
CISC 271 Class 26

Classification – Single Artificial Neuron

Text Correspondence: Hastie et al., 2009 [6], pp 130–132

Main Concepts:

• Biological inspiration: cortical nerve cell

• Hyperplane with augmented vectors

• Neural networks use binary classes 0 and 1

Sample Problem, Machine Inference: How can we model a neuron?

Historically, the idea of an artificial neuron dates to 1943, when McCulloch and Pitts [9] began

to produce computational models of basic nerve cells. An illustration of a human neuron is shown

in Figure 26.1.

Figure 26.1: Illustration of a human neuron. The small projections from the cell body represent

dendrites that provide electrical inputs to the neuron. The long projection represents the axon,

which transmits the output to other cells. The axon is wrapped by electrically insulating cells that

help to preserve the electrical signal from the neuron.

From early electrophysiology, McCulloch and Pitts observed that some neurons had a behavior

that was roughly approximated as a linear sum of the inputs. If the jth electrical input to a neuron

was a value aj , the input appeared to be weighted by a cell-specific value mj . Taking n such inputs,

the linear sum was
n

∑

j=1

ajmj = ~a · ~m = ~aT ~m (26.1)

If the weighted sum in Equation 26.1 was greater than a cell-specific threshold value β, the

cell would “fire” and produce an output; otherwise, the cell would not have significant electrical

activity. The actual electrophysiology is considerably more complicated, involving time-dependent

156 © R E Ellis 2025



sequences of electrical “spikes”, but this simple mathematical model is still used in many current

neural networks. A common terminology in machine learning is that the value β is referred to as

the bias value. This condition for “firing” an artificial neuron can be written as

n
∑

j=1

ajmj ≥ β or

n
∑

j=1

ajmj − β ≥ 0 (26.2)

26.1 Data Matrix and Label Vector

We can see that Equation 26.2 has a familiar form: it looks much like a decision for whether

the vector ~a is on the positive side of a hyperplane. We will use this computation often, so we will

augment the vector ~a to create a data vector ~x that is defined as

~x
def
=

[

~a

1

]

(26.3)

We will represent the weight vector for an artificial neuron as the vector ~m augments with the

bias scalar b ≡ − β, which is

~w
def
=

[

~m

b

]

(26.4)

Using Definition 26.3 and Definition 26.4, the computation in Equation 26.2 can be written as

u =

n
∑

j=1

ajmj + b =
[

~a 1
]

[

~m

b

]

= ~xT ~w (26.5)

Usually, we want to learn the weights ~w for a set of input data. If each input data vector is ~ai,

then we can augment the data and gather the augmented observations into a matrix as

X =











~xT
1

~xT
2

...

~xT
m











=
[

A ~1
]

(26.6)

26.1.1 Labels of Data for Artificial Neurons

To learn weight vectors, artificial neurons need each input data vector to have a label. For

mathematical convenience, the convention in neural networks is to have each data vector labelled

157 © R E Ellis 2025



as either 0 or 1. Formally, for the ith augmented data vector ~xi, the label is

yi ∈ {0, 1} and ~y
def
=











y1
y2
...

ym











(26.7)

In machine learning, we must take care to see how data are labelled. In some literature, binary

labels might be ±1; for neural networks, binary labels are 0 or 1.

26.2 Activation Function

The way that an artificial neuron “fires” is also referred to as its activation function, written

here as φ(·). The activation function maps the linear sum u in Equation 26.5 to a real number,

which we will call the score, as

z = φ(u) where u
def
= ~xT ~w (26.8)

Depending on how the artificial neuron is specified, the score z in Equation 26.8 might be any

real number so z ∈ R, or the score might be restricted to an interval such as z ∈ [0 1]. We need to

read carefully when we are studying other source material on this topic.

A commonly used diagram illustrates the inputs to an artificial neuron as “arriving” from the

left. The values xi are weighted by the values wi; the bias b is associated with the augmented

constant xn+1

def
= +1. The weighted sum of these are the scalar value u, which passes through

the activation function φ(u) to produce an output z on the right of the diagram. Such an artificial

neuron is often illustrated as in Figure 26.2.

The score z is a real number that might not be the “final” output of an artificial neuron. In

some applications, the output of the artificial neurons must be quantized into two distinct classes.

Although most of machine learning uses the classes {−1,+1}, in neural networks the biological

inspiration is used so that the quantization is

q(z) ∈ {0, 1} (26.9)

26.3 Hyperplane For An Artificial Neuron

Consider Equation 26.5, which computes the pseudo-distance of a vector ~xi to a hyperplane H

that is specified by a general normal vector ~m and a bias scalar b. We might find the notational

overhead associated with the bias scalar b to be tedious.

158 © R E Ellis 2025



(A) (B)

Figure 26.2: Illustrations of an artificial neuron. The input vector ~x is scaled by the weights

w1, w2, . . . , wn and biased by b; the result u is the input to the activation function φ that produces

the neuron output z. (A) Data flow for an artificial neuron. (B) External variables are input ~x and

output z.

In a very simple model of an artificial neuron, we can omit the activation function φ(·) of

Equation 26.8; equivalently, we can use the identity function that maps the input to the output

as φ(u) = u. This implies that we can take the pseudo-distance ui of ~xi to the hyperplane H,

computed with Equation 26.5, and quantize ui as 0 for a negative pesudo-distance and 1 as a

non-negative pseudo-distance.

A common quantization is the Heaviside function, named after the mathematician and physicist

Oliver Heaviside. This is also call the unit step function and it plays a prominent part in neural

networks. The Heaviside function is defined as

H(u)
def
=

{

0 if u < 0
1 if u ≥ 0

(26.10)

Our simple model of an artificial neuron will be that it uses Equation 26.10 to classify an

augmented observation vector ~xi by using the augmented weight vector ~w, with the computation

q(~w; ~xi) = H(~xT
i ~w) (26.11)

In Equation 26.11, the argument of the quantization function q(·) is the weight vector ~w and

the additional parameter is the augmented data vector ~xi.

159 © R E Ellis 2025


