
CISC 271 Class 30

Supervised Learning – Perceptron Rule

Text Correspondence: Hastie et al., 2009 [6], pp 130–132

Main Concepts:

• Perceptron – simple binary neuron cell

• Learning – false positives and false negatives

• Perceptron Rule for machine learning

Sample Problem, Machine Inference: How can we learn a hyperplane from data?

30.1 The Perceptron Rule

A basic algorithm for finding the weight vector ~w and the bias value b is the Perceptron Rule.

Historically, a Perceptron was one version of an artificial neuron that was developed by Frank

Rosenblatt [11] who worked independently from McCulloch and Pitts [9]. His algorithm is the

basis of a great deal of current work in machine learning.

Rosenblatt’s idea can be expressed as simple actions:

• If we are right, and the class matches the label, we do not change the hyperplane

• If we are wrong, and the class does not match the label, we adjust the hyperplane

The Perceptron Rule works by iteratively estimating the weight vector ŵ that is used to deter-

mine the hyperplane of separation. The concept is basic: if the correspondence is correct then we

do not change ŵ, but if there is a mis-classification then ŵ must be adjusted. Updates to the weight

vector, in the Perceptron Rule, occur if and only if there is a false negative or a false positive

produced by the current weight vector.

We can reason about the Perceptron Rule by enumerating the cases. Each observation’s label

has one of two values, because yi ∈ {0, 1}. Likewise, the quantization for each observation has

one of two values, qi ∈ {0, 1}. Together these constitute four cases: true positive, true negative,

false negative, and false positive. These are summarized in Table 30.1.

We can use a common method of machine learning, which is to interpret the logical states

of {0, 1} as numerical values. A key observation that we can draw from Table 30.1 is that the

difference between the label and the classification can be used to succinctly state the update to ŵ.
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Table 30.1: Logic for the Perceptron Rule for observation #i, which is in the “vector” x̂i. The

observation’s label is yi ∈ {0, 1} and it classification, by quantizing the linear weighted sum of

the observation and the augmented weight vector ŵ, is qi ∈ {0, 1}. The action is the change to ŵ

according to the Perceptron Rule.

Condition Case Action

(yi = 1) ∧ (qi = 1) True Positive ŵ unchanged

(yi = 0) ∧ (qi = 0) True Negative ŵ unchanged

(yi = 1) ∧ (qi = 0) False Negative ŵ becomes closer to x̂i

(yi = 0) ∧ (qi = 1) False Positive ŵ becomes farther from x̂i

Consider the residual error between the label yi and the quantization qi, which we can write as

ei
def
= yi − qi (30.1)

We can write the contents of Table 30.1 using the residual error term ei of Equation 30.1, which

is given in Table 30.2.

Table 30.2: Residual error terms for the Perceptron Rule for observation #i, which is in the

“vector” x̂i. The observation’s label is yi ∈ {0, 1} and it classification, by quantizing the linear

weighted sum of the observation and the augmented weight vector ŵ, is qi ∈ {0, 1}. The residual

error is ei
def
= yi − qi. The action is the change to ŵ according to the Perceptron Rule.

Condition Error Case Action

(yi = 1) ∧ (qi = 1) ei = 0 True Positive ŵ ← ŵ

(yi = 0) ∧ (qi = 0) ei = 0 True Negative ŵ ← ŵ

(yi = 1) ∧ (qi = 0) ei = +1 False Negative ŵ ← ŵ + eix̂i

(yi = 0) ∧ (qi = 1) ei = −1 False Positive ŵ ← ŵ + eix̂i

The actions in Table 30.2 can be summarized as a single update for the Perceptron Rule:

ŵ ← ŵ + eix̂i (30.2)

There are many theoretical and practical results associated with the Perceptron Rule. For us, a

very important result is

If the training data vectors x̂j can be separated by a hyperplane, then

the Perceptron Rule converges to a correct weight vector
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The Perceptron Rule works by updating the weight vector based on the mis-classifications.

Where the correct classification of an augmented training data vector x̂j is yj , the algorithm up-

dates the augmented weight vector ŵ by comparing the computed classification to the known label;

depending on the direction of the mis-classification, the incorrectly classified augmented data vec-

tor is added to or subtracted from the augmented weight vector. In pseudocode, where we use a

“missed” flag to help us to end an enclosing loop early, this could be written as

for max iterations,

Missed ← F

for each training sample i,

qi ← heaviside(x̂T
i ŵ) quantization

ei ← (yi − qi)
ŵ ← ŵ + eix̂i

if (ei 6= 0) Missed ← T

need to repeat

endif

endfor

if ¬Missed then BREAK

endfor

This simple algorithm, which updates the augmented weight vector according to how the train-

ing data vectors are mis-classified, is usually enclosed in another loop. The outer loop typically

places a limit on the number of updates to the augmented weight vector, so that an infinite loop

does not result from non-separable training data. The “missed” flag can be used to exit the outer

loop when all of the training data are correctly classified, that is, when no further computations are

necessary.

The above algorithm can be coded in Matlab as a function that iterates from an initial estimate

of the augmented weight vector ŵ to a final estimate. Because convergence of the Perceptron Rule

is guaranteed for linearly separable data, in this course we will not worry about error handling or

speed of convergence.

In this course, we will not address the thorny practical problem of what happens when we try

to adjust the hyperplane to accommodate one data vector, and the adjustment results in the mis-

classification of another data vector. That problem, and related problems, are topics in courses on

more advanced data analysis, machine learning, and artificial intelligence.
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30.2 Perceptron Rule – Batch Learning

We have often found it useful to gather data into a structure in linear algebra, so let us consider

this practice for the Perceptron Rule. We have m observations, which we can gather into an

augmented design matrix. Using our circumflex notation, we can write this design matrix as

X̂ ∈ R
m×(n+1) (30.3)

We can gather each observation’s label, yi, into a label vector ~y. Each quantization qi can also

be gathered into a quantization vector ~q. Equation 30.2 can be stated concisely, working on all of

the observations simultaneously, at iteration k as

ŵk ← ŵk−1 + X̂T (~y − ~q) (30.4)

30.3 Example: Performance on the Iris Data Set

The Iris data set, as we saw in previous classes, was not correctly clustered by the k-means

algorithm. We understood that the problem was because one data vector was mis-classified. What

if we randomly select an augmented weight vector ŵ as an initial estimate, and run the Perceptron

Rule on the data set?

After converting the original data vectors into augmented training data vectors, the Perceptron

Rule correctly separates the data. However, the separating hyperplane is not necessarily located

and oriented in a way that a human might separate the data. Examples of convergences from

random initial estimates, which have been exaggerated by slowing down the algorithm, are shown

in Figure 30.1.

We can immediately appreciate that, in these examples, the separating hyperplane is “close” to

one or the other subset of training data. This is a consequence of the Perceptron Rule, which stops

updating the augmented weight vector ŵ when all of the training data are correctly classified.

This situation seems less than ideal. A great deal of work in machine learning has gone into

ways to improve the Perceptron Rule so that a better hyperplane estimate is calculated.
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Figure 30.1: Convergence of the Perceptron Rule on the Iris data set. Four randomly selected

initial estimates of the separating hyperplane produced four distinctly different results. The effects

were exaggerated by slowing the algorithm’s convergence with a value η.
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