation.

A main disadvantage of k-fold cross-validation is that it generates only k samples of how the

linear regression performs on the data set. This sparse sampling can produce a high variance in the
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tested performance of the regression. If the data set is large, or if differences between the training

subset and the testing subset are major concerns, a Monte Carlo method may be a better choice for

evaluating the regression.

13.6 Cross-Validation of Linear Regression: Monte Carlo Methods

For very large data sets, it may be computationally ineffective to perform even k = 5 or k = 10

passes on the data. This can be managed by randomly sampling the data into a training set S1 and

a testing S2, then proceeding as in k-fold cross-validation.

By repeatedly performing the random sampling, a linear regression can be tested for even a very

large data set. Because there is no requirement that the given data are partitioned, it is possible that

there is some value i such that

S1 ∪ S2 6= {(~xi, yi)}

The main advantage and disadvantage of Monte Carlo cross-validation of linear regression is

that not all of the given data are used. For small data sets, this might mean that crucial information

is not tested. For large data sets, this might mean that the method is computationally effective.

13.7 Example: 13 Data With 2 Outliers

We can use 5-fold cross-validation to study the effect of linear regression on a simple data set.

Suppose that we use the sample data that is shown in Table 13.1.

When we standardize the data in Table 13.1 as a design matrix X and a dependent vector ~y,

and we reconstruct the regression and compare it to the data vector ~c, we compute the values

c̄ = 19.2974 w = 0.9936
σ~c = 11.6885 RMSE = 0.1088

(13.3)

The data in Table 13.1, and the linear regression that has the values in Equation 13.3, are

illustrated in Figure 13.1.

Let us assess the solution by performing 10 passes of 5-fold cross-validation. We will combine

RMS errors by taking the RMS of the RMS errors, which gives us the data in Table 13.2.
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Table 13.1: Sample data that are derived from a linear function with two outliers. Data are shown

using four digits of numerical precision.

~a ~c

0.0000 -1.8584

1.0000 5.8599

2.0000 8.5782

3.0000 11.2964

4.0000 14.0147

5.0000 16.7330

6.0000 19.4513

7.0000 22.1696

8.0000 24.8878

9.0000 27.6061

10.0000 30.3244

11.0000 33.0427

12.0000 38.7610
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Figure 13.1: Sample data that are derived from a linear function with two outliers, shown as black

asterisks, and a linear regression, shown as a blue line.
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Table 13.2: RMS of fits for training and testing subsets in a 5-fold cross-validation of OLS.

Train Test

0.7372 1.1496

1.1504 1.8840

1.2280 1.7711

1.3208 1.8735

1.2622 2.2049

1.2340 1.8694

1.2712 1.7658

0.0000 0.0000

0.7353 1.1707

1.3415 1.6849

Mean: 1.0280 1.5374

Std: 0.4246 0.6294

Observations on Table 13.2:

• For OLS, the test errors appear to be substantially greater that the training errors

• The mean of OLS training fits is low and the variance is high, suggesting a poor model of

the data

• The mean of OLS tests is higher than the mean of training, and the variance is also higher,

suggesting a poor model and high variance in tests

Statistical explanations of an estimator’s bias and variance have a long history; consequently,

many thorough analyses are available. The interested student is encouraged to explore the rela-

tionship between bias, variance, and intrinsic error for a model that includes a random variate with

a Gaussian distribution.
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