
CISC 271 Class 16

Principal Components Analysis – PCA

Text Correspondence: 7.3

Main Concepts:

• Zero-mean data: average value is zero

• Covariances of differences: symmetric positive definite matrix

• Principal components: Eigenvectors of the covariances

• Reconstructed data: data mean plus selected principal components

Sample Problem, Data Analysis: For a set of data vectors, what vector space captures

“most” of the variance of the data?

16.1 Motivation, by Example

Empirical data in matrix form, such as in a table or spreadsheet, typically have distinct mean-

ings for rows and columns. For example, an instructor in a fictitious course might have tabulated

grades for tests. Each column would be the grades of an individual student, and each row would

be the grades achieved in a particular test. The data might look like

Ami Ben Cindy Davis · · · Zoe

Test 1 30 20 31 28 · · · 33

Test 2 22 18 22 23 · · · 30

Test 3 28 19 27 28 · · · 36
...

...
...

...
...

...
...

An instructor might want to know how well the students are doing on average, and how much

students vary from the average. These questions can be address by finding the main, or principal,

ways that each column of data vary from the average column.

The average performance is simply the average for each test. The ways that students vary from

each test are harder to assess. In this example, most students seem to do better on Test #1 than

on Test #2, and Test #3 seems to be somewhere between the first two tests. We want to do data

analysis that captures systematic variations, if this is possible.

The data in the above table are not in the form that we are using in this course. We require

that each column contains the values of a single variable, and that each row contains the values
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of observations. We would need to transpose the above table into a data matrix. For the above

example, the data matrix might be described by a matrix A1 as

A1 =



















30 22 28
20 18 19
31 22 27
28 23 28
...

...
...

33 30 36



















(16.1)

The problem of finding the principal ways that the variables differ from the mean is called

principal components analysis, or PCA.

16.2 Zero-Mean Data Matrix

Referring to the motivating example, the average student performance can be computing by

finding the average mark on each test. For the data matrix A1 of Equation 16.1, this can be done

by performing the first step in data standardization: subtract, from each column, the mean value of

that column. We can write this zero-mean data matrix as M , so for the example in Equation 16.1

the zero-mean data matrix would be

M1 = A1 −~1 Ā =
[

~m1 ~m2 · · · ~mn

]

=













1.60 −1.00 0.40
−8.40 −5.00 −8.60
2.60 −1.00 −0.60

−0.40 0.00 0.40
4.60 7.00 8.40













(16.2)

We will note here that this not a universal convention for writing the zero-mean matrix. For

example, the textbook uses a column to represent an observation, so the textbook would write the

zero-mean matrix as

[M1]
T

We are using the MATLAB convention of Equation 16.2 so that the class notes correspond more

closely with our code. This is a reminder that the representation convention must be carefully

understood before a resource is consulted.
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16.3 Principal Components Analysis as an SVD

In statistics, the principal components are derived from the sample covariance matrix of the

zero-mean data. Using our notation, this would be a symmetric positive semidefinite matrix B.

Here, again, we must be careful to observe that we are using sample statistics and not population

statistics. In this course, the covariance matrix is defined as

B =

(

1

m− 1

)

MTM (16.3)

For our example data, the covariance matrix would be

B1 =
MT

1
M1

m− 1
=





25.30 17.50 27.45
17.50 19.00 25.50
27.45 25.50 36.30



 (16.4)

The principal components of a data matrix M are the eigenvectors of its covariance matrix B.

To two digits of numerical precision, the eigenvalue vector ~λ and the eigenvector matrix E1 are

B1 = E1Λ1E
T
1

where ~λ =





75.60
4.82
0.17



 E1 =





0.54 0.79 0.29
0.48 −0.58 0.66
0.69 −0.22 −0.69



 (16.5)

From a statistics point of view, Equation 16.5 tells us that “most” of the variance in the student

grades are captured by a single component. A minor amount of variance is captured by using

a second component and the third component can be numerically neglected: it constitutes only

0.22% of the overall variance.

Now, let us examine the covariance matrix by using the SVD. We know, from previous classes,

that the SVD is closely related to the spectral decomposition of the covariance matrix as we have

defined it. The SVD of any zero-mean data matrix M is

M = UΣV T (16.6)

For a data matrix with m rows, the spectral decomposition of the covariance matrix is

B =
MTM

m− 1
=

EΛET

m− 1
= E

Λ

m− 1
ET (16.7)

A relationship between the SVD of a zero-mean matrix and the spectral decomposition of its

covariance matrix can be deduced by expanding Equation 16.6 into Equation 16.7, which is

B =
MTM

m− 1
=

V ΣV TV ΣV T

m− 1
= V

Σ2

m− 1
V T = E

Λ

m− 1
ET (16.8)
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From Equation 16.8, we can verify our previous finding that the right singular matrix of the

SVD of a zero-mean data matrix M is the same as the eigenvector matrix of the covariance matrix:

E = V . We can also verify the relationship between the singular values of a zero-mean data matrix

and the eigenvalues of its covariance matrix: λj = σ2

j/(m− 1).

