
CISC 271 Class 25

Classification – Assessment With Confusion Matrix

Text Correspondence: Fawcett, 2006 [4]

Main Concepts:

• Comparing labels to predictions

• Confusion matrix

• Sensitivity, specificity, Type I error, Type II error

Sample Problem, Machine Inference: How successful is a classification algorithm?

We now understand that an optimal answer to a problem may require additional information.

For example, is we use a hyperplane in binary classification, changing a value such as the bias

scalar can be expected to affect the performance of an optimal classifier.

We can explore this classification performance by going beyond the number of “right” and

“wrong” answers provided by the classifier. let us begin by recalling that a label in a binary

classification problem is a value, such as +1 or -1, that represents the subset that the data vector

presumably is in. The prediction is also a value, such as +1 or -1; the predicted class may differ

from the label. The four combinations, of two labels and two predicted classes, are typically

represented as a 2 × 2 confusion matrix. We will use these common abbreviations for the relevant

terms:

P : Positive instances, by label

N : Negative instances, by label

TP : True Positives, label is +1 and prediction is +1

TN : True Negatives, label is −1 and prediction is −1

FP : False Positives, label is −1 and prediction is +1

FN : False Negatives, label is +1 and prediction is −1

(25.1)

Terminology for the rows, columns, and entries differ considerably; this course uses the MATLAB

convention, which is summarized in Table 25.1.
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Table 25.1: A confusion matrix, which is an instance of a contingency table. The columns are the

“true” labels of the class of a data item. The rows are the predicted classes of a data item.

Predicted Class Row

+1 –1 Totals

Data

Label

+1
True

Positives

False

Negatives P

–1
False

Positives

True

Negatives N

Many terms that are commonly used in empirical data analysis can be derived from Defini-

tion 25.1. Some commonly encountered terms are summarized in Table 25.2.

Table 25.2: Commonly used terms that are derived from a confusion matrix.

Name Formula Alternative Names

Sensitivity TPR =
TP

P
True positive rate, hit rate, recall

Specificity TNR =
TN

N
True negative rate, selectivity

Accuracy ACC =
TP+TN

P+N

Type I error FP False alarm

Type I error rate FPR =
FP

N
False-alarm rate

Type II error FN Miss

Type II error rate FNR =
FN

P
Miss rate

Precision PPV =
TP

TP+FP
Positive predictive value

The accuracy of a classifier is the number of predictions that match the labels. For example,

in a binary classification problem with a linear SVM, the accuracy would be the proportion of the

sum of the number of vectors on the positive side of the hyperplane that were given as Label +1,

plus the number of vectors on the negative side of the hyperplane that were given as Label -1.

Accuracy is often useful but does not fully capture the performance of a classifier. In some
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applications, such as medical diagnosis, the error rates may be of substantial importance. The

Type I error, or as a relative value the false positive rate, measures the number or rate of “false

alarms”; in a medical context, this may result in needless medical care such as further diagnostic

tests or invasive surgical procedures. The Type II error, or as a relative value the false negative rate,

measures the number or rate of “misses”; in a medical context, this may result in under-treatment

and an unreasonable sense of security in both the patient and the care-giver.

Sensitivity and specificity are measures of accuracy that are restricted to only the data with,

respectively, labels of +1 and -1. If a classifier has a hyper-parameter that changes its performance,

the sensitivity and specificity will co-vary and can be assessed together.

In some applications, the F-score or F-measure is used. The F-score is defined as the harmonic

mean of precision and recall. Because the F-score does not account for the true negatives (TN),

care must be taken when using the F-score to evaluate a classifier.

25.1 Relative Confusion Matrix

In many applications, the absolute numbers of true positive instances, etc., are not used. In-

stead, the rates or relative proportions of the values from Definition 25.1 are preferred. We can use

these rates, which are defined in Table 25.2, to define a “relative” confusion matrix such as that in

Table 25.3.

Table 25.3: A relative confusion matrix is a contingency table that uses rates instead of the num-

bers of instances. The rows each sum to 1.

Class

+1 –1

Label
+1 TPR FNR

–1 FPR TNR

We can see that the relative confusion matrix of Table 25.3 has rows that sum to 1, because

TPR + FNR =
TP
P

+
FN
P

= 1

FPR + TNR =
FP
N

+
TN
N

= 1

(25.2)
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Equation 25.2 has an important implication for us:

A relative confusion matrix has two degrees of freedom

A general confusion matrix, such as that of Table 25.1, has four degrees of freedom. This

is because each of the entries is an independent count that depends on the labels and predicted

classes. The row sums, which are P and N that are respectively the number of data with positive

labels and negative labels, are dependent on the independent counts.

A relative confusion matrix has removed two of these degrees of freedom. By requiring that

the TPR and FNR add up to 1, if we are given one of these rates then we can deduce the other. For

example, given the TPR which is the true-positive rate, we can find the FNR as

FNR = 1− TPR (25.3)

Likewise, if we are given the FPR which is the false-positive rate, we can find the TNR as

TNR = 1− FPR (25.4)

This has a second useful implication for us:

A relative confusion matrix is a point in 2D

We will use this second implication to help us understand a set of confusion matrices as a curve

in 2D.
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