
CISC 271 Class 21

PCA – Matrix Algebra and Dimensionality Reduction

Text Correspondence: ∼

Main Concepts:

• Scatter matrix

• PCA for dimensionality reduction

• Clustering of reduced data

Sample Problem, Machine Inference: How can PCA reduce the number of variables

in data?

We previously presented principal components analysis (PCA) by exploring the covariance of

data. A data matrix A has a mean row-like matrix Ā and a zero-mean matrix M that we can re-state

as

Ā
def
=

1

m
~1TA

M
def
= A−~1 Ā

(21.1)

Using the sample variance, the matrix M in Equation 21.1 can be used to define the covariance

matrix as

B =

(

1

m− 1

)

MTM (21.2)

The eigenvalues of the matrix B in Equation 21.2 are non-negative and can be interpreted as

describing statistical relationships of columns of the data matrix A. A closely related matrix is the

scatter matrix. This is a symmetric positive semidefinite matrix that we will define as

S
def
= MTM (21.3)

Because the matrix S in Equation 21.3 is a scalar multiple of the matrix B in Equation 21.2, the

matrix S and the matrix B have the same eigenvectors. The eigenvalues are also scalar multiples,

that is, the jth eigenvalue of S is m− 1 times the jth eigenvalue of B.

We can think of the scatter matrix S as the weighted covariance. The scatter matrix can be

used in place of the covariance matrix when the number of observations are of concern, or when

the interpretation of the eigenvalues of the covariance matrix are unaffected by the factor of m−1.

Henceforth, we will work with PCA using the scatter matrix B instead of using the covariance

matrix B.
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21.1 Scatter Matrix, SVD, and PCA

Using terminology that is common in PCA literature, we can say the PCA loading vectors ~vj

of the covariance matrix B are the same as the eigenvectors of the scatter matrix S.

Consider the SVD of the zero-mean matrix, which is M = UΣV T . We can write the scatter

matrix as

S = MTM

= [UΣV T ]TUΣV T

= V ΣTΣV T

= V Σ2V T (21.4)

As an aside, because the covariance matrix B is a scalar multiple of the scatter matrix S, we

can use Equation 21.4 to write the spectral decomposition for PCA as

B =

(

1

m− 1

)

MTM

= V

[

Σ2

m− 1

]

V T (21.5)

Equation 21.4 provides us with the spectral decomposition of the scatter matrix S. We can

observe that the eigenvectors ~vj are the right singular vectors of the data matrix M . The scatter

matrix is symmetric and it is positive definite if and only if the zero-mean matrix M is full rank,

that is, if and only if M has each singular value greater than zero. Because of Equation 21.5, these

observation also apply to the covariance matrix B.

For PCA, we defined the first score vector as the product of the zero-mean matrix M and the

first loading vector ~v1, that is, as ~z1 = M~v1. The right singular matrix V of the zero-mean matrix

M has orthonormal columns, which can be summarized as

~v T
j ~vj = 1

~v T
j ~vi 6=j = 0

(21.6)

Using the properties of Equation 21.6, we have

V T~v1 =











1
0
...

0











⇒ ΣV T~v1 =











σ1

0
...

0











(21.7)
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The first score vector ~z1, using the SVD of the zero-mean matrix M and Equation 21.7, can be

written as

~z1 = M~v1

= UΣV T~v1

= σ1~u1 (21.8)

Using the same reasoning of Equation 21.8 for each score, we can write the jth score vector of

the data matrix A as

~zj = σj~uj (21.9)

21.2 PCA and Low-Rank Approximation

Recall, from a previous class, that the optimal approximation of a matrix is a truncation of the

Eckart-Young series. This series, for the zero-mean matrix M that has rank r, is

M = UΣV T

= [σ1~u1]~v
T
1
+ [σ2~u2]~v

T
2
+ · · ·+ [σr~ur]~v

T
r (21.10)

Consider the first p ≤ r scores of the data in the original matrix A. These are the vectors ~zj of

Equation 21.9; we can gather these into a matrix Zp. The first p eigenvectors of the scatter matrix S

are the first p right singular vectors of the zero-mean matrix M , which we can gather into a matrix

Vp. The p PCA scores and the p PCA loading vectors – which are the right singular vectors of M –

are related by Equation 21.10 as

Zp = MVp

=
[

σ1~u1 σ2~u2 · · · σp~up

]

(21.11)

An orthonormal basis for the column space of Zp is, simply, to divide each column by the non-

zero singular value σj . Each basis vector is ~uj , which is a left singular vector of the zero-mean

matrix M ; together, an orthonormal basis for the first p PCA scores are the first p columns of the

left singular matrix U , which we can abbreviate as Up. This leads us to a remarkable observation:

The first p PCA scores are an optimal approximation of a p-D vector space for the

zero-mean data
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21.3 PCA for Dimensionality Reduction

PCA is commonly used to reduce the dimensionality of data. Dimensionality reduction is the

process of transforming a linear problem that has n variables to a smaller problem that has p < n

variables. We have derived three equivalent methods to perform dimensionality reduction:

• Compute the first p scores of the data matrix A by using PCA, which is Zp

• Compute the first p eigenvectors of the scatter matrix S as Vp and compute UpΣp = MVp

• Compute the SVD of the zero-mean matrix M and use the first p left singular vectors Up

These equivalent methods of computing dimensionality reduction have the same effect. For

the original n-D vector space of the zero-mean data, which we can abbreviate as Un, the methods

find an orthogonal basis for a p-D vector space, which we can abbreviate as Up, with the important

property that

p < n and Up ⊂ Un

The latter property holds because the orthogonal left singular matrix U is an orthonormal basis

for the column space of the zero-mean matrix M , so the first n columns Un are a basis for Un.

Clustering algorithms have been found, from much empirical experience, to often perform

poorly on high-dimensional data. A commonly used solution is to transform the data to a lower-

dimensional vector space, and then to perform clustering by a method such as k-means.
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