
CISC 271 Class 24

Patterns – Linear Discriminant Analysis, or LDA

Text Correspondence: ∼

Main Concepts:

• PCA for means of labeled data

• PCA and the Rayleigh quotient

• Linear discriminant analysis – optimization

Sample Problem, Machine Inference: How can we separate labeled data?

Principal components analysis (PCA) is a mathematical method in linear data analysis. So far

in this course, we have used PCA for dimensionality reduction. We understand that the scores of

data that are provided by PCA are orthogonal vectors that span the column space of the zero-mean

form of data.

How can PCA help us to analyze data that have labels? We can explore this idea by considering

the labels of observations. Suppose that the ith observation in our data has the label yi. This label

is categorical, meaning that yi can take exactly one of a finite set of values.

For this class, we will suppose that each observation has a binary label. Following the conven-

tion in machine learning, we will use the values 1 and 2; that is, we will require that the ith label is

yi ∈ {1, 2}.

Sir Ronald Fisher, in his 1936 paper [5] that described the Iris data set, introduced a powerful

concept for managing observations that have labels. Since then, his concept has been formulated

using linear algebra and the Rayleigh quotient. It is variously known as Fisher’s linear discriminant

and as linear discriminant analysis (LDA).

We will explore LDA by using PCA and scatter matrices. As an introduction, consider the data

in Figure 24.1(A). If we perform PCA on these data, we find that there is a “preferred” coordinate

frame that is centered at the mean of the data and that is aligned with the eigenvectors of the

scatter matrix of the zero-mean form of the data; this is shown in Figure 24.1(B). We can project

the labels onto these axes. Figure 24.1(C) shows the labels projected onto the first axis, which is

also called the first loading vector, and Figure 24.1(D) shows the labels projected onto the second

loading vector. For these data, the principal axis is relatively good at describing the observations

and relatively poor at distinguishing the labels of the observations. We can, however, see that the

second or “last” loading vector does a better job of distinguishing the labels.
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Figure 24.1: Artificially generated data with two labels. (A) The data shown as red for one label

and as blue for the other label. (B) The data and PCA axes; the data mean is the black cross and

the loading vectors are relatively scaled by the eigenvalues of the scatter matrix of the zero-mean

form of the data. (C) Labels projected onto the first loading vector, slightly offset for visualization.

(D) Labels projected onto both loading vectors, slightly offset for visualization.

24.1 Scatter Matrices For Labelled Data

We assume that our data are provided as a “tall thin” data matrix A ∈ R
m×n, with m > n.

Previously, we transformed these data to a zero-mean matrix M = A − ~1 T Ā and a symmetric

positive semidefinite scatter matrix S. For this class, we will follow a convention in data analysis

and write the total scatter as

ST
def
= MTM (24.1)

Next, we will partition the data into distinct data matrices. The observations that have label

yj = 1 are gathered into a matrix A1 and the observations that have label yj = 2 are gathered into
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a matrix A2. If we permute the observations, the original data matrix A can be written, in terms of

these partitions, as

A =

[

A1

A2

]

(24.2)

The zero-mean versions of these matrices must be calculated with care. The observations with

label yj = 1 have a mean observation Ā1 and those with label yj = 2 have a mean observation Ā2.

These means are related to the mean of the original data as

Ā = Ā1 + Ā2 (24.3)

The zero-mean matrices can be found from Equation 24.2 as

M1

def
= A1 −~1 T Ā1 M2

def
= A2 −~1 T Ā2 (24.4)

There are four scatter matrices associated with the partitioning of A into A1 and A2. The first

three are the within-label scatter; these are defined, from Equation 24.4, as

S1

def
= MT

1 M1

S2

def
= MT

2 M2

SW
def
= S1 + S2 (24.5)

The fourth scatter matrix is the between-label scatter. This is the scatter of the zero-mean

means, which we defined from Equation 24.3 as

SB
def
=

[

Ā1 − Ā
Ā2 − Ā

]T [

Ā1 − Ā
Ā2 − Ā

]

(24.6)

If the observations have p partitions, that is, if each label is yj ∈ Z++ : yj ≤ p, then Equa-

tion 24.5 and Equation 24.6 can be simply extended.
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24.2 Fisher’s Linear Discriminant

