
CISC 271 Class 17

Matrix Approximation

Text Correspondence, Strang 2019: pp. 71–75 [14]

Main Concepts:

• Matrix norm: extension of vector norm

• SVD as a matrix series

• Matrix approximation as a truncated series

Sample Problem, Machine Inference: What is the “best” approximation of a matrix?

One of the many uses of the SVD is that its formulation produces a series for any given ma-

trix [3]. To understand how we can use such a series in linear data analysis, we will first explore

the norm of a matrix of a matrix. ℓ2

17.1 Matrix Norms

A norm of a vector or matrix is a real number that “measures” the object. We write the vector

norm as ‖~a‖ and the matrix norm as ‖A‖; a common abbreviation for the norm of an object is ‖ · ‖.

A norm must satisfy four axioms, which we will write for a matrix. The first four axioms are the

same as the axioms for a vector norm and some authors add a fifth axiom for matrix norms: the

object being measured has changed.

For any A ∈ R
m×n, any A ∈ R

m×n, and any α ∈ R, the axioms of a norm are:

• ‖A‖ ≥ 0

• ‖A‖ = 0 if and only if A = 0

• ‖αA‖ = |α| ‖A‖
• ‖A+ C‖ ≤ ‖A‖+ ‖C‖
• ‖AC‖ ≤ ‖A‖ ‖C‖ (not universally required)

Sometimes, we want a vector norm and a matrix norm to “work” together.

Definition: compatible norms

For any vector norm ‖ · ‖,any matrix norm ‖ · ‖, any vector ~w ∈ R
n, and any matrix

A ∈ R
m×n, the norms are compatible is defined as

‖A~w‖ ≤ ‖A‖ ‖~w‖ (17.1)
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The vector norm that we use in this course is the Euclidean norm. It is also written as the ℓ2

norm, pronounced ell–2, which is the abbreviation that we will prefer. For a vector ~w ∈ R
n, this

norm is defined as

‖~w‖2 def
=

√

√

√

√

n
∑

j=1

(wj)2 (17.2)

The ℓ2 matrix norm is an induced norm, which means that it is based on the vector norm. For

a matrix A ∈ R
m×n, the ℓ2 norm is

‖A‖2 def
= max

~w 6=~0

‖A~w‖
‖~w‖ (17.3)

The Frobenius norm is another matrix norm that is closely related to the Euclidean vectorm

norm. It is defined as

‖A‖F def
=

√

√

√

√

m
∑

i=1

n
∑

j=1

(aij)2 (17.4)

17.1.1 Eigenvalues and Singular Values

The above norms are closely related to matrix decompositions that we explored earlier in the

course. These relations are theorems in linear algebra that can be found in many textbooks and

other sources.

Abbreviate the largest eigenvalue of a matrix as λMAX(·) and recall the SVD of a matrix, in

which the singular values are ordered as σ1 ≥ σ2 ≥ · · ·σr > 0. The above matrix norms have the

properties

‖A‖2 =
√

λMAX(ATA)

= σ1

‖A‖F =

√

√

√

√

r
∑

j=1

σ2
j (17.5)
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17.2 A Matrix As A Series

Let us recall the SVD of a matrix A ∈ R
m×n that is rank r. Because we can neglect each row

and each column that has an index greater that r, we can write this matrix as

A = UΣV T (17.6)

where U =
[

~u1 ~u2 · · · ~ur

]

Σ =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σr











V
T =











~v T
1

~v T
2

...

~v T
r











We can expand the right product of Equation 17.6 as

ΣV T =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σr





















~v T
1

~v
T
2

...

~v T
r











=











σ1~v
T
1

σ2~v
T
2

...

σr~v
T
r











(17.7)

Using Equation 17.7, we can write the SVD of Equation 17.6 as

A = UΣV T

=
[

~u1 ~u2 · · · ~ur

]











σ1~v
T
1

σ2~v
T
2

...

σr~v
T
r











= ~u1σ1~v
T
1
+ ~u2σ2~v

T
2
+ · · ·+ ~urσr~v

T
r

= σ1[~u1~v
T
1
] + σ2[~u2~v

T
2
] + · · ·+ σr[~ur~v

T
r ] (17.8)
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17.3 Matrix Approximation: Eckart-Young Theorem

Equation 17.8 is a remarkable series. It states that any rank–r matrix A can be represented as

the sum of r rank–1 matrices. Each rank–1 matrix in the series is the product of the corresponding

left singular vector and right singular vector of A.

The SVD was observed and discovered, at least partially, since the late 19th century. It was

formulated and shown to exist in 1936, by Eckart and Young [3]; their approximation is known in

linear algebra as the Eckart-Young Theorem.

The approximation theorem has been stated and proved for many matrix norms. We can use

either the ℓ2 norm or the Frobenius norm. For a matrix A, we will define the ith rank–1 matrix in

Equation 17.8 as

Ci
def
= σi[~ui~v

T
i ] (17.9)

Formally, the Eckart-Young theorem states that the optimal rank–k approximation to the matrix

A is the first k terms of the series in Equation 17.8. For A ∈ R
m×n, the optimal approximation is

C = argmin
W∈Rm×n

‖A−W‖2

= argmin
W∈Rm×n

‖A−W‖F

= C1 + C2 + · · ·+ Ck (17.10)

Using Equation 17.10 and Equation 17.6, we can find the SVD of the optimal rank–k approxi-

mation to A as

C = UkΣkV
T
k (17.11)

where Uk =
[

~u1 ~u2 · · · ~uk

]

Σk =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σk











V
T
k =











~v T
1

~v T
2

...

~v T
k










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We use Equation 17.11 often when we perform linear data analysis. One way that we can think

of this approximation is:

The optimal rank–k approximation to the column space of A is Uk

That is, when we want to use a smaller set of basis vectors to span the column space of a matrix

A, the “best” choice is the first k left singular vectors of the matrix.

17.4 Approximations and The Scree Plot

How can we select the rankk of an approximation? In practice, there is no universally accepted

method. There may be guidelines within a domain of application but, in general, we usually

examine the data and exercise human judgement.

A common method for determining a matrix approximation is the use of a scree plot [2]. Catell

devised the name by a visual analogy to “... the straight line of rubble and boulders which forms

at the pitch of sliding stability at the foot of a mountain”.

In terms of the SVD, a scree plot has a horizontal axis, or ordinate, the is the integers i of

Equation 17.9, ranging from 1 to either r or a suitable number less than r. The vertical axis, or

abscissa, is a normalized version of the singular value σi. The normalization is typically the sum of

the singular values, which is the explained variance θ, or the square root of the sum of the squares

of the singular values, which is the total variance T :

θ =
r

∑

i=1

σi (17.12)

T =

r
∑

i=1

σ
2

i (17.13)

The choice of θ from Equation 17.12, or either T or
√
T from Equation 17.13, depends on the

application.

A simple example can be developed by generating a random matrix of integers. For one such

matrix, which is A ∈ R
20×20 with aij ≤ 200, the scree plot is shown in Figure 17.1. In this example

the normalization was T from Equation 17.13. The scree plot suggests that the 20× 20 matrix has

a column space that can be approximated with 2 basis vectors, because the index 2 is where the

scree plot begins to level.
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Figure 17.1: Scree plot of a random 20 × 20 integer-valued matrix. The index k = 2 would be

chosen as the rank of approximation of this matrix.

The scree plot is one way that we can use the Eckart-Young theorem to select the number of

basis vectors when we want to approximate the column space of data. These basis vectors are part

of principal component analysis, which we will explore after we better understand vector spaces

and projections.
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