
CISC 271 Class 29

Odds of Occurrence and Probability

Text Correspondence: ∼

Main Concepts:

• Odds: ratio of likelihood of an event

• Probability: inverse function of odds

• Logistic function: map from score to probability

• Logistic regression: use p(u) instead of u

Sample Problem, Machine Inference: How can we compute the probability of clas-

sification for a data vector?

We now know at least one way to perform binary classification: using linear separation: we,can

classify a ‘vector ~u as a member of Class +1 based on a hyperplane H that is specified by a unit

weight vector ~n and a bias a. We can do this by finding the signed distance u from ~u to the

hyperplane H as a score

z(~u)
def
= ~nT~u+ a (29.1)

We assign a ‘vector ~u to Class +1 if and only if z(~u) ≥ 0. Now, we will try answer a more

general question: what is the probability that a vector ~u has the label+1?

For us, a probability is a measure of the likelihood of an outcome. The outcome is whether a

vector ~u has the label +1. A probability is a real number between 0 and 1; because a probability is

usually written as p, and because we will not model perfect outcomes, we require

p ∈ (0, 1)

We will not explore interpretations of probability, or probability density functions, which are

extensive fields of study. Interested students might investigate offerings in mathematics and statis-

tics to learn more about these important topics.

We begin by considering a common statement made in gambling and other practical appli-

cations of probability theory. When someone states “the odds are 50:50”, we understand this as

meaning that the probability of some outcome is 50%; we infer that the probability of the outcome

being something else is also 50%, so the ratio of the probabilities is

50/50 = 0.5/0.5
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In binary classification, we are understanding the statement to mean that the likelihood that a

vector has the label +1 is the same as the likelihood that a vector has the label -1.

When someone states “the odds are 9 to 1”, we understand this in binary classification as

meaning that the probability that a vector has the label +1 is 9 times as likely as the probability that

a vector has the label -1. The two probabilities must add to 1, because in binary classification no

other outcome is possible. If we write that the probability of an outcome is p, then we mean that

the probability of a vector ~u has the label +1 is p. Because the probability that a vector ~u either

has the label +1 or the label -1 must be 100%, or 1, we can infer that the probability that ~u has the

label -1 is (1− p). The odds, which we will write as s, is the ratio

s
def
=

p

1− p
(29.2)

For the statement “the odds are 9 to 1”, we infer that p = 0.9 so that the ratio of Equation 29.2

is 9.

More generally, when someone states that “the odds are 1 in n”, we understand that the likeli-

hood of some outcome is a vector ~u has the label +1 is 1/n of the likelihood that ~u has the label -1.

That is, we are given the ratio of the odds as s = 1/n and we want to find the probability that

corresponds to the odds that someone has provided.

We can convert the odds to a probability by inverting Equation 29.2 so that, given s, we can

solve for p. One solution is

s = p/(1− p)

≡ s(1− p) = p

≡ s− sp = p

≡ s = p+ sp

≡ s = p(1 + s)

≡ p = s/(1 + s) (29.3)

We can now return to our problem in binary classification of data, which is: what is the prob-

ability that a vector ~u has the label +1? One method is to relate the scalar u – which is the signed

distance from a vector ~u to the separating hyperplane H – to the scalar value s.
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We can constrain this relation by considering some necessary conditions that the relation must

satisfy. Some of the properties we know or desire are:

• z(~u) is unbounded, that is, z ∈ (−∞,+∞)

• s ∈ (0,+∞) because:

– s is positive, that is, s > 0, because lim
p→0

s = 0

– s can have any positive value, because lim
p→1

s = +∞

• the map s 7→ z must be invertible so that we can find z 7→ s

There are infinite choices for a strictly monotonic function that satisfies all of these constraints.

The constraints are illustrated in Figure 29.1.

Figure 29.1: Constraints on a map from s ∈ (0,+∞) to z ∈ (−∞,+∞). The function must be

invertible so it must be strictly monotonic.

One function that satisfies the constraints, which we know from prerequisite material, is the

natural logarithm. It is easy to verify that, for a value s ∈ (0,+∞), the computation ln(s) satisfies

all of the constraints.

We will choose, from the infinitude of possibilities, to relate the ratio of odds s to the signed

distance u as

z = ln(s)

≡ s = exp(z) = ez (29.4)
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If we substitute the definitions of Equation 29.1 and Equation 29.2 into Equation 29.4, we get

z = ln(s)

≡ ~nT~u+ a = ln

(

p

1− p

)

≡ e~n
T ~u+a =

p

1− p
(29.5)

Solving Equation 29.5 for the probability p gives us

p(~u) =
e~n

T ~u+a

1 + e~n
T ~u+a

or p(~u) =
1

1 + e−(~n T ~u+a)
(29.6)

Equation 29.6 is referred to as the logistic function. It provides us with a way to compute the

probability that the vector ~u has the label +1 based on the hyperplane H that is specified by the

unit weight vector ~n and the bias value b. The logistic function is illustrated in Figure 29.2.
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Figure 29.2: Logistic function for signed distance from a vector ~u to a hyperplane H . The result

is the probability p(~u) that ~u has the label +1 for a binary classification problem.

The logistic function is fundamental to many methods in current machine learning. A direct

use is to perform regression not on the linear term z = ~nT~u+ a, but on the logistic function p(u).
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This concept of logistic regression can be used to understand maximum likelihood estimation and

many other powerful methods for data analysis.

Another use is in artificial neural networks. It is possible to arrange artificial neurons into

layers that can learn a complicated classification task. The learning operates because the function

p(u) is continuous and differentiable, so the probability of classification can be propagated back

from the output neuron to the neurons that provide its inputs.

Computational implementation of linear algebra has direct applications in data analysis. The

closely allied concept of a vector space has allowed us to organize and approximate data vectors of

high dimension. Linear algebra is also fundamental to understand unsupervised clustering of data

vectors, classification of data vectors by artificial neurons, and global optimization of classification

by support vector machines. Its extension, by means of the logistic function, can be used to explore

current methods in data analytics and machine learning.

29.1 Logistic Function – Some Properties

The logistic function is used widely in data analysis. Here, we can derive some simple proper-

ties. For this purpose, we will use the logistic function of a scalar argument z, which we can write

as

p(z) =
ez

1 + ez
=

1

1 + e−z
(29.7)

From Equation 29.7, we can deduce a useful symmetry property:

1− p(z) =
1 + ez

1 + ez
−

ez

1 + ez

=
1

1 + ez

= p(−z) (29.8)

The derivative of the logistic function can be derived by recalling the Quotient Rule from basic

differential calculus. Using the scalar argument z, we can write this rule as

d

dz

(

f(z)

g(z)

)

=
f ′g − fg′

g2
(29.9)
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Applying Equation 29.9 to Equation 29.7, the derivative of the logistic function is

d

dz
p(z) =

ez(1 + ez)− ezez

(1 + ez)2

=
ez + ezez − ezez

(1 + ez)2

=
ez

1 + ez
1

1 + ez

= p(z)p(−z)

= p(z)(1 − p(z)) (29.10)

Equation 29.10 provides us with a way to compute the derivative of the logistic function that

requires only a single invocation of the logistic computation.
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