
CISC 271 Class 29

Artificial Neuron – Learning Weights

Text Correspondence: Hastie et al., 2009 [6], pp 119–122 and pp 130–132

Main Concepts:

• Perceptron – simple binary neuron cell

• Steepest Descent – numerical method for learning weights

• Linear activation – limited ability to separate

• Semilinear – early use of logistic function

Sample Problem, Machine Inference: How can we learn the “best” binary separation

of data?

Our notation for artificial neurons will differ slightly from our notation so far in this course.

We will suppose that data are provided in a data matrix A ∈ R
m×n and that binary labels are

provided as yi ∈ {0 1}. We will transpose and augment each observation ai with the value 1; for a

hyperplane H that is specified by a general non-zero normal vector ~m with its bias scalar b, we will

augment the vector with the bias scalar. Our augmented data vector, and our augmented weight

vector that represents H, will be

x
def
=

[

aT 1
]

~w
def
=

[

~m
b

]

(29.1)

Previously, we used Equation 25.6 to find the probability that an observation x was on the

“positive” side of a hyperplane H. For an artificial neuron, we usually do not use a unit normal

~n; instead, we are using a general non-zero normal vector ~m. The linear response of the artificial

neuron to the observation x is

u(~w; x)
def
= x~w (29.2)

Sometimes, the quantity u in Equation 29.2 is called the hyperplane pseudo-distance.

168 © R E Ellis 2025



29.1 History – The Perceptron Rule

A basic algorithm for finding the weight vector ~w is the Perceptron Rule. Historically, a Per-

ceptron was one version of an artificial neuron that was developed by Frank Rosenblatt [11] who

worked independently from McCulloch and Pitts [9]. His algorithm is the basis of a great deal of

current work in machine learning.

In a landmark 1969 book – re-issued in 1988 and 2017 – Marvin Minsky and Seymour Pa-

pert [10] proved that entire classes of seemingly simple problems cannot be solved by Perceptron-

like models of an artificial neuron. The models included the original Perceptron of Frank Rosen-

blatt [11], plus the Widrow-Hoff original model [15] and variants [16]. The criticism applied also

to a single “layer” of simple artificial neurons.

29.2 Logistic Activation of an Artificial Neuron

Work that is now considered foundations for neural networks, was first published as a technical

report by Rumelhart et al. in 1985 [12] and communicated by Hinton in a 1986 article that is widely

cited [13]. This work re-discovered work by Paul Werbos in 1974, re-published in 1994 [14], that

described how to automatically differentiate complicated compositions of functions.

The concept is simple. Instead of using the linear weighted sum of an observation, which

we compute as ui from Equation 29.2, they considered a nonlinear activation function φ(·). This

activation function must have a few key attributes by being:

• Easy to compute

• Continuous

• Differentiable

• Optionally, had bounded derivatives

In the original technical report, on Page 9, Rumelhart et al. we emphasize that they wrote:

“. . . we have used the logistic activation function . . . ”

As we have explored earlier, the logistic function satisfies these key attributes.

In artificial neural networks, we use the linear response of Equation 29.2 and the logistic func-

tion to find the response of the artificial neuron to an observation xi as

φi = φ(~w; xi) =
1

1 + e−x
i
~w

(29.3)

169 © R E Ellis 2025



The scaling effects that distinguish Equation 29.3 from Equation 25.6 are empirically negligible

in extensive iterative computations. When plotted, the curve of Equation 29.3 is “S”-shaped and

the computation is sometimes called a sigmoid activation function.

29.3 The Method of Steepest Descent

The basic learning problem for an artificial neuron is, given an augmented data matrix X and

a label vector ~y, how to learn the “best” weight vector ~w. To date, there is no known closed-form

solution for inverting Equation 29.3 to find ~w from a set of augmented data X . There is, however,

a simple iterative computation that is widely used: the method of steepest descent, described in

Class 28.

Instead of having a derivative, a multi-variable function has a gradient that is a 1-form with

entries that are partial derivatives. The mathematical basis of the extended form is provided in the

extra notes for this class and is summarized here.

The key concept is how to compute the gradient of the inner product of two vectors. In our

case, the scalar value ui is computed from Equation 29.2. We can think of ui as a function that has

a vector argument ~w and depends on a data observation xi, which can be written as

ui

def
= u(~w; xi) = xi ~w (29.4)

The gradient of ui in Equation 29.4, from multivariate calculus, can be written as

∇ui = xi (29.5)

We want to minimize the residual error between the label yi and the score φ(ui). In linear

regression, we used the square of the residual error; doing likewise here, we start by observing that

minimizing r2i is the same as minimizing 1

2
e2i and the constant factor 1/2 will simplify subsequent

differentiation. Thus, we would minimize

fi(ei; xi, yi) =
1

2
r2
i

(29.6)

ri(zi) = yi − zi

zi(ui) = φ(ui) =
1

1 + e−ui

ui(~w; xi) = xi ~w

170 © R E Ellis 2025



Consider an activation function φ(u) that is smooth and differentiable, such as the logistic

function. The derivative is φ′(u). Applying the Chain Rule to Equation 29.6, the gradient is

