CISC 271 Class 28

Elementary Numerical Optimization

Texts: [1] pp. 1-10

Main Concepts:

- Stationary point, minimizer
- Derivative and direction of descent
- Function with a vector argument
- Steepest descent with constant stepsize

Sample Problem, Signal Processing: For function with a scalar argument, how can we numerically estimate a stationary point?

For us, optimization is the process of selecting a "best" member of a set according to a criterion. We will briefly explore optimization of a function, which in this course is a mapping from a set of points to the real numbers. In particular, when the domain is the real numbers \mathbb{R} then we write

$$f: \mathbb{R} \to \mathbb{R}$$
 or $f(t)$

we will refer to such a function as an *objective function*. The term "objective" will be used as an abbreviation for the longer term. A point, from the domain of f, is the *argument* of the function.

A maximum or minimum value of an objective happens at a *stationary point*, which occurs where the derivative of the zero.

<u>Definition:</u> stationary point of f(t)

For any $t \in \mathbb{R}$ and any $f : \mathbb{R} \to \mathbb{R}$, a scalar $t^* \in \mathbb{R}$ is a *stationary point* of f is defined as

$$f'(t^*) = 0 (28.1)$$

An example of a function and its two stationary points is shown in Figure 28.1. In this case, the function $f_1(t) = -t/(t^2 + 1)$ can be differentiated and its stationary points can be found as the zeros of a rational function.

Even though a function might be "nice" – smooth and infinitely differentiable – it could be easy to write the objective function and difficult to find a mathematical expression for its stationary point(s).

In optimization, the concept of being "concave-up" is called *convexity*. In simple words, a convex function is where, if we pick any two points, function is "below" the line that "connects" the points.

Figure 28.1: The function $f_1(t) = -t/(t^2 + 1)$ has two stationary points. (A) The function is shown in black and stationary points are shown in red. The stationary point at t = +1 is a local minimizer and the stationary point at t = -1 is a local maximizer. (B) The derivative of f_1 is shown in blue and its zeros are shown in red. Zeros of the derivative are stationary points of the function.

28.1 Scalar Argument – Fixed-Stepsize Search

Consider a scalar-valued function that is "nice"; then we can find the derivative at t_0 as $f'(t_0)$. If the derivative $f'(t_0)$ is positive then there might be a local minimum to the "left" of t_0 ; likewise, if f the derivative $f'(t_0)$ is negative then there might be a local minimum to the "right" of t_0 . We can suppose that a local minimum is "pointed to" by $-f'(t_0)$. An example is illustrated in Figure 28.2.

Figure 28.2: Function having a scalar argument, where the minimizer is in the direction of the negative of the derivative at a given point. (A) At $t_0 = 1$, the derivative is positive and the minimizer is "left" of t_0 . (B) At $t_0 = 0.5$, the derivative is negative and the minimizer is "right" of t_0 .

The process of finding a "good" estimate of a stationary point of an objective function having

a scalar argument is a *search*. Consider an iterative search at step k, where we want a "better" estimate of a stationary point at step k + 1. Typically, at step k, we know:

- f(t): objective function that can be evaluated
- t_k : current estimate of the true minimizer t^*
- f_k : objective function evaluated at t_k
- f'_k : first derivative of the objective function evaluated at t_k
- $d_k = \pm 1$: direction of the search

The most elementary form of search is to take a prescribed step in the prescribed unit direction. In machine learning, the size of the step is often called the *learning rate* and is written as the Greek symbol eta η .

The user supplies the search method with a constant η and the search computes the new estimate of the true minimizer t^* as

$$d_k = -\operatorname{sign}(f'(t_k))$$

$$t_{k+1} = t_k + \eta d_k$$
(28.2)

Equation 28.2 has a serious problem: as we approach a local minimizer, the sequence will usually "oscillate" around the true value.

Instead, at iteration number k, we scale the direction d_k by the magnitude of the derivative $f'(t_k)$. This new estimate is

$$d_k = -f'(t_k)$$

$$t_{k+1} = t_k + \eta d_k$$

$$= t_k - \eta f'(t_k)$$
(28.3)

This method, using a fixed stepsize, is described as pseudo-code in Algorithm 28.1.

In practice, selecting the stepsize can be difficult. One common problem that arises is that the stepsize is too large; the search can variously become worse, "oscillate" around a local minimum, or produce an erratic sequence of estimates. An example of using a fixed stepsize is shown in Figure 28.3. Because the stepsize is too large, the first application of Equation 28.3 results in an the estimate of t^* that is worse than the current estimate t_k .