16.4 Using the SVD to Compute PCA Scores

Equation 16.8 informs us that we can find principal components of a data matrix by using the

SVD. There is some artistry, or human intelligence, that may be involved in selecting the number

of relevant components. For our example of grades in a class, we might explore using one or two

components of the data.

We will define the word component as a unit-length eigenvector of the covariance matrix B.

Because of the definition of the SVD, we can equally well define – or simply use – a right singular

vector of the zero-mean data matrix M .

After the number of components are chosen, there are two common uses of PCA:

1. Score the PCA to reduce the dimensionality of the data

2. Reconstruct the data from the PCA

In this course we will explore the first use, recognizing that the second use also has many

applications.

The idea of a PCA score of data is to project a zero-mean observation onto a unit-length princi-

pal component. The first score of the ith observation is the product of the ith row of the zero-mean

matrix M and the first right singular vector ~v1. If we write the ith row of M as ~tTi , then our

computation for the ith observation in the original data matrix A will find the jth score sij that

corresponds to the jth principal component ~vj as

zij = ~z T
i ~vj (16.9)

We can perform all of the scoring in Equation 16.9 – that is, find every individual score zij –

with the single matrix multiplication

Z = MV (16.10)

The matrix Z in Equation 16.10 will contain the scores of the principal components of the data

matrix A.
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For our example of student grades in a class, the zero-mean data are provided numerically in

Equation 16.2 and the principal components are provided in Equation 16.5, as the matrix E1 = V1.

If we use the first two components, then the score matrix Z1 can be found as

Z1 =
[

~z1 ~z2
]

= M1

[

~v1 ~v2
]

=













−0.67 1.75
12.89 −1.84
−0.52 2.76
−0.06 −0.40
−11.64 −2.26













(16.11)

We can see numerical patterns in the entries of the score vector ~z1, with three entries being

close to zero and two entries being quite far from zero. We cannot deduce anything from the ±

sign of the entries because the signs of eigenvector entries can be sensitive to numerical details.

The entries of the score vector ~z2 do not have a distinctive pattern. The entries of ~z2 are, mostly,

about one standard deviation from zero.

These patterns are consistent with the observation about the magnitudes of the eigenvalues of

the covariance matrix B1 for this example. Most of the variance was captured by the first principal

component and much less was captured by the second principal component.

We can visualize these results by using a “scatter” plot. The first axis, horizontal, is the score

of each observation for the first principal component. The second axis, vertical, is the score of

each observation for the second principal component. Figure 16.1 illustrates the PCA results for

the example data matrix A1.
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Figure 16.1: PCA scatter plot for the example data of grades in the matrix A1. Data are colored

to indicate potential clusters of the data. (A) The horizontal axis is the score for the first principal

component. (B) The vertical axis is the score for the second principal component.
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We can visually cluster the data in Figure 16.1, which are rows in the score matrix Z1. It

is plausible to assign three of the observations to a central cluster, and each of the other two

observations to distinct cluster. Visually, it is unclear that using the second component provides us

with information about the data. For both numerical reasons and visual reasons, we might choose

to represent the data matrix A1 by a single principal component.

This example shows how PCA can be used to perform dimensionality reduction. Here, we

reduced the number of dimensions of the data from the original number of variables – which was

3 – to the final number of principal components, which was 1. This choice communicates to our

readers how much information is needed to cluster the observation in the data matrix A1. In this

small example, we can identify three of the students as having the same performance; one students

significantly under-performed on the tests and one student out-performed on the tests.

Extra Notes

One of the many uses of the SVD is that its formulation produces a series for any given ma-

trix [3]. To understand how we can use such a series in linear data analysis, we will first explore

the norm of a matrix.

16.5 Matrix Norms

A norm of a vector or matrix is a real number that “measures” the object. We write the vector

norm as ‖~a‖ and the matrix norm as ‖A‖; a common abbreviation for the norm of an object is ‖ · ‖.

A norm must satisfy four axioms, which we will write for a matrix. The first four axioms are the

same as the axioms for a vector norm and some authors add a fifth axiom for matrix norms: the

object being measured has changed.

For any A ∈ R
m×n, any A ∈ R

m×n, and any α ∈ R, the axioms of a norm are:

• ‖A‖ ≥ 0

• ‖A‖ = 0 if and only if A = 0

• ‖αA‖ = |α| ‖A‖

• ‖A+ C‖ ≤ ‖A‖+ ‖C‖

• ‖AC‖ ≤ ‖A‖ ‖C‖ (not universally required)
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Sometimes, we want a vector norm and a matrix norm to “work” together.

