
CISC 271 Class 28

Elementary Numerical Optimization

Texts: [1] pp. 1–10

Main Concepts:

• Stationary point, minimizer

• Derivative and direction of descent

• Function with a vector argument

• Steepest descent with constant stepsize

Sample Problem, Signal Processing: For function with a scalar argument, how can

we numerically estimate a stationary point?

For us, optimization is the process of selecting a “best” member of a set according to a criterion.

We will briefly explore optimization of a function, which in this course is a mapping from a set of

points to the real numbers. In particular, when the domain is the real numbers R then we write

f :R→ R or f(t)

we will refer to such a function as an objective function. The term “objective” will be used as

an abbreviation for the longer term. A point, from the domain of f , is the argument of the function.

A maximum or minimum value of an objective happens at a stationary point, which occurs

where the derivative of the zero.

Definition: stationary point of f(t)

For any t ∈ R and any f :R → R, a scalar t∗ ∈ R is a stationary point of f is defined

as

f ′(t∗) = 0 (28.1)

An example of a function and its two stationary points is shown in Figure 28.1. In this case,

the function f1(t) = −t/(t
2 +1) can be differentiated and its stationary points can be found as the

zeros of a rational function.

Even though a function might be “nice” – smooth and infinitely differentiable – it could be

easy to write the objective function and difficult to find a mathematical expression for its stationary

point(s).

In optimization, the concept of being “concave-up” is called convexity. In simple words, a

convex function is where, if we pick any two points, function is “below” the line that “connects”

the points.

161 © R E Ellis 2025



-5 0 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-5 0 5

-1.5

-1

-0.5

0

0.5

A B

Figure 28.1: The function f1(t) = −t/(t2 + 1) has two stationary points. (A) The function is

shown in black and stationary points are shown in red. The stationary point at t = +1 is a local

minimizer and the stationary point at t = −1 is a local maximizer. (B) The derivative of f1 is

shown in blue and its zeros are shown in red. Zeros of the derivative are stationary points of the

function.

28.1 Scalar Argument – Fixed-Stepsize Search

Consider a scalar-valued function that is “nice”; then we can find the derivative at t0 as f ′(t0).

If the derivative f ′(t0) is positive then there might be a local minimum to the “left” of t0; likewise,

if f the derivative f ′(t0) is negative then there might be a local minimum to the “right” of t0. We can

suppose that a local minimum is “pointed to” by−f ′(t0). An example is illustrated in Figure 28.2.

0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

2.5

(A)

0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

2.5

(B)

Figure 28.2: Function having a scalar argument, where the minimizer is in the direction of the neg-

ative of the derivative at a given point. (A) At t0 = 1, the derivative is positive and the minimizer

is “left” of t0. (B) At t0 = 0.5, the derivative is negative and the minimizer is “right” of t0.

The process of finding a “good” estimate of a stationary point of an objective function having

162 © R E Ellis 2025



a scalar argument is a search. Consider an iterative search at step k, where we want a “better”

estimate of a stationary point at step k + 1. Typically, at step k, we know:

• f(t): objective function that can be evaluated

• tk: current estimate of the true minimizer t∗

• fk: objective function evaluated at tk

• f ′

k: first derivative of the objective function evaluated at tk

• dk = ±1: direction of the search

The most elementary form of search is to take a prescribed step in the prescribed unit direction.

In machine learning, the size of the step is often called the learning rate and is written as the Greek

symbol eta η.

The user supplies the search method with a constant η and the search computes the new estimate

of the true minimizer t∗ as

dk = −sign(f ′(tk))

tk+1 = tk + ηdk (28.2)

Equation 28.2 has a serious problem: as we approach a local minimizer, the sequence will

usually “oscillate” around the true value.

Instead, at iteration number k, we scale the direction dk by the magnitude of the derivative

f ′(tk). This new estimate is

dk = −f ′(tk)

tk+1 = tk + ηdk

= tk − ηf ′(tk) (28.3)

This method, using a fixed stepsize, is described as pseudo-code in Algorithm 28.1.

In practice, selecting the stepsize can be difficult. One common problem that arises is that the

stepsize is too large; the search can variously become worse, “oscillate” around a local minimum,

or produce an erratic sequence of estimates. An example of using a fixed stepsize is shown in

Figure 28.3. Because the stepsize is too large, the first application of Equation 28.3 results in an

the estimate of t∗ that is worse than the current estimate tk.