Another example of using a fixed stepsize is shown in Figure 28.4. Because the stepsize is too small, repeated applications of Equation 28.3 result the estimate of t^* approaching the original estimate t_1 at a slow rate.

Algorithm 28.1 Scalar minimization, fixed stepsize

Figure 28.3: Fixed-stepsize search, with a stepsize that is too large, fails to approximate the true local minimum. The objective function is plotted as a solid black curve. (A) Initial estimate t_1 shown in black; a fixed stepsize produces an estimate, shown in blue, that is on the opposite side of the nearest minimizer and has a larger function value than that of the initial estimate. (B) Another application of the fixed stepsize update, shown in red, begins to approach the minimizer.

Figure 28.4: Fixed-stepsize search, with a stepsize that is too small, fails to approximate the true local minimum. The objective function is plotted as a solid black curve. The initial estimate t_1 is shown in black. Successive updates with a fixed stepsize, shown in blue and red, slowly approach the true minimizer.

Extra Notes

28.2 Vector Argument – Fixed-Stepsize Search

In multi-variable calculus, a function is expressed as having two or more real-valued arguments. A function of two variables, $f(tw1, w_2)$, does not seem to have a derivative as defined for a function with a scalar argument. Instead, such as function has two *partial* derivatives that are defined as

$$\frac{\partial f}{\partial w_1}(w_1, w_2) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{f(w_1 + h, w_2) - f(w_1)}{h}$$

$$\frac{\partial f}{\partial w_2}(w_1, w_2) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{f(w_1, w_2 + h) - f(w_1)}{h}$$
(28.4)

Instead, we will use an objective function with a vector argument that we will write as $f(\vec{w})$. To extend Equation 28.4 to vectors, we can recall from linear algebra the idea of an *elementary* vector. The j^{th} entry of \vec{e}_j is 1 and every other entry is 0. Using this idea, we can express the partial derivatives of Equation 28.4 as

$$\frac{\partial f}{\partial w_j}(\vec{w}) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{f(\vec{w} + h \vec{e}_j) - f(\vec{w})}{h} \tag{28.5}$$

Equation 28.5 is the same as the definition from multi-variable calculus, using vectors instead of multiple scalar arguments. The usual rules for finding a partial derivative are the same, such as holding other variables as constant when performing the differentiation.

Previously in this course, a mathematical object that looks like a row matrix was called *one-form* or a *1-form*. The idea of a 1-form leads us to a fundamental definition for numerical optimization.

Definition: gradient operator of $f(\vec{w})$

For $\vec{w} \in \mathbb{R}^n$ and any continuously differentiable $f: \mathbb{R}^n \to \mathbb{R}$, the gradient operator of a function $f(\vec{w})$ is defined as the 1-form

$$\underline{\nabla} f(\vec{w}) \stackrel{\text{def}}{=} \left[\frac{\partial f}{\partial w_1} (\vec{w}) \quad \frac{\partial f}{\partial w_2} (\vec{w}) \quad \dots \quad \frac{\partial f}{\partial w_n} (\vec{w}) \right]$$
(28.6)

The gradient is a 1-form but we want to search in the vector space \mathbb{V} that a weight vector \vec{w} "lives" in. At any point \vec{w}_0 , what direction is the function $f(\vec{w})$ steepest in the "downward" sense?

The answer is a straightforward extension of the idea we used for a function with a scalar argument. The direction of steepest descent, at a point $\vec{w_0}$, is the negative transpose of the gradient at that point:

$$\vec{d} = -\left[\nabla f(\vec{w}_0)\right]^T \tag{28.7}$$

The fundamental algorithm in unconstrained optimization is the *steepest descent algorithm*. This method, using a fixed stepsize and an unscaled gradient 1-form, is described as pseudo-code in Algorithm 28.2.

```
Algorithm 28.2 Steepest Descent, fixed stepsize
Require: kmax
Require: qmaq
                        > 0
  0w \rightarrow w
  fcurr \leftarrow f(w)
  g \leftarrow \underline{\nabla} f(w)
  d \leftarrow -[q]^T
  k \leftarrow 0
  while - (converged) do
      w \leftarrow w + eta*d
                                                            ▷ fixed stepsize
      fcurr \leftarrow f(w)
      g \leftarrow \nabla f(w)
      d \leftarrow -[g]^T
      k \leftarrow k+1
  end while
```

The convergence criteria in Algorithm 28.2 may include a combination of limiting the number of iterations to a value kmax, and requiring the magnitude of the gradient to be below some positive number gmag.
End of Extra Notes