
CISC 271 Class 15

Orthonormal Basis Vectors and the SVD

Text Correspondence: §7.1

Main Concepts:

• Left singular vectors: orthonormal basis of data vectors

• Right singular vectors: orthonormal basis of weight vectors

• Singular values: Positive real numbers, generalized “eigenvalues”

Sample Problem, Machine Inference: For a set of data vectors, what are the “best”

vectors that approximate the vector space of the data?

There are many lessons that we can draw from the SVD of a matrix. In this course we will

use the SVD primarily to find a set of basis vectors for a vector space, so we will explore the

decomposition for square and non-square matrices.

15.1 SVD of a Square Matrix

If a matrix A ∈ R
m×m has m rows and m columns, then the columns are vectors in a data

space R
m. The SVD of the matrix A will be

A = UΣV T

where all of the factors on the right side are square m×m matrices. They have basic properties:

• U is an orthogonal matrix

the columns of U ~u1, ~u2, . . . , ~um are a basis for the data space R
m

• Σ is a diagonal matrix of non-negative real numbers

– the first diagonal entry σ1 is the largest number in Σ

– the smallest non-zero entry in Σ is σr

– the rank of the matrix A is r

• V is an orthogonal matrix

its columns are a basis for the weight space R
m

From these properties, we can infer that the first r columns of U are a basis for the column

space of A.
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Example: Square asymmetric matrix of full rank. Consider

A1 =

[

3 4
0 3

]

By inspection, the columns of A1 are linearly independent so the column span is R
2. The

eigenvalues – which are the diagonal entries because A1 is upper triangular – are λ1 = 3 and

λ2 = 3. The eigenvectors can be computed as

λ1(A1) =

[

1
0

]

λ2(A1) =

[

1
0

]

The asymmetric matrix A1 is not diagonalizable. This is because the eigenvectors are not

linearly independent.

The SVD of A1 can be found by hand, using the textbook algorithm, or can be estimated by

computation. Doing the latter, using two digits of numerical precision, we get the approximate

values

U1 =

[

0.88 −0.47
0.47 0.88

]

Σ1 =

[

5.60 0
0 1.61

]

V1 =

[

0.47 −0.88
0.88 0.47

]

We can see that the columns of U1 are an orthonormal basis for the data space, and the columns

of V1 are an orthonormal basis for the weight space.

A remarkable property of the SVD of A1 is that it produces a decomposition having a diagonal

matrix, even though A1 is not diagonalizable!

Example: Square symmetric rank-deficient matrix. Consider

A2 =

[

1 −1
−1 1

]

This matrix is, by inspection, symmetric and rank-deficient because the second column is −1

times the first column. Being symmetric it is diagonalizable, so we expect the SVD to have U2 =

V2. Computing the SVD of A2, we find that

U2 =

[

−0.71 0.71
0.71 0.71

]

Σ2 =

[

2 0
0 0

]

V2 =

[

−0.71 0.71
0.71 0.71

]

Because only one singular value of A2 is non-zero, the rank of A2 is 1. The first singular value,

which is 2, indicates that the first column of U2 is a basis vector for the column space of A2. The

second column of U2 is orthogonal to the first column, so it is a basis vector for the complement of

the column space of A2.
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15.2 SVD of a Non-Square Matrix

If a matrix A ∈ R
m×n has m rows and n columns, with m 6= n, then the columns are vectors

in a data space R
m and they act on a weight vector in a weight space R

n. The SVD of the matrix

A will always be

A = UΣV T

but we must be careful when we interpret the singular vectors.

Example: Non-square matrix of full rank. Consider the “tall thin” matrix

A3 =





1 −1
−1 1
2 0





Computing the SVD of A3, we find that

U3 =





−0.50 0.50 −0.71
0.50 −0.50 −0.71

−0.71 −0.71 0.00



 Σ3 =





2.61 0
0 1.08
0 0



 V3 =

[

−0.92 −0.38
0.38 −0.92

]

The SVD of A3 tells us that the first two columns of U3 are an orthonormal basis for the column

space of A3. This may seem unusual because the columns of A3 are also a basis. The distinction

is that U3 is, in a numerical and mathematical sense, the “best” basis for the vector space in the

absence of other information. Later in the course, we will look at how to find an orthonormal basis

by using the matrix A directly.

The columns of V3 are an orthonormal basis for the weight space, which is R2 because A3 is

full rank. Here, too, the SVD has selected a basis that a human might not have selected.