Definition: compatible norms

For any vector norm ‖ · ‖,any matrix norm ‖ · ‖, any vector ~w ∈ R
n, and any matrix

A ∈ R
m×n, the norms are compatible is defined as

‖A~w‖ ≤ ‖A‖ ‖~w‖ (16.12)

The vector norm that we use in this course is the Euclidean norm. It is also written as the ℓ2

norm, pronounced ell–2, which is the abbreviation that we will prefer. For a vector ~w ∈ R
n, this

norm is defined as

‖~w‖2
def
=

√

√

√

√

n
∑

j=1

(wj)2 (16.13)

The ℓ2 matrix norm is an induced norm, which means that it is based on the vector norm. For

a matrix A ∈ R
m×n, the ℓ2 norm is

‖A‖2
def
= max

~w 6=~0

‖A~w‖

‖~w‖
(16.14)

The Frobenius norm is another matrix norm that is closely related to the Euclidean vectorm

norm. It is defined as

‖A‖F
def
=

√

√

√

√

m
∑

i=1

n
∑

j=1

(aij)2 (16.15)

16.6 Eigenvalues and Singular Values

The above norms are closely related to matrix decompositions that we explored earlier in the

course. These relations are theorems in linear algebra that can be found in many textbooks and

other sources.

Abbreviate the largest eigenvalue of a matrix as λMAX(·) and recall the SVD of a matrix, in

which the singular values are ordered as σ1 ≥ σ2 ≥ · · ·σr > 0. The above matrix norms have the

properties

‖A‖2 =
√

λMAX(ATA)

= σ1

‖A‖F =

√

√

√

√

r
∑

j=1

σ2
j (16.16)
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16.7 Extra Notes: A Matrix As A Series

Let us recall the SVD of a matrix A ∈ R
m×n that is rank r. Because we can neglect each row

and each column that has an index greater that r, we can write this matrix as

A = UΣV T (16.17)

where U =
[

~u1 ~u2 · · · ~ur

]

Σ =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σr











V T =











~v T
1

~v T
2

...

~v T
r











We can expand the right product of Equation 16.17 as

ΣV T =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σr





















~v T
1

~v T
2

...

~v T
r











=











σ1~v
T
1

σ2~v
T
2

...

σr~v
T
r











(16.18)

Using Equation 16.18, we can write the SVD of Equation 16.17 as

A = UΣV T

=
[

~u1 ~u2 · · · ~ur

]











σ1~v
T
1

σ2~v
T
2

...

σr~v
T
r











= ~u1σ1~v
T
1
+ ~u2σ2~v

T
2
+ · · ·+ ~urσr~v

T
r

= σ1[~u1~v
T
1
] + σ2[~u2~v

T
2
] + · · ·+ σr[~ur~v

T
r ] (16.19)

113 © R E Ellis 2025



16.8 Extra Notes: Eckart-Young Theorem

Equation 16.19 is a remarkable series. It states that any rank–r matrix A can be represented as

the sum of r rank–1 matrices. Each rank–1 matrix in the series is the product of the corresponding

left singular vector and right singular vector of A.

The SVD was observed and discovered, at least partially, since the late 19th century. It was

formulated and shown to exist in 1936, by Eckart and Young [3]; their approximation is known in

linear algebra as the Eckart-Young Theorem.

The approximation theorem has been stated and proved for many matrix norms. We can use

either the ℓ2 norm or the Frobenius norm. For a matrix A, we will define the ith rank–1 matrix in

Equation 16.19 as

Ci
def
= σi[~ui~v

T
i ] (16.20)

Formally, the Eckart-Young theorem states that the optimal rank–p approximation to the matrix

A is the first p terms of the series in Equation 16.19. For A ∈ R
m×n, the optimal approximation is

C = argmin
W∈Rm×n

‖A−W‖2

= argmin
W∈Rm×n

‖A−W‖F

= C1 + C2 + · · ·+ Cp (16.21)

Using Equation 16.21 and Equation 16.17, we can find the SVD of the optimal rank–p approx-

imation to A as

C = UpΣpV
T
p (16.22)

where Up =
[

~u1 ~u2 · · · ~up

]

Σp =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp











V T
p =











~v T
1

~v T
2

...

~v T
p











114 © R E Ellis 2025



We use Equation 16.22 often when we perform linear data analysis. One way that we can think

of this approximation is:

The optimal rank–p approximation to the column space of A is Up

That is, when we want to use a smaller set of basis vectors to span the column space of a matrix

A, the “best” choice is the first p left singular vectors of the matrix.

End of Extra Notes

115 © R E Ellis 2025