Another example of using a fixed stepsize is shown in Figure 28.4. Because the stepsize is

too small, repeated applications of Equation 28.3 result the estimate of t∗ approaching the original

estimate t1 at a slow rate.

163 © R E Ellis 2025



Algorithm 28.1 Scalar minimization, fixed stepsize

Require: kmax > 0
Require: dmag > 0
t ← t0

fcurr ← f(t)

d ← -f’(t)

k ← 0
while ¬ (converged) do

t ← t + eta*d ⊲ fixed stepsize

d ← -f’(t)

fcurr ← f(t)

k ← k+1

end while

0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

2.5

A B

Figure 28.3: Fixed-stepsize search, with a stepsize that is too large, fails to approximate the true

local minimum. The objective function is plotted as a solid black curve. (A) Initial estimate t1
shown in black; a fixed stepsize produces an estimate, shown in blue, that is on the opposite side of

the nearest minimizer and has a larger function value than that of the initial estimate. (B) Another

application of the fixed stepsize update, shown in red, begins to approach the minimizer.

164 © R E Ellis 2025



0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

2.5

Figure 28.4: Fixed-stepsize search, with a stepsize that is too small, fails to approximate the true

local minimum. The objective function is plotted as a solid black curve. The initial estimate t1 is

shown in black. Successive updates with a fixed stepsize, shown in blue and red, slowly approach

the true minimizer.

Extra Notes

28.2 Vector Argument – Fixed-Stepsize Search

In multi-variable calculus, a function is expressed as having two or more real-valued arguments.

A function of two variables, f(tw1, w2), does not seem to have a derivative as defined for a function

with a scalar argument. Instead, such as function has two partial derivatives that are defined as

∂f

∂w1

(w1, w2)
def
= lim

h→0

f(w1 + h, w2)− f(w1)

h

∂f

∂w2

(w1, w2)
def
= lim

h→0

f(w1, w2 + h)− f(w1)

h

(28.4)

Instead, we will use an objective function with a vector argument that we will write as f(~w).

To extend Equation 28.4 to vectors, we can recall from linear algebra the idea of an elementary

vector. The jth entry of ~ej is 1 and every other entry is 0. Using this idea, we can express the

partial derivatives of Equation 28.4 as

∂f

∂wj

(~w)
def
= lim

h→0

f(~w + h~ej)− f(~w)

h
(28.5)

Equation 28.5 is the same as the definition from multi-variable calculus, using vectors instead

of multiple scalar arguments. The usual rules for finding a partial derivative are the same, such as

holding other variables as constant when performing the differentiation.

165 © R E Ellis 2025



Previously in this course, a mathematical object that looks like a row matrix was called one-

form or a 1-form. The idea of a 1-form leads us to a fundamental definition for numerical opti-

mization.

Definition: gradient operator of f(~w)

For ~w ∈ R
n and any continuously differentiable f :Rn

→ R, the gradient operator of

a function f(~w) is defined as the 1-form

∇ f(~w)
def
=

[

∂f

∂w1

(~w)
∂f

∂w2

(~w) · · ·
∂f

∂wn

(~w)

]

(28.6)

The gradient is a 1-form but we want to search in the vector space V that a weight vector ~w

“lives” in. At any point ~w0, what direction is the function f(~w) steepest in the “downward” sense?

The answer is a straightforward extension of the idea we used for a function with a scalar

argument. The direction of steepest descent, at a point ~w0, is the negative transpose of the gradient

at that point:

~d = −[∇f(~w0)]
T (28.7)

The fundamental algorithm in unconstrained optimization is the steepest descent algorithm.

This method, using a fixed stepsize and an unscaled gradient 1-form, is described as pseudo-code

in Algorithm 28.2.

Algorithm 28.2 Steepest Descent, fixed stepsize

Require: kmax > 0
Require: gmag > 0
w ← w0

fcurr ← f(w)

g ← ∇f(w)

d ← −[g]T

k ← 0
while ¬ (converged) do

w ← w + eta*d ⊲ fixed stepsize

fcurr ← f(w)

g ← ∇f(w)

d ← −[g]T

k ← k+1

end while

166 © R E Ellis 2025



The convergence criteria in Algorithm 28.2 may include a combination of limiting the number

of iterations to a value kmax, and requiring the magnitude of the gradient to be below some positive

number gmag.

End of Extra Notes

167 © R E Ellis 2025