Example: Non-square matrix that is rank-deficient. Consider the “tall thin” matrix

A4 =





1 −1
−1 1
2 −2





Computing the SVD of A4, we find that

U4 =





−0.42 −0.91 0.00
0.42 −0.18 0.89

−0.82 0.37 0.45



 Σ4 =





3.46 0
0 0
0 0



 V4 =

[

−0.71 0.71
0.71 0.71

]
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The rank of A4 is 1 because only the first singular value in Σ4 is non-zero. The first column of

U4 is a basis vector for the column space of A4; this is a unit-length version of either column of A4

and might be what a human selected.

The first column of V4 is a basis for the weight space of A4. This informs us that, for a non-zero

data vector ~c4, the only solution to A4 ~w = ~c4 is a vector ~w for which the first entry is the negative

of the second entry.

Even more telling is the second column of V4. This is a basis for the null space of A4 because

any vector ~w for which the first entry equals the second entry is mapped to the zero vector ~0. The

reason is subtle and useful: in general, every zero diagonal entry of the matrix Σ selects a basis

vector for the null space of the original matrix A.

15.3 The SVD as an Approximate Basis for a Vector Space

In this course, the SVD will be especially useful in performing numerical approximations.

For a matrix A we have seen that, if the first r entries of the matrix Σ are non-zero, then the

rank of A is r. What if the rth singular value is negligible?

To be negligible, we would mean that a singular value can be neglected. This will depend

on the application but a good first way to address this problem is to consider all of the non-zero

singular values as an ensemble. If σr is much smaller than σ1, we might want to neglect it and just

use r− 1 basis vectors to approximate the vector space of the columns of the data in the matrix A.

Two methods can be found to be in common current use:

• If σr/σ1 is “small”, neglect the effects of ~ur

• For the sum of preceding singular values

lr =
r

∑

j=1

if σr/l is “small”, neglect the effects of ~ur

To understand these methods in more depth, we can think of gathering the singular values into

a vector ~σ.

The first method uses the ratio of the largest singular value and the smallest singular value,

which is an extension of the condition number to a non-square matrix. Because of how the singular
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values are ordered, the first entry of ~σ is the largest entry; this entry is the “L-infinity” or L∞ norm,

so we are basing the cut-off on σr/‖~σ‖∞.

The second method uses the sum of the singular values, which is L1 norm of ~σ calculated up

to and including σr. By taking into account all of the relevant singular values, we are basing the

cut-off on σr/‖~σ‖1.

Of course, these methods do not need to apply to only the smallest non-zero singular value σr.

We might apply the methods to another singular value, perhaps this index k, which would select k

columns of U as an approximate basis for the data in the matrix A. This is the concept that we will

use when we perform principal-component analysis of large sets of data.

15.4 Some SVD Properties

Suppose that a matrix A ∈ R
m×n is a “tall thin” matrix that has m > n and rank(A) = r. The

SVD of A is described in Equation 15.1, in which we can “read out” the four matrix spaces of the

matrix.

A =
[

U1...r U(r+1)...m

]

[

Σ1...r 0
0 Σ(r+1)...m

]

[

V1...r V(r+1)...m

]T
(15.1)

For the matrix A in Equation 15.1, we can see that:

• U1...r is a basis for the column space of A

• U(r+1)...m is a basis for the orthogonal complement of the column space of A

• V1...r is a basis for the row space of A

• V(r+1)...n is a basis for the null space of A
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In summary, the SVD is a powerful matrix decomposition. Some of the properties that we may

find useful include:

• A ∈ R
m×n = UΣV T where U and V are orthogonal and Σ is “diagonal”

• Columns of U ∈ R
m×m are an orthonormal basis for the data space R

m

• Columns of V ∈ R
n×n are an orthonormal basis for the weight space R

n

• Σ ∈ R
m×n has the same size as the matrix A ∈ R

m×n that is factored

• Σ has zero in each off-diagonal entry

• The diagonal entries of Σ, written as σj , are non-negative real numbers that are ordered from

largest to smallest

• If the smallest non-zero diagonal entry is σr then the rank of A is r

• The first r columns of U are a basis for the column space of A

• The first r columns of V are a basis for the weight space of A

• The last (n− r) columns of V are a basis for the null space of A

• If A is diagonalizable then U = V

In this course we will neither prove these properties nor memorize them. Instead, we will use

the properties to help us to find patterns in large sets of data.

103 © R E Ellis 2024