Sir Ronald Fisher [5] observed that, for a wide variety of data, we have two potentially con-

flicting goals:

• Maximize the between-label scatter, and

• Minimize the within-label scatter

We will follow conventions in linear data analysis and write these goals as “argument maxi-

mum” problems. They are:

~wB = argmax
~u∈R:~u6=~0

R(SB, ~u) (24.7)

~wW = argmin
~u∈R:~u 6=~0

R(SW , ~u) (24.8)

Fisher’s linear discriminant elegantly combines Equation 24.7 with Equation 24.8. The concept

is to maximize the ratio of the Rayleigh quotients.

A crucial assumption that we will make is that the within-label scatter matrix, SW , is symmet-

ric positive definite. This usually occurs in empirical problems and there are technical ways of

managing data that do not meet this criterion. For our purposes, SW ≻ 0 implies that the quadratic

form ~u TSW~u is always positive for a non-zero vector ~u, and therefore that the Rayleigh quotient

R(SW , ~u) is always non-zero for a non-zero vector argument ~u.

Fisher’s linear discriminant can be written as

~w = argmax
~u∈R:~u 6=~0

R(SB, ~u)

R(SW , ~u)
= argmax

~u∈R:~u6=~0

~u TSB~u

~u TSW~u
(24.9)

As derived in the extra notes for this class – provided that SW ≻ 0 – Equation 24.9 has the

solution

~w = ~vMAX(S
−1

W SB) (24.10)

Equation 24.10 provides us with the direction vector ~w that simultaneously optimizes the

between-label scatter and the within-label scatter. Using this vector is called linear discriminant

analysis, or LDA.

Strang [14], in pp 81–82, observes that S−1

W SB is not necessarily a symmetric positive matrix

and recommends using S
−1/2
W SBS

−1/2
W instead. His modification is correct but goes beyond our

needs for the LDA direction vector.
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24.3 LDA Using Test Data

We can repeat the previous PCA tests on out artificial multimodal data. Using LDA, we can su-

perimpose on the data the SW axis, the SB axis, and the LDA axis. These are shown in Figure 24.2.
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Figure 24.2: Artificially generated data with two labels. (A) The data shown in black, with red for

mean of one label and blue for mean of other label. (B) The data and smallest within-label scatter

Sw axis, shown in blue. (C) The data and largest between-label scatter SB , shown in magenta. (D)

The data and the LDA axis, shown in black.

These data are linearly separable. The LDA axis, plus additional information, can be used to

deduce a separating hyperplane. However, most uses of LDA do not go beyond finding an axis

along which the labels of observations are optimally separated by Fisher’s linear discriminant.
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Extra Notes

24.4 Extra Notes – Maximum of Rayleigh Quotient

Theorem: Maximum of Rayleigh quotient

For any B ∈ R
n×n such that B = BT and B � 0, for the largest eigenvalue of B that

is λMAX(B), the maximum of the Rayleigh quotient of B is

λMAX(B) = max
~u∈Rn:~u 6=~0

R(B, ~u)

~vMAX(B) = argmax
~u∈Rn:~u 6=~0

R(B, ~u)
(24.11)

Proof:

Because ‖~u‖ 6= 0, we can transform the vector ~u to a unit vector ~w as

~w =
~u

‖~u‖
(24.12)

The unconstrained Rayleigh quotient of Equation 24.11 is transformed, using the substitution of

Equation 24.12, to a constrained Rayleigh quotient that can be written as

max
~u∈Rn:~u6=~0

R(B, ~u) max
~u∈Rn:~u 6=~0

~u TB~u

~u T~u
= max

~w∈Rn:‖~w‖=1
~w TB~w (24.13)

Consider representing the gradient of a function that has a vector argument as a 1-form. It is

straightforward to demonstrate that, for any symmetric matrix K = KT ,

∂

∂ ~w

[

~w TK~w
]

= 2~w TK (24.14)

The constrained optimization problem of Equation 24.13 can be solved by forming the Lagrangian

function L(~w, λ) from the objective and the constraint that ~w T ~w − 1 = 0, so

L(~w, λ) = ~w TB~w − λ(~w T ~w − 1) (24.15)