∇fi =

(

∂fi
∂ei

)(

∂ei
∂zi

)(

∂zi
∂ui

)

[∇ui]

= (ei) (−1) (φ
′(ui)) [∇ui]

= − (yi − φ(ui))φ
′(ui)xi (29.7)

= −bi xi

where bi
def
= (yi − φ(ui))φ

′(ui)

The scalar bi in Equation 29.7 is the back-propagation factor; it scales the gradient direction xi

to account for the residual error and derivative term φ′ that are propagated “back” when we use the

Chain Rule to find the gradient.

The vector of steepest descent is −[∇fi]
T . Transposing Equation 29.7, and using the logistic

function as the activation function φ(ui), and using the derivative of the activation function as

φ′(ui) = φ(ui)(1 − φ(ui), the vector of steepest descent is a scaled version of the augmented

observation xi, which is

~gi = (yi − φ(ui))φ(ui)(1− φ(ui))x
T

i

= bi x
T

i
(29.8)

The steepest vector for all of the data in the data matrix X is the sum of the steepest vectors for

each observation, so

~g =

m
∑

i=1

~gi =

m
∑

i=1

bi x
T

i (29.9)

When we implement Equation 29.9, we usually compute φ(ui) once and use it repeatedly in

the formula.

To implement the algorithm of steepest descent for a set of data in the matrix X , with corre-

sponding labels in the vector y, we modify Algorithm 28.1 to handle vectors instead of scalars. We

still need a hyper-parameter η, plus convergence criteria kmax and gmin. An initial estimate ~w0 can

be provided by the user or can be randomly generated.

Algorithm 29.1 is often mis-described as “gradient descent”, which is incorrect because:

• the gradient is a 1-form, not a vector; and

• the direction of steepest descent is the negation of the transpose of the gradient

171 © R E Ellis 2025



Algorithm 29.1 Artificial neuron optimization, fixed stepsize, kmax steps

w ← w0

k ← 0
while k ≤ kmax do

g ←
∑

m

i=1
(yi − φ(ui))φ(ui)(1− φ(ui))xi

w ← w + η gT

k ← k+1

end while

Details of descent methods are topics in numerical optimization for machine learning.

Extra Notes

29.4 Extra Notes: Gradient of Squared-Error Objective

Consider an artificial neuron in which an augmented data observation is x ∈ R
2 and a label

is y ∈ {0, 1}. The augmented data vector and the augmented weight vector are, in this simple

example,

x =
[

x1 1
]

~w =

[

w1

w2

]

where w2 = −β

The linear term u can be expanded as

u = x~w =
[

x1 1
]

[

w1

w2

]

= x1w1 + w2

The partial derivative of u with respect to w1, where we hold w2 to be constant, is

∂u

∂w1

= x1 (29.10)

The partial derivative of u with respect to w2, where we hold w1 to be constant, is

∂u

∂w2

= 1 (29.11)

Using a squared-error objective function, Equation 29.6 can be expanded with the term u =

172 © R E Ellis 2025



x1w1 + w2 to produce

f(r; x, y) =
1

2
r2 (29.12)

r(z) = y − z

z(u) = φ(u) =
1

1 + e−u

u(~w; x) = x~w

= x1w1 + w2

We can differentiate Equation 29.12 with respect to w1, using Equation 29.10, as

∂f

∂w1

=

(

∂f

∂r

)(

∂r

∂z

)(

∂z

∂u

)(

∂u

∂w1

)

= (r) (−1) (φ′(u)) (x1)

= − (yi − φ(ui))φ
′(ui)x1 (29.13)

Likewise, using Equation 29.10, we can differentiate Equation 29.12 with respect to w2 as

∂f

∂w2

=

(

∂f

∂e

)(

∂e

∂z

)(

∂z

∂u

)(

∂u

∂w2

)

= (r) (−1) (φ′(u)) (1)

= − (yi − φ(ui))φ
′(ui)1 (29.14)

The gradient of f(~w; x, y) is the 1-form with entries that are the partial derivatives with respect

to the entries of ~w. Using the common scalar factors in Equation 29.13 and Equation 29.14, the

gradient 1-form is

∇f =

[

∂f

w1

∂f

w2

]

=
[

(− (yi − φ(ui))φ
′(ui)x1) (− (yi − φ(ui))φ

′(ui)1)
]

= − (yi − φ(ui))φ
′(ui)

[

x1 1
]

= − (yi − φ(ui))φ
′(ui)x (29.15)

Equation 29.15 can easily be extended to data observations and weight vectors of higher di-

mensions.

End of Extra Notes

173 © R E Ellis 2025