Differentiating Equation 24.15 with respect to ~w and λ, and setting the transposes equal to the zero

vector and zero respectively, give the Lagrange equations

[

∂

∂ ~w
L(~w, λ)

]T

= 2B~w − 2λ~w = ~0
[

∂

∂λ
L(~w, λ)

]T

= ~w T ~w − 1 = 0

(24.16)
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The solutions to Equation 24.16 are found as

B~w∗ = λ∗ ~w∗ (24.17)

‖~w∗‖ = 1 (24.18)

The solution of Equation 24.18 requires that ~w∗ have a unit norm. The solution of Equation 24.17

requires that λ∗ be an eigenvalue of B and that ~w∗ be the associated eigenvector. The problem in

Equation 24.13 is maximized by

~w∗ = ~vMAX(B)

λ∗ = λMAX(B)
(24.19)

The constrained solutions of Equation 24.19 can be substituted into Equation 24.13 to find Equa-

tion 24.11.

24.5 Extra Notes – Fisher’s Linear Discriminant

Theorem: Fisher’s Linear Discriminant

For any SB ∈ R
n×n such that SB = ST

B and SB � 0, and for any SW ∈ R
n×n such that

SW = ST and SW ≻ 0, for the largest eigenvalue of B that is λMAX(B), the maximum

of the ratio R(SB, ~u)/R(SW , ~u) is

λMAX(S
−1

W SB) = max
~u∈Rn:~u 6=~0

R(SB, ~u)

R(SW , ~u)

~vMAX(S
−1

W SB) = argmax
~u∈Rn:~u 6=~0

R(SB, ~u)

R(SW , ~u)

(24.20)

Proof:

We can assume that ~u 6= ~0 because of the constraints in Equation 24.20. We can abbreviate the

numerators of the Rayleigh quotients, and the ratio of the Rayleigh quotients, as

fB(~u)
def
= ~u TSB~u

fW (~u)
def
= ~u TSW~u (24.21)

f(~u)
def
=

fB(~u)

fW (~u)
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Observe that, because SW ≻ 0, (~u 6= ~0) → (fW (~u) > 0) so f(~u) is well formed. Representing

vector derivatives as 1-forms, and for brevity omitting the vector argument ~u, recall the Quotient

Rule for calculus to find the derivative of f(~u) in Equation 24.21 as

∂f

∂~u
=

[∂fB/∂~u]fW − [∂fW /∂~u]fB

(fW )2

=
[2~u TSB]~u

TSW~u− [2~u TSW ]~u TSB~u

(fW )2
(24.22)

Set [∂f
∂~u
]T of Equation 24.22 to ~0, and multiply both sides by (fW )2, to write

[~u∗]TSW~u∗[ST
B~u

∗]− [~u∗]TSB~u
∗[ST

W~u∗] = ~0 (24.23)

Because SB = ST
B and SW = ST

W and fW (~u) > 0, we can substitute transposes into Equation 24.23

and divide by [~u∗]TSW~u∗ to write

SB~u
∗ −

[~u∗]TSB~u
∗

[~u∗]TSW~u∗
SW~u∗ = ~0 (24.24)

We can abbreviate the ratio in Equation24.24 as a function that has a vector argument, so set

λ(~u∗)
def
=

[~u∗]TSB~u
∗

[~u∗]TSW~u∗
(24.25)

Substituting Equation 24.25 into Equation24.24, we can write

SB~u
∗ − λ(~u∗)SW~u∗ = ~0

≡ SB~u
∗ = λ(~u∗)SW~u∗

≡ SB~u
∗ = SWλ(~u∗)~u∗ (24.26)

Because SW ≻ 0, S−1

W exists. We can solve Equation 24.26 by pre-multiplying both sides by S−1

W ,

so we can write

[S−1

W SB]~u
∗ = λ(~u∗)~u∗ (24.27)

The solutions to Equation 24.27 are the unit eigenvectors ~u∗ and the associated eigenvalues λ(~u∗).

The maximum eigenvalue/eigenvector pair is the solution to Equation 24.20.
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